11da177e4SLinus Torvalds| 21da177e4SLinus Torvalds| bindec.sa 3.4 1/3/91 31da177e4SLinus Torvalds| 41da177e4SLinus Torvalds| bindec 51da177e4SLinus Torvalds| 61da177e4SLinus Torvalds| Description: 71da177e4SLinus Torvalds| Converts an input in extended precision format 81da177e4SLinus Torvalds| to bcd format. 91da177e4SLinus Torvalds| 101da177e4SLinus Torvalds| Input: 111da177e4SLinus Torvalds| a0 points to the input extended precision value 121da177e4SLinus Torvalds| value in memory; d0 contains the k-factor sign-extended 131da177e4SLinus Torvalds| to 32-bits. The input may be either normalized, 141da177e4SLinus Torvalds| unnormalized, or denormalized. 151da177e4SLinus Torvalds| 161da177e4SLinus Torvalds| Output: result in the FP_SCR1 space on the stack. 171da177e4SLinus Torvalds| 181da177e4SLinus Torvalds| Saves and Modifies: D2-D7,A2,FP2 191da177e4SLinus Torvalds| 201da177e4SLinus Torvalds| Algorithm: 211da177e4SLinus Torvalds| 221da177e4SLinus Torvalds| A1. Set RM and size ext; Set SIGMA = sign of input. 231da177e4SLinus Torvalds| The k-factor is saved for use in d7. Clear the 241da177e4SLinus Torvalds| BINDEC_FLG for separating normalized/denormalized 251da177e4SLinus Torvalds| input. If input is unnormalized or denormalized, 261da177e4SLinus Torvalds| normalize it. 271da177e4SLinus Torvalds| 281da177e4SLinus Torvalds| A2. Set X = abs(input). 291da177e4SLinus Torvalds| 301da177e4SLinus Torvalds| A3. Compute ILOG. 311da177e4SLinus Torvalds| ILOG is the log base 10 of the input value. It is 321da177e4SLinus Torvalds| approximated by adding e + 0.f when the original 331da177e4SLinus Torvalds| value is viewed as 2^^e * 1.f in extended precision. 341da177e4SLinus Torvalds| This value is stored in d6. 351da177e4SLinus Torvalds| 361da177e4SLinus Torvalds| A4. Clr INEX bit. 371da177e4SLinus Torvalds| The operation in A3 above may have set INEX2. 381da177e4SLinus Torvalds| 391da177e4SLinus Torvalds| A5. Set ICTR = 0; 401da177e4SLinus Torvalds| ICTR is a flag used in A13. It must be set before the 411da177e4SLinus Torvalds| loop entry A6. 421da177e4SLinus Torvalds| 431da177e4SLinus Torvalds| A6. Calculate LEN. 441da177e4SLinus Torvalds| LEN is the number of digits to be displayed. The 451da177e4SLinus Torvalds| k-factor can dictate either the total number of digits, 461da177e4SLinus Torvalds| if it is a positive number, or the number of digits 471da177e4SLinus Torvalds| after the decimal point which are to be included as 481da177e4SLinus Torvalds| significant. See the 68882 manual for examples. 491da177e4SLinus Torvalds| If LEN is computed to be greater than 17, set OPERR in 501da177e4SLinus Torvalds| USER_FPSR. LEN is stored in d4. 511da177e4SLinus Torvalds| 521da177e4SLinus Torvalds| A7. Calculate SCALE. 531da177e4SLinus Torvalds| SCALE is equal to 10^ISCALE, where ISCALE is the number 541da177e4SLinus Torvalds| of decimal places needed to insure LEN integer digits 551da177e4SLinus Torvalds| in the output before conversion to bcd. LAMBDA is the 561da177e4SLinus Torvalds| sign of ISCALE, used in A9. Fp1 contains 571da177e4SLinus Torvalds| 10^^(abs(ISCALE)) using a rounding mode which is a 581da177e4SLinus Torvalds| function of the original rounding mode and the signs 591da177e4SLinus Torvalds| of ISCALE and X. A table is given in the code. 601da177e4SLinus Torvalds| 611da177e4SLinus Torvalds| A8. Clr INEX; Force RZ. 621da177e4SLinus Torvalds| The operation in A3 above may have set INEX2. 631da177e4SLinus Torvalds| RZ mode is forced for the scaling operation to insure 641da177e4SLinus Torvalds| only one rounding error. The grs bits are collected in 651da177e4SLinus Torvalds| the INEX flag for use in A10. 661da177e4SLinus Torvalds| 671da177e4SLinus Torvalds| A9. Scale X -> Y. 681da177e4SLinus Torvalds| The mantissa is scaled to the desired number of 691da177e4SLinus Torvalds| significant digits. The excess digits are collected 701da177e4SLinus Torvalds| in INEX2. 711da177e4SLinus Torvalds| 721da177e4SLinus Torvalds| A10. Or in INEX. 731da177e4SLinus Torvalds| If INEX is set, round error occurred. This is 741da177e4SLinus Torvalds| compensated for by 'or-ing' in the INEX2 flag to 751da177e4SLinus Torvalds| the lsb of Y. 761da177e4SLinus Torvalds| 771da177e4SLinus Torvalds| A11. Restore original FPCR; set size ext. 781da177e4SLinus Torvalds| Perform FINT operation in the user's rounding mode. 791da177e4SLinus Torvalds| Keep the size to extended. 801da177e4SLinus Torvalds| 811da177e4SLinus Torvalds| A12. Calculate YINT = FINT(Y) according to user's rounding 821da177e4SLinus Torvalds| mode. The FPSP routine sintd0 is used. The output 831da177e4SLinus Torvalds| is in fp0. 841da177e4SLinus Torvalds| 851da177e4SLinus Torvalds| A13. Check for LEN digits. 861da177e4SLinus Torvalds| If the int operation results in more than LEN digits, 871da177e4SLinus Torvalds| or less than LEN -1 digits, adjust ILOG and repeat from 881da177e4SLinus Torvalds| A6. This test occurs only on the first pass. If the 891da177e4SLinus Torvalds| result is exactly 10^LEN, decrement ILOG and divide 901da177e4SLinus Torvalds| the mantissa by 10. 911da177e4SLinus Torvalds| 921da177e4SLinus Torvalds| A14. Convert the mantissa to bcd. 931da177e4SLinus Torvalds| The binstr routine is used to convert the LEN digit 941da177e4SLinus Torvalds| mantissa to bcd in memory. The input to binstr is 951da177e4SLinus Torvalds| to be a fraction; i.e. (mantissa)/10^LEN and adjusted 961da177e4SLinus Torvalds| such that the decimal point is to the left of bit 63. 971da177e4SLinus Torvalds| The bcd digits are stored in the correct position in 981da177e4SLinus Torvalds| the final string area in memory. 991da177e4SLinus Torvalds| 1001da177e4SLinus Torvalds| A15. Convert the exponent to bcd. 1011da177e4SLinus Torvalds| As in A14 above, the exp is converted to bcd and the 1021da177e4SLinus Torvalds| digits are stored in the final string. 1031da177e4SLinus Torvalds| Test the length of the final exponent string. If the 1041da177e4SLinus Torvalds| length is 4, set operr. 1051da177e4SLinus Torvalds| 1061da177e4SLinus Torvalds| A16. Write sign bits to final string. 1071da177e4SLinus Torvalds| 1081da177e4SLinus Torvalds| Implementation Notes: 1091da177e4SLinus Torvalds| 1101da177e4SLinus Torvalds| The registers are used as follows: 1111da177e4SLinus Torvalds| 1121da177e4SLinus Torvalds| d0: scratch; LEN input to binstr 1131da177e4SLinus Torvalds| d1: scratch 1141da177e4SLinus Torvalds| d2: upper 32-bits of mantissa for binstr 1151da177e4SLinus Torvalds| d3: scratch;lower 32-bits of mantissa for binstr 1161da177e4SLinus Torvalds| d4: LEN 1171da177e4SLinus Torvalds| d5: LAMBDA/ICTR 1181da177e4SLinus Torvalds| d6: ILOG 1191da177e4SLinus Torvalds| d7: k-factor 1201da177e4SLinus Torvalds| a0: ptr for original operand/final result 1211da177e4SLinus Torvalds| a1: scratch pointer 1221da177e4SLinus Torvalds| a2: pointer to FP_X; abs(original value) in ext 1231da177e4SLinus Torvalds| fp0: scratch 1241da177e4SLinus Torvalds| fp1: scratch 1251da177e4SLinus Torvalds| fp2: scratch 1261da177e4SLinus Torvalds| F_SCR1: 1271da177e4SLinus Torvalds| F_SCR2: 1281da177e4SLinus Torvalds| L_SCR1: 1291da177e4SLinus Torvalds| L_SCR2: 1301da177e4SLinus Torvalds 1311da177e4SLinus Torvalds| Copyright (C) Motorola, Inc. 1990 1321da177e4SLinus Torvalds| All Rights Reserved 1331da177e4SLinus Torvalds| 134*e00d82d0SMatt Waddel| For details on the license for this file, please see the 135*e00d82d0SMatt Waddel| file, README, in this same directory. 1361da177e4SLinus Torvalds 1371da177e4SLinus Torvalds|BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package 1381da177e4SLinus Torvalds 1391da177e4SLinus Torvalds#include "fpsp.h" 1401da177e4SLinus Torvalds 1411da177e4SLinus Torvalds |section 8 1421da177e4SLinus Torvalds 1431da177e4SLinus Torvalds| Constants in extended precision 1441da177e4SLinus TorvaldsLOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 1451da177e4SLinus TorvaldsLOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 1461da177e4SLinus Torvalds 1471da177e4SLinus Torvalds| Constants in single precision 1481da177e4SLinus TorvaldsFONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000 1491da177e4SLinus TorvaldsFTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000 1501da177e4SLinus TorvaldsFTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000 1511da177e4SLinus TorvaldsF4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000 1521da177e4SLinus Torvalds 1531da177e4SLinus TorvaldsRBDTBL: .byte 0,0,0,0 1541da177e4SLinus Torvalds .byte 3,3,2,2 1551da177e4SLinus Torvalds .byte 3,2,2,3 1561da177e4SLinus Torvalds .byte 2,3,3,2 1571da177e4SLinus Torvalds 1581da177e4SLinus Torvalds |xref binstr 1591da177e4SLinus Torvalds |xref sintdo 1601da177e4SLinus Torvalds |xref ptenrn,ptenrm,ptenrp 1611da177e4SLinus Torvalds 1621da177e4SLinus Torvalds .global bindec 1631da177e4SLinus Torvalds .global sc_mul 1641da177e4SLinus Torvaldsbindec: 1651da177e4SLinus Torvalds moveml %d2-%d7/%a2,-(%a7) 1661da177e4SLinus Torvalds fmovemx %fp0-%fp2,-(%a7) 1671da177e4SLinus Torvalds 1681da177e4SLinus Torvalds| A1. Set RM and size ext. Set SIGMA = sign input; 1691da177e4SLinus Torvalds| The k-factor is saved for use in d7. Clear BINDEC_FLG for 1701da177e4SLinus Torvalds| separating normalized/denormalized input. If the input 1711da177e4SLinus Torvalds| is a denormalized number, set the BINDEC_FLG memory word 1721da177e4SLinus Torvalds| to signal denorm. If the input is unnormalized, normalize 1731da177e4SLinus Torvalds| the input and test for denormalized result. 1741da177e4SLinus Torvalds| 1751da177e4SLinus Torvalds fmovel #rm_mode,%FPCR |set RM and ext 1761da177e4SLinus Torvalds movel (%a0),L_SCR2(%a6) |save exponent for sign check 1771da177e4SLinus Torvalds movel %d0,%d7 |move k-factor to d7 1781da177e4SLinus Torvalds clrb BINDEC_FLG(%a6) |clr norm/denorm flag 1791da177e4SLinus Torvalds movew STAG(%a6),%d0 |get stag 1801da177e4SLinus Torvalds andiw #0xe000,%d0 |isolate stag bits 1811da177e4SLinus Torvalds beq A2_str |if zero, input is norm 1821da177e4SLinus Torvalds| 1831da177e4SLinus Torvalds| Normalize the denorm 1841da177e4SLinus Torvalds| 1851da177e4SLinus Torvaldsun_de_norm: 1861da177e4SLinus Torvalds movew (%a0),%d0 1871da177e4SLinus Torvalds andiw #0x7fff,%d0 |strip sign of normalized exp 1881da177e4SLinus Torvalds movel 4(%a0),%d1 1891da177e4SLinus Torvalds movel 8(%a0),%d2 1901da177e4SLinus Torvaldsnorm_loop: 1911da177e4SLinus Torvalds subw #1,%d0 1921da177e4SLinus Torvalds lsll #1,%d2 1931da177e4SLinus Torvalds roxll #1,%d1 1941da177e4SLinus Torvalds tstl %d1 1951da177e4SLinus Torvalds bges norm_loop 1961da177e4SLinus Torvalds| 1971da177e4SLinus Torvalds| Test if the normalized input is denormalized 1981da177e4SLinus Torvalds| 1991da177e4SLinus Torvalds tstw %d0 2001da177e4SLinus Torvalds bgts pos_exp |if greater than zero, it is a norm 2011da177e4SLinus Torvalds st BINDEC_FLG(%a6) |set flag for denorm 2021da177e4SLinus Torvaldspos_exp: 2031da177e4SLinus Torvalds andiw #0x7fff,%d0 |strip sign of normalized exp 2041da177e4SLinus Torvalds movew %d0,(%a0) 2051da177e4SLinus Torvalds movel %d1,4(%a0) 2061da177e4SLinus Torvalds movel %d2,8(%a0) 2071da177e4SLinus Torvalds 2081da177e4SLinus Torvalds| A2. Set X = abs(input). 2091da177e4SLinus Torvalds| 2101da177e4SLinus TorvaldsA2_str: 2111da177e4SLinus Torvalds movel (%a0),FP_SCR2(%a6) | move input to work space 2121da177e4SLinus Torvalds movel 4(%a0),FP_SCR2+4(%a6) | move input to work space 2131da177e4SLinus Torvalds movel 8(%a0),FP_SCR2+8(%a6) | move input to work space 2141da177e4SLinus Torvalds andil #0x7fffffff,FP_SCR2(%a6) |create abs(X) 2151da177e4SLinus Torvalds 2161da177e4SLinus Torvalds| A3. Compute ILOG. 2171da177e4SLinus Torvalds| ILOG is the log base 10 of the input value. It is approx- 2181da177e4SLinus Torvalds| imated by adding e + 0.f when the original value is viewed 2191da177e4SLinus Torvalds| as 2^^e * 1.f in extended precision. This value is stored 2201da177e4SLinus Torvalds| in d6. 2211da177e4SLinus Torvalds| 2221da177e4SLinus Torvalds| Register usage: 2231da177e4SLinus Torvalds| Input/Output 2241da177e4SLinus Torvalds| d0: k-factor/exponent 2251da177e4SLinus Torvalds| d2: x/x 2261da177e4SLinus Torvalds| d3: x/x 2271da177e4SLinus Torvalds| d4: x/x 2281da177e4SLinus Torvalds| d5: x/x 2291da177e4SLinus Torvalds| d6: x/ILOG 2301da177e4SLinus Torvalds| d7: k-factor/Unchanged 2311da177e4SLinus Torvalds| a0: ptr for original operand/final result 2321da177e4SLinus Torvalds| a1: x/x 2331da177e4SLinus Torvalds| a2: x/x 2341da177e4SLinus Torvalds| fp0: x/float(ILOG) 2351da177e4SLinus Torvalds| fp1: x/x 2361da177e4SLinus Torvalds| fp2: x/x 2371da177e4SLinus Torvalds| F_SCR1:x/x 2381da177e4SLinus Torvalds| F_SCR2:Abs(X)/Abs(X) with $3fff exponent 2391da177e4SLinus Torvalds| L_SCR1:x/x 2401da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 2411da177e4SLinus Torvalds 2421da177e4SLinus Torvalds tstb BINDEC_FLG(%a6) |check for denorm 2431da177e4SLinus Torvalds beqs A3_cont |if clr, continue with norm 2441da177e4SLinus Torvalds movel #-4933,%d6 |force ILOG = -4933 2451da177e4SLinus Torvalds bras A4_str 2461da177e4SLinus TorvaldsA3_cont: 2471da177e4SLinus Torvalds movew FP_SCR2(%a6),%d0 |move exp to d0 2481da177e4SLinus Torvalds movew #0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff 2491da177e4SLinus Torvalds fmovex FP_SCR2(%a6),%fp0 |now fp0 has 1.f 2501da177e4SLinus Torvalds subw #0x3fff,%d0 |strip off bias 2511da177e4SLinus Torvalds faddw %d0,%fp0 |add in exp 2521da177e4SLinus Torvalds fsubs FONE,%fp0 |subtract off 1.0 2531da177e4SLinus Torvalds fbge pos_res |if pos, branch 2541da177e4SLinus Torvalds fmulx LOG2UP1,%fp0 |if neg, mul by LOG2UP1 2551da177e4SLinus Torvalds fmovel %fp0,%d6 |put ILOG in d6 as a lword 2561da177e4SLinus Torvalds bras A4_str |go move out ILOG 2571da177e4SLinus Torvaldspos_res: 2581da177e4SLinus Torvalds fmulx LOG2,%fp0 |if pos, mul by LOG2 2591da177e4SLinus Torvalds fmovel %fp0,%d6 |put ILOG in d6 as a lword 2601da177e4SLinus Torvalds 2611da177e4SLinus Torvalds 2621da177e4SLinus Torvalds| A4. Clr INEX bit. 2631da177e4SLinus Torvalds| The operation in A3 above may have set INEX2. 2641da177e4SLinus Torvalds 2651da177e4SLinus TorvaldsA4_str: 2661da177e4SLinus Torvalds fmovel #0,%FPSR |zero all of fpsr - nothing needed 2671da177e4SLinus Torvalds 2681da177e4SLinus Torvalds 2691da177e4SLinus Torvalds| A5. Set ICTR = 0; 2701da177e4SLinus Torvalds| ICTR is a flag used in A13. It must be set before the 2711da177e4SLinus Torvalds| loop entry A6. The lower word of d5 is used for ICTR. 2721da177e4SLinus Torvalds 2731da177e4SLinus Torvalds clrw %d5 |clear ICTR 2741da177e4SLinus Torvalds 2751da177e4SLinus Torvalds 2761da177e4SLinus Torvalds| A6. Calculate LEN. 2771da177e4SLinus Torvalds| LEN is the number of digits to be displayed. The k-factor 2781da177e4SLinus Torvalds| can dictate either the total number of digits, if it is 2791da177e4SLinus Torvalds| a positive number, or the number of digits after the 2801da177e4SLinus Torvalds| original decimal point which are to be included as 2811da177e4SLinus Torvalds| significant. See the 68882 manual for examples. 2821da177e4SLinus Torvalds| If LEN is computed to be greater than 17, set OPERR in 2831da177e4SLinus Torvalds| USER_FPSR. LEN is stored in d4. 2841da177e4SLinus Torvalds| 2851da177e4SLinus Torvalds| Register usage: 2861da177e4SLinus Torvalds| Input/Output 2871da177e4SLinus Torvalds| d0: exponent/Unchanged 2881da177e4SLinus Torvalds| d2: x/x/scratch 2891da177e4SLinus Torvalds| d3: x/x 2901da177e4SLinus Torvalds| d4: exc picture/LEN 2911da177e4SLinus Torvalds| d5: ICTR/Unchanged 2921da177e4SLinus Torvalds| d6: ILOG/Unchanged 2931da177e4SLinus Torvalds| d7: k-factor/Unchanged 2941da177e4SLinus Torvalds| a0: ptr for original operand/final result 2951da177e4SLinus Torvalds| a1: x/x 2961da177e4SLinus Torvalds| a2: x/x 2971da177e4SLinus Torvalds| fp0: float(ILOG)/Unchanged 2981da177e4SLinus Torvalds| fp1: x/x 2991da177e4SLinus Torvalds| fp2: x/x 3001da177e4SLinus Torvalds| F_SCR1:x/x 3011da177e4SLinus Torvalds| F_SCR2:Abs(X) with $3fff exponent/Unchanged 3021da177e4SLinus Torvalds| L_SCR1:x/x 3031da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 3041da177e4SLinus Torvalds 3051da177e4SLinus TorvaldsA6_str: 3061da177e4SLinus Torvalds tstl %d7 |branch on sign of k 3071da177e4SLinus Torvalds bles k_neg |if k <= 0, LEN = ILOG + 1 - k 3081da177e4SLinus Torvalds movel %d7,%d4 |if k > 0, LEN = k 3091da177e4SLinus Torvalds bras len_ck |skip to LEN check 3101da177e4SLinus Torvaldsk_neg: 3111da177e4SLinus Torvalds movel %d6,%d4 |first load ILOG to d4 3121da177e4SLinus Torvalds subl %d7,%d4 |subtract off k 3131da177e4SLinus Torvalds addql #1,%d4 |add in the 1 3141da177e4SLinus Torvaldslen_ck: 3151da177e4SLinus Torvalds tstl %d4 |LEN check: branch on sign of LEN 3161da177e4SLinus Torvalds bles LEN_ng |if neg, set LEN = 1 3171da177e4SLinus Torvalds cmpl #17,%d4 |test if LEN > 17 3181da177e4SLinus Torvalds bles A7_str |if not, forget it 3191da177e4SLinus Torvalds movel #17,%d4 |set max LEN = 17 3201da177e4SLinus Torvalds tstl %d7 |if negative, never set OPERR 3211da177e4SLinus Torvalds bles A7_str |if positive, continue 3221da177e4SLinus Torvalds orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR 3231da177e4SLinus Torvalds bras A7_str |finished here 3241da177e4SLinus TorvaldsLEN_ng: 3251da177e4SLinus Torvalds moveql #1,%d4 |min LEN is 1 3261da177e4SLinus Torvalds 3271da177e4SLinus Torvalds 3281da177e4SLinus Torvalds| A7. Calculate SCALE. 3291da177e4SLinus Torvalds| SCALE is equal to 10^ISCALE, where ISCALE is the number 3301da177e4SLinus Torvalds| of decimal places needed to insure LEN integer digits 3311da177e4SLinus Torvalds| in the output before conversion to bcd. LAMBDA is the sign 3321da177e4SLinus Torvalds| of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using 3331da177e4SLinus Torvalds| the rounding mode as given in the following table (see 3341da177e4SLinus Torvalds| Coonen, p. 7.23 as ref.; however, the SCALE variable is 3351da177e4SLinus Torvalds| of opposite sign in bindec.sa from Coonen). 3361da177e4SLinus Torvalds| 3371da177e4SLinus Torvalds| Initial USE 3381da177e4SLinus Torvalds| FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] 3391da177e4SLinus Torvalds| ---------------------------------------------- 3401da177e4SLinus Torvalds| RN 00 0 0 00/0 RN 3411da177e4SLinus Torvalds| RN 00 0 1 00/0 RN 3421da177e4SLinus Torvalds| RN 00 1 0 00/0 RN 3431da177e4SLinus Torvalds| RN 00 1 1 00/0 RN 3441da177e4SLinus Torvalds| RZ 01 0 0 11/3 RP 3451da177e4SLinus Torvalds| RZ 01 0 1 11/3 RP 3461da177e4SLinus Torvalds| RZ 01 1 0 10/2 RM 3471da177e4SLinus Torvalds| RZ 01 1 1 10/2 RM 3481da177e4SLinus Torvalds| RM 10 0 0 11/3 RP 3491da177e4SLinus Torvalds| RM 10 0 1 10/2 RM 3501da177e4SLinus Torvalds| RM 10 1 0 10/2 RM 3511da177e4SLinus Torvalds| RM 10 1 1 11/3 RP 3521da177e4SLinus Torvalds| RP 11 0 0 10/2 RM 3531da177e4SLinus Torvalds| RP 11 0 1 11/3 RP 3541da177e4SLinus Torvalds| RP 11 1 0 11/3 RP 3551da177e4SLinus Torvalds| RP 11 1 1 10/2 RM 3561da177e4SLinus Torvalds| 3571da177e4SLinus Torvalds| Register usage: 3581da177e4SLinus Torvalds| Input/Output 3591da177e4SLinus Torvalds| d0: exponent/scratch - final is 0 3601da177e4SLinus Torvalds| d2: x/0 or 24 for A9 3611da177e4SLinus Torvalds| d3: x/scratch - offset ptr into PTENRM array 3621da177e4SLinus Torvalds| d4: LEN/Unchanged 3631da177e4SLinus Torvalds| d5: 0/ICTR:LAMBDA 3641da177e4SLinus Torvalds| d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) 3651da177e4SLinus Torvalds| d7: k-factor/Unchanged 3661da177e4SLinus Torvalds| a0: ptr for original operand/final result 3671da177e4SLinus Torvalds| a1: x/ptr to PTENRM array 3681da177e4SLinus Torvalds| a2: x/x 3691da177e4SLinus Torvalds| fp0: float(ILOG)/Unchanged 3701da177e4SLinus Torvalds| fp1: x/10^ISCALE 3711da177e4SLinus Torvalds| fp2: x/x 3721da177e4SLinus Torvalds| F_SCR1:x/x 3731da177e4SLinus Torvalds| F_SCR2:Abs(X) with $3fff exponent/Unchanged 3741da177e4SLinus Torvalds| L_SCR1:x/x 3751da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 3761da177e4SLinus Torvalds 3771da177e4SLinus TorvaldsA7_str: 3781da177e4SLinus Torvalds tstl %d7 |test sign of k 3791da177e4SLinus Torvalds bgts k_pos |if pos and > 0, skip this 3801da177e4SLinus Torvalds cmpl %d6,%d7 |test k - ILOG 3811da177e4SLinus Torvalds blts k_pos |if ILOG >= k, skip this 3821da177e4SLinus Torvalds movel %d7,%d6 |if ((k<0) & (ILOG < k)) ILOG = k 3831da177e4SLinus Torvaldsk_pos: 3841da177e4SLinus Torvalds movel %d6,%d0 |calc ILOG + 1 - LEN in d0 3851da177e4SLinus Torvalds addql #1,%d0 |add the 1 3861da177e4SLinus Torvalds subl %d4,%d0 |sub off LEN 3871da177e4SLinus Torvalds swap %d5 |use upper word of d5 for LAMBDA 3881da177e4SLinus Torvalds clrw %d5 |set it zero initially 3891da177e4SLinus Torvalds clrw %d2 |set up d2 for very small case 3901da177e4SLinus Torvalds tstl %d0 |test sign of ISCALE 3911da177e4SLinus Torvalds bges iscale |if pos, skip next inst 3921da177e4SLinus Torvalds addqw #1,%d5 |if neg, set LAMBDA true 3931da177e4SLinus Torvalds cmpl #0xffffecd4,%d0 |test iscale <= -4908 3941da177e4SLinus Torvalds bgts no_inf |if false, skip rest 3951da177e4SLinus Torvalds addil #24,%d0 |add in 24 to iscale 3961da177e4SLinus Torvalds movel #24,%d2 |put 24 in d2 for A9 3971da177e4SLinus Torvaldsno_inf: 3981da177e4SLinus Torvalds negl %d0 |and take abs of ISCALE 3991da177e4SLinus Torvaldsiscale: 4001da177e4SLinus Torvalds fmoves FONE,%fp1 |init fp1 to 1 4011da177e4SLinus Torvalds bfextu USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits 4021da177e4SLinus Torvalds lslw #1,%d1 |put them in bits 2:1 4031da177e4SLinus Torvalds addw %d5,%d1 |add in LAMBDA 4041da177e4SLinus Torvalds lslw #1,%d1 |put them in bits 3:1 4051da177e4SLinus Torvalds tstl L_SCR2(%a6) |test sign of original x 4061da177e4SLinus Torvalds bges x_pos |if pos, don't set bit 0 4071da177e4SLinus Torvalds addql #1,%d1 |if neg, set bit 0 4081da177e4SLinus Torvaldsx_pos: 4091da177e4SLinus Torvalds leal RBDTBL,%a2 |load rbdtbl base 4101da177e4SLinus Torvalds moveb (%a2,%d1),%d3 |load d3 with new rmode 4111da177e4SLinus Torvalds lsll #4,%d3 |put bits in proper position 4121da177e4SLinus Torvalds fmovel %d3,%fpcr |load bits into fpu 4131da177e4SLinus Torvalds lsrl #4,%d3 |put bits in proper position 4141da177e4SLinus Torvalds tstb %d3 |decode new rmode for pten table 4151da177e4SLinus Torvalds bnes not_rn |if zero, it is RN 4161da177e4SLinus Torvalds leal PTENRN,%a1 |load a1 with RN table base 4171da177e4SLinus Torvalds bras rmode |exit decode 4181da177e4SLinus Torvaldsnot_rn: 4191da177e4SLinus Torvalds lsrb #1,%d3 |get lsb in carry 4201da177e4SLinus Torvalds bccs not_rp |if carry clear, it is RM 4211da177e4SLinus Torvalds leal PTENRP,%a1 |load a1 with RP table base 4221da177e4SLinus Torvalds bras rmode |exit decode 4231da177e4SLinus Torvaldsnot_rp: 4241da177e4SLinus Torvalds leal PTENRM,%a1 |load a1 with RM table base 4251da177e4SLinus Torvaldsrmode: 4261da177e4SLinus Torvalds clrl %d3 |clr table index 4271da177e4SLinus Torvaldse_loop: 4281da177e4SLinus Torvalds lsrl #1,%d0 |shift next bit into carry 4291da177e4SLinus Torvalds bccs e_next |if zero, skip the mul 4301da177e4SLinus Torvalds fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 4311da177e4SLinus Torvaldse_next: 4321da177e4SLinus Torvalds addl #12,%d3 |inc d3 to next pwrten table entry 4331da177e4SLinus Torvalds tstl %d0 |test if ISCALE is zero 4341da177e4SLinus Torvalds bnes e_loop |if not, loop 4351da177e4SLinus Torvalds 4361da177e4SLinus Torvalds 4371da177e4SLinus Torvalds| A8. Clr INEX; Force RZ. 4381da177e4SLinus Torvalds| The operation in A3 above may have set INEX2. 4391da177e4SLinus Torvalds| RZ mode is forced for the scaling operation to insure 4401da177e4SLinus Torvalds| only one rounding error. The grs bits are collected in 4411da177e4SLinus Torvalds| the INEX flag for use in A10. 4421da177e4SLinus Torvalds| 4431da177e4SLinus Torvalds| Register usage: 4441da177e4SLinus Torvalds| Input/Output 4451da177e4SLinus Torvalds 4461da177e4SLinus Torvalds fmovel #0,%FPSR |clr INEX 4471da177e4SLinus Torvalds fmovel #rz_mode,%FPCR |set RZ rounding mode 4481da177e4SLinus Torvalds 4491da177e4SLinus Torvalds 4501da177e4SLinus Torvalds| A9. Scale X -> Y. 4511da177e4SLinus Torvalds| The mantissa is scaled to the desired number of significant 4521da177e4SLinus Torvalds| digits. The excess digits are collected in INEX2. If mul, 4531da177e4SLinus Torvalds| Check d2 for excess 10 exponential value. If not zero, 4541da177e4SLinus Torvalds| the iscale value would have caused the pwrten calculation 4551da177e4SLinus Torvalds| to overflow. Only a negative iscale can cause this, so 4561da177e4SLinus Torvalds| multiply by 10^(d2), which is now only allowed to be 24, 4571da177e4SLinus Torvalds| with a multiply by 10^8 and 10^16, which is exact since 4581da177e4SLinus Torvalds| 10^24 is exact. If the input was denormalized, we must 4591da177e4SLinus Torvalds| create a busy stack frame with the mul command and the 4601da177e4SLinus Torvalds| two operands, and allow the fpu to complete the multiply. 4611da177e4SLinus Torvalds| 4621da177e4SLinus Torvalds| Register usage: 4631da177e4SLinus Torvalds| Input/Output 4641da177e4SLinus Torvalds| d0: FPCR with RZ mode/Unchanged 4651da177e4SLinus Torvalds| d2: 0 or 24/unchanged 4661da177e4SLinus Torvalds| d3: x/x 4671da177e4SLinus Torvalds| d4: LEN/Unchanged 4681da177e4SLinus Torvalds| d5: ICTR:LAMBDA 4691da177e4SLinus Torvalds| d6: ILOG/Unchanged 4701da177e4SLinus Torvalds| d7: k-factor/Unchanged 4711da177e4SLinus Torvalds| a0: ptr for original operand/final result 4721da177e4SLinus Torvalds| a1: ptr to PTENRM array/Unchanged 4731da177e4SLinus Torvalds| a2: x/x 4741da177e4SLinus Torvalds| fp0: float(ILOG)/X adjusted for SCALE (Y) 4751da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 4761da177e4SLinus Torvalds| fp2: x/x 4771da177e4SLinus Torvalds| F_SCR1:x/x 4781da177e4SLinus Torvalds| F_SCR2:Abs(X) with $3fff exponent/Unchanged 4791da177e4SLinus Torvalds| L_SCR1:x/x 4801da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 4811da177e4SLinus Torvalds 4821da177e4SLinus TorvaldsA9_str: 4831da177e4SLinus Torvalds fmovex (%a0),%fp0 |load X from memory 4841da177e4SLinus Torvalds fabsx %fp0 |use abs(X) 4851da177e4SLinus Torvalds tstw %d5 |LAMBDA is in lower word of d5 4861da177e4SLinus Torvalds bne sc_mul |if neg (LAMBDA = 1), scale by mul 4871da177e4SLinus Torvalds fdivx %fp1,%fp0 |calculate X / SCALE -> Y to fp0 4881da177e4SLinus Torvalds bras A10_st |branch to A10 4891da177e4SLinus Torvalds 4901da177e4SLinus Torvaldssc_mul: 4911da177e4SLinus Torvalds tstb BINDEC_FLG(%a6) |check for denorm 4921da177e4SLinus Torvalds beqs A9_norm |if norm, continue with mul 4931da177e4SLinus Torvalds fmovemx %fp1-%fp1,-(%a7) |load ETEMP with 10^ISCALE 4941da177e4SLinus Torvalds movel 8(%a0),-(%a7) |load FPTEMP with input arg 4951da177e4SLinus Torvalds movel 4(%a0),-(%a7) 4961da177e4SLinus Torvalds movel (%a0),-(%a7) 4971da177e4SLinus Torvalds movel #18,%d3 |load count for busy stack 4981da177e4SLinus TorvaldsA9_loop: 4991da177e4SLinus Torvalds clrl -(%a7) |clear lword on stack 5001da177e4SLinus Torvalds dbf %d3,A9_loop 5011da177e4SLinus Torvalds moveb VER_TMP(%a6),(%a7) |write current version number 5021da177e4SLinus Torvalds moveb #BUSY_SIZE-4,1(%a7) |write current busy size 5031da177e4SLinus Torvalds moveb #0x10,0x44(%a7) |set fcefpte[15] bit 5041da177e4SLinus Torvalds movew #0x0023,0x40(%a7) |load cmdreg1b with mul command 5051da177e4SLinus Torvalds moveb #0xfe,0x8(%a7) |load all 1s to cu savepc 5061da177e4SLinus Torvalds frestore (%a7)+ |restore frame to fpu for completion 5071da177e4SLinus Torvalds fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 5081da177e4SLinus Torvalds fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 5091da177e4SLinus Torvalds bras A10_st 5101da177e4SLinus TorvaldsA9_norm: 5111da177e4SLinus Torvalds tstw %d2 |test for small exp case 5121da177e4SLinus Torvalds beqs A9_con |if zero, continue as normal 5131da177e4SLinus Torvalds fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 5141da177e4SLinus Torvalds fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 5151da177e4SLinus TorvaldsA9_con: 5161da177e4SLinus Torvalds fmulx %fp1,%fp0 |calculate X * SCALE -> Y to fp0 5171da177e4SLinus Torvalds 5181da177e4SLinus Torvalds 5191da177e4SLinus Torvalds| A10. Or in INEX. 5201da177e4SLinus Torvalds| If INEX is set, round error occurred. This is compensated 5211da177e4SLinus Torvalds| for by 'or-ing' in the INEX2 flag to the lsb of Y. 5221da177e4SLinus Torvalds| 5231da177e4SLinus Torvalds| Register usage: 5241da177e4SLinus Torvalds| Input/Output 5251da177e4SLinus Torvalds| d0: FPCR with RZ mode/FPSR with INEX2 isolated 5261da177e4SLinus Torvalds| d2: x/x 5271da177e4SLinus Torvalds| d3: x/x 5281da177e4SLinus Torvalds| d4: LEN/Unchanged 5291da177e4SLinus Torvalds| d5: ICTR:LAMBDA 5301da177e4SLinus Torvalds| d6: ILOG/Unchanged 5311da177e4SLinus Torvalds| d7: k-factor/Unchanged 5321da177e4SLinus Torvalds| a0: ptr for original operand/final result 5331da177e4SLinus Torvalds| a1: ptr to PTENxx array/Unchanged 5341da177e4SLinus Torvalds| a2: x/ptr to FP_SCR2(a6) 5351da177e4SLinus Torvalds| fp0: Y/Y with lsb adjusted 5361da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 5371da177e4SLinus Torvalds| fp2: x/x 5381da177e4SLinus Torvalds 5391da177e4SLinus TorvaldsA10_st: 5401da177e4SLinus Torvalds fmovel %FPSR,%d0 |get FPSR 5411da177e4SLinus Torvalds fmovex %fp0,FP_SCR2(%a6) |move Y to memory 5421da177e4SLinus Torvalds leal FP_SCR2(%a6),%a2 |load a2 with ptr to FP_SCR2 5431da177e4SLinus Torvalds btstl #9,%d0 |check if INEX2 set 5441da177e4SLinus Torvalds beqs A11_st |if clear, skip rest 5451da177e4SLinus Torvalds oril #1,8(%a2) |or in 1 to lsb of mantissa 5461da177e4SLinus Torvalds fmovex FP_SCR2(%a6),%fp0 |write adjusted Y back to fpu 5471da177e4SLinus Torvalds 5481da177e4SLinus Torvalds 5491da177e4SLinus Torvalds| A11. Restore original FPCR; set size ext. 5501da177e4SLinus Torvalds| Perform FINT operation in the user's rounding mode. Keep 5511da177e4SLinus Torvalds| the size to extended. The sintdo entry point in the sint 5521da177e4SLinus Torvalds| routine expects the FPCR value to be in USER_FPCR for 5531da177e4SLinus Torvalds| mode and precision. The original FPCR is saved in L_SCR1. 5541da177e4SLinus Torvalds 5551da177e4SLinus TorvaldsA11_st: 5561da177e4SLinus Torvalds movel USER_FPCR(%a6),L_SCR1(%a6) |save it for later 5571da177e4SLinus Torvalds andil #0x00000030,USER_FPCR(%a6) |set size to ext, 5581da177e4SLinus Torvalds| ;block exceptions 5591da177e4SLinus Torvalds 5601da177e4SLinus Torvalds 5611da177e4SLinus Torvalds| A12. Calculate YINT = FINT(Y) according to user's rounding mode. 5621da177e4SLinus Torvalds| The FPSP routine sintd0 is used. The output is in fp0. 5631da177e4SLinus Torvalds| 5641da177e4SLinus Torvalds| Register usage: 5651da177e4SLinus Torvalds| Input/Output 5661da177e4SLinus Torvalds| d0: FPSR with AINEX cleared/FPCR with size set to ext 5671da177e4SLinus Torvalds| d2: x/x/scratch 5681da177e4SLinus Torvalds| d3: x/x 5691da177e4SLinus Torvalds| d4: LEN/Unchanged 5701da177e4SLinus Torvalds| d5: ICTR:LAMBDA/Unchanged 5711da177e4SLinus Torvalds| d6: ILOG/Unchanged 5721da177e4SLinus Torvalds| d7: k-factor/Unchanged 5731da177e4SLinus Torvalds| a0: ptr for original operand/src ptr for sintdo 5741da177e4SLinus Torvalds| a1: ptr to PTENxx array/Unchanged 5751da177e4SLinus Torvalds| a2: ptr to FP_SCR2(a6)/Unchanged 5761da177e4SLinus Torvalds| a6: temp pointer to FP_SCR2(a6) - orig value saved and restored 5771da177e4SLinus Torvalds| fp0: Y/YINT 5781da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 5791da177e4SLinus Torvalds| fp2: x/x 5801da177e4SLinus Torvalds| F_SCR1:x/x 5811da177e4SLinus Torvalds| F_SCR2:Y adjusted for inex/Y with original exponent 5821da177e4SLinus Torvalds| L_SCR1:x/original USER_FPCR 5831da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 5841da177e4SLinus Torvalds 5851da177e4SLinus TorvaldsA12_st: 5861da177e4SLinus Torvalds moveml %d0-%d1/%a0-%a1,-(%a7) |save regs used by sintd0 5871da177e4SLinus Torvalds movel L_SCR1(%a6),-(%a7) 5881da177e4SLinus Torvalds movel L_SCR2(%a6),-(%a7) 5891da177e4SLinus Torvalds leal FP_SCR2(%a6),%a0 |a0 is ptr to F_SCR2(a6) 5901da177e4SLinus Torvalds fmovex %fp0,(%a0) |move Y to memory at FP_SCR2(a6) 5911da177e4SLinus Torvalds tstl L_SCR2(%a6) |test sign of original operand 5921da177e4SLinus Torvalds bges do_fint |if pos, use Y 5931da177e4SLinus Torvalds orl #0x80000000,(%a0) |if neg, use -Y 5941da177e4SLinus Torvaldsdo_fint: 5951da177e4SLinus Torvalds movel USER_FPSR(%a6),-(%a7) 5961da177e4SLinus Torvalds bsr sintdo |sint routine returns int in fp0 5971da177e4SLinus Torvalds moveb (%a7),USER_FPSR(%a6) 5981da177e4SLinus Torvalds addl #4,%a7 5991da177e4SLinus Torvalds movel (%a7)+,L_SCR2(%a6) 6001da177e4SLinus Torvalds movel (%a7)+,L_SCR1(%a6) 6011da177e4SLinus Torvalds moveml (%a7)+,%d0-%d1/%a0-%a1 |restore regs used by sint 6021da177e4SLinus Torvalds movel L_SCR2(%a6),FP_SCR2(%a6) |restore original exponent 6031da177e4SLinus Torvalds movel L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR 6041da177e4SLinus Torvalds 6051da177e4SLinus Torvalds 6061da177e4SLinus Torvalds| A13. Check for LEN digits. 6071da177e4SLinus Torvalds| If the int operation results in more than LEN digits, 6081da177e4SLinus Torvalds| or less than LEN -1 digits, adjust ILOG and repeat from 6091da177e4SLinus Torvalds| A6. This test occurs only on the first pass. If the 6101da177e4SLinus Torvalds| result is exactly 10^LEN, decrement ILOG and divide 6111da177e4SLinus Torvalds| the mantissa by 10. The calculation of 10^LEN cannot 6121da177e4SLinus Torvalds| be inexact, since all powers of ten up to 10^27 are exact 6131da177e4SLinus Torvalds| in extended precision, so the use of a previous power-of-ten 6141da177e4SLinus Torvalds| table will introduce no error. 6151da177e4SLinus Torvalds| 6161da177e4SLinus Torvalds| 6171da177e4SLinus Torvalds| Register usage: 6181da177e4SLinus Torvalds| Input/Output 6191da177e4SLinus Torvalds| d0: FPCR with size set to ext/scratch final = 0 6201da177e4SLinus Torvalds| d2: x/x 6211da177e4SLinus Torvalds| d3: x/scratch final = x 6221da177e4SLinus Torvalds| d4: LEN/LEN adjusted 6231da177e4SLinus Torvalds| d5: ICTR:LAMBDA/LAMBDA:ICTR 6241da177e4SLinus Torvalds| d6: ILOG/ILOG adjusted 6251da177e4SLinus Torvalds| d7: k-factor/Unchanged 6261da177e4SLinus Torvalds| a0: pointer into memory for packed bcd string formation 6271da177e4SLinus Torvalds| a1: ptr to PTENxx array/Unchanged 6281da177e4SLinus Torvalds| a2: ptr to FP_SCR2(a6)/Unchanged 6291da177e4SLinus Torvalds| fp0: int portion of Y/abs(YINT) adjusted 6301da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 6311da177e4SLinus Torvalds| fp2: x/10^LEN 6321da177e4SLinus Torvalds| F_SCR1:x/x 6331da177e4SLinus Torvalds| F_SCR2:Y with original exponent/Unchanged 6341da177e4SLinus Torvalds| L_SCR1:original USER_FPCR/Unchanged 6351da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 6361da177e4SLinus Torvalds 6371da177e4SLinus TorvaldsA13_st: 6381da177e4SLinus Torvalds swap %d5 |put ICTR in lower word of d5 6391da177e4SLinus Torvalds tstw %d5 |check if ICTR = 0 6401da177e4SLinus Torvalds bne not_zr |if non-zero, go to second test 6411da177e4SLinus Torvalds| 6421da177e4SLinus Torvalds| Compute 10^(LEN-1) 6431da177e4SLinus Torvalds| 6441da177e4SLinus Torvalds fmoves FONE,%fp2 |init fp2 to 1.0 6451da177e4SLinus Torvalds movel %d4,%d0 |put LEN in d0 6461da177e4SLinus Torvalds subql #1,%d0 |d0 = LEN -1 6471da177e4SLinus Torvalds clrl %d3 |clr table index 6481da177e4SLinus Torvaldsl_loop: 6491da177e4SLinus Torvalds lsrl #1,%d0 |shift next bit into carry 6501da177e4SLinus Torvalds bccs l_next |if zero, skip the mul 6511da177e4SLinus Torvalds fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) 6521da177e4SLinus Torvaldsl_next: 6531da177e4SLinus Torvalds addl #12,%d3 |inc d3 to next pwrten table entry 6541da177e4SLinus Torvalds tstl %d0 |test if LEN is zero 6551da177e4SLinus Torvalds bnes l_loop |if not, loop 6561da177e4SLinus Torvalds| 6571da177e4SLinus Torvalds| 10^LEN-1 is computed for this test and A14. If the input was 6581da177e4SLinus Torvalds| denormalized, check only the case in which YINT > 10^LEN. 6591da177e4SLinus Torvalds| 6601da177e4SLinus Torvalds tstb BINDEC_FLG(%a6) |check if input was norm 6611da177e4SLinus Torvalds beqs A13_con |if norm, continue with checking 6621da177e4SLinus Torvalds fabsx %fp0 |take abs of YINT 6631da177e4SLinus Torvalds bra test_2 6641da177e4SLinus Torvalds| 6651da177e4SLinus Torvalds| Compare abs(YINT) to 10^(LEN-1) and 10^LEN 6661da177e4SLinus Torvalds| 6671da177e4SLinus TorvaldsA13_con: 6681da177e4SLinus Torvalds fabsx %fp0 |take abs of YINT 6691da177e4SLinus Torvalds fcmpx %fp2,%fp0 |compare abs(YINT) with 10^(LEN-1) 6701da177e4SLinus Torvalds fbge test_2 |if greater, do next test 6711da177e4SLinus Torvalds subql #1,%d6 |subtract 1 from ILOG 6721da177e4SLinus Torvalds movew #1,%d5 |set ICTR 6731da177e4SLinus Torvalds fmovel #rm_mode,%FPCR |set rmode to RM 6741da177e4SLinus Torvalds fmuls FTEN,%fp2 |compute 10^LEN 6751da177e4SLinus Torvalds bra A6_str |return to A6 and recompute YINT 6761da177e4SLinus Torvaldstest_2: 6771da177e4SLinus Torvalds fmuls FTEN,%fp2 |compute 10^LEN 6781da177e4SLinus Torvalds fcmpx %fp2,%fp0 |compare abs(YINT) with 10^LEN 6791da177e4SLinus Torvalds fblt A14_st |if less, all is ok, go to A14 6801da177e4SLinus Torvalds fbgt fix_ex |if greater, fix and redo 6811da177e4SLinus Torvalds fdivs FTEN,%fp0 |if equal, divide by 10 6821da177e4SLinus Torvalds addql #1,%d6 | and inc ILOG 6831da177e4SLinus Torvalds bras A14_st | and continue elsewhere 6841da177e4SLinus Torvaldsfix_ex: 6851da177e4SLinus Torvalds addql #1,%d6 |increment ILOG by 1 6861da177e4SLinus Torvalds movew #1,%d5 |set ICTR 6871da177e4SLinus Torvalds fmovel #rm_mode,%FPCR |set rmode to RM 6881da177e4SLinus Torvalds bra A6_str |return to A6 and recompute YINT 6891da177e4SLinus Torvalds| 6901da177e4SLinus Torvalds| Since ICTR <> 0, we have already been through one adjustment, 6911da177e4SLinus Torvalds| and shouldn't have another; this is to check if abs(YINT) = 10^LEN 6921da177e4SLinus Torvalds| 10^LEN is again computed using whatever table is in a1 since the 6931da177e4SLinus Torvalds| value calculated cannot be inexact. 6941da177e4SLinus Torvalds| 6951da177e4SLinus Torvaldsnot_zr: 6961da177e4SLinus Torvalds fmoves FONE,%fp2 |init fp2 to 1.0 6971da177e4SLinus Torvalds movel %d4,%d0 |put LEN in d0 6981da177e4SLinus Torvalds clrl %d3 |clr table index 6991da177e4SLinus Torvaldsz_loop: 7001da177e4SLinus Torvalds lsrl #1,%d0 |shift next bit into carry 7011da177e4SLinus Torvalds bccs z_next |if zero, skip the mul 7021da177e4SLinus Torvalds fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) 7031da177e4SLinus Torvaldsz_next: 7041da177e4SLinus Torvalds addl #12,%d3 |inc d3 to next pwrten table entry 7051da177e4SLinus Torvalds tstl %d0 |test if LEN is zero 7061da177e4SLinus Torvalds bnes z_loop |if not, loop 7071da177e4SLinus Torvalds fabsx %fp0 |get abs(YINT) 7081da177e4SLinus Torvalds fcmpx %fp2,%fp0 |check if abs(YINT) = 10^LEN 7091da177e4SLinus Torvalds fbne A14_st |if not, skip this 7101da177e4SLinus Torvalds fdivs FTEN,%fp0 |divide abs(YINT) by 10 7111da177e4SLinus Torvalds addql #1,%d6 |and inc ILOG by 1 7121da177e4SLinus Torvalds addql #1,%d4 | and inc LEN 7131da177e4SLinus Torvalds fmuls FTEN,%fp2 | if LEN++, the get 10^^LEN 7141da177e4SLinus Torvalds 7151da177e4SLinus Torvalds 7161da177e4SLinus Torvalds| A14. Convert the mantissa to bcd. 7171da177e4SLinus Torvalds| The binstr routine is used to convert the LEN digit 7181da177e4SLinus Torvalds| mantissa to bcd in memory. The input to binstr is 7191da177e4SLinus Torvalds| to be a fraction; i.e. (mantissa)/10^LEN and adjusted 7201da177e4SLinus Torvalds| such that the decimal point is to the left of bit 63. 7211da177e4SLinus Torvalds| The bcd digits are stored in the correct position in 7221da177e4SLinus Torvalds| the final string area in memory. 7231da177e4SLinus Torvalds| 7241da177e4SLinus Torvalds| 7251da177e4SLinus Torvalds| Register usage: 7261da177e4SLinus Torvalds| Input/Output 7271da177e4SLinus Torvalds| d0: x/LEN call to binstr - final is 0 7281da177e4SLinus Torvalds| d1: x/0 7291da177e4SLinus Torvalds| d2: x/ms 32-bits of mant of abs(YINT) 7301da177e4SLinus Torvalds| d3: x/ls 32-bits of mant of abs(YINT) 7311da177e4SLinus Torvalds| d4: LEN/Unchanged 7321da177e4SLinus Torvalds| d5: ICTR:LAMBDA/LAMBDA:ICTR 7331da177e4SLinus Torvalds| d6: ILOG 7341da177e4SLinus Torvalds| d7: k-factor/Unchanged 7351da177e4SLinus Torvalds| a0: pointer into memory for packed bcd string formation 7361da177e4SLinus Torvalds| /ptr to first mantissa byte in result string 7371da177e4SLinus Torvalds| a1: ptr to PTENxx array/Unchanged 7381da177e4SLinus Torvalds| a2: ptr to FP_SCR2(a6)/Unchanged 7391da177e4SLinus Torvalds| fp0: int portion of Y/abs(YINT) adjusted 7401da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 7411da177e4SLinus Torvalds| fp2: 10^LEN/Unchanged 7421da177e4SLinus Torvalds| F_SCR1:x/Work area for final result 7431da177e4SLinus Torvalds| F_SCR2:Y with original exponent/Unchanged 7441da177e4SLinus Torvalds| L_SCR1:original USER_FPCR/Unchanged 7451da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 7461da177e4SLinus Torvalds 7471da177e4SLinus TorvaldsA14_st: 7481da177e4SLinus Torvalds fmovel #rz_mode,%FPCR |force rz for conversion 7491da177e4SLinus Torvalds fdivx %fp2,%fp0 |divide abs(YINT) by 10^LEN 7501da177e4SLinus Torvalds leal FP_SCR1(%a6),%a0 7511da177e4SLinus Torvalds fmovex %fp0,(%a0) |move abs(YINT)/10^LEN to memory 7521da177e4SLinus Torvalds movel 4(%a0),%d2 |move 2nd word of FP_RES to d2 7531da177e4SLinus Torvalds movel 8(%a0),%d3 |move 3rd word of FP_RES to d3 7541da177e4SLinus Torvalds clrl 4(%a0) |zero word 2 of FP_RES 7551da177e4SLinus Torvalds clrl 8(%a0) |zero word 3 of FP_RES 7561da177e4SLinus Torvalds movel (%a0),%d0 |move exponent to d0 7571da177e4SLinus Torvalds swap %d0 |put exponent in lower word 7581da177e4SLinus Torvalds beqs no_sft |if zero, don't shift 7591da177e4SLinus Torvalds subil #0x3ffd,%d0 |sub bias less 2 to make fract 7601da177e4SLinus Torvalds tstl %d0 |check if > 1 7611da177e4SLinus Torvalds bgts no_sft |if so, don't shift 7621da177e4SLinus Torvalds negl %d0 |make exp positive 7631da177e4SLinus Torvaldsm_loop: 7641da177e4SLinus Torvalds lsrl #1,%d2 |shift d2:d3 right, add 0s 7651da177e4SLinus Torvalds roxrl #1,%d3 |the number of places 7661da177e4SLinus Torvalds dbf %d0,m_loop |given in d0 7671da177e4SLinus Torvaldsno_sft: 7681da177e4SLinus Torvalds tstl %d2 |check for mantissa of zero 7691da177e4SLinus Torvalds bnes no_zr |if not, go on 7701da177e4SLinus Torvalds tstl %d3 |continue zero check 7711da177e4SLinus Torvalds beqs zer_m |if zero, go directly to binstr 7721da177e4SLinus Torvaldsno_zr: 7731da177e4SLinus Torvalds clrl %d1 |put zero in d1 for addx 7741da177e4SLinus Torvalds addil #0x00000080,%d3 |inc at bit 7 7751da177e4SLinus Torvalds addxl %d1,%d2 |continue inc 7761da177e4SLinus Torvalds andil #0xffffff80,%d3 |strip off lsb not used by 882 7771da177e4SLinus Torvaldszer_m: 7781da177e4SLinus Torvalds movel %d4,%d0 |put LEN in d0 for binstr call 7791da177e4SLinus Torvalds addql #3,%a0 |a0 points to M16 byte in result 7801da177e4SLinus Torvalds bsr binstr |call binstr to convert mant 7811da177e4SLinus Torvalds 7821da177e4SLinus Torvalds 7831da177e4SLinus Torvalds| A15. Convert the exponent to bcd. 7841da177e4SLinus Torvalds| As in A14 above, the exp is converted to bcd and the 7851da177e4SLinus Torvalds| digits are stored in the final string. 7861da177e4SLinus Torvalds| 7871da177e4SLinus Torvalds| Digits are stored in L_SCR1(a6) on return from BINDEC as: 7881da177e4SLinus Torvalds| 7891da177e4SLinus Torvalds| 32 16 15 0 7901da177e4SLinus Torvalds| ----------------------------------------- 7911da177e4SLinus Torvalds| | 0 | e3 | e2 | e1 | e4 | X | X | X | 7921da177e4SLinus Torvalds| ----------------------------------------- 7931da177e4SLinus Torvalds| 7941da177e4SLinus Torvalds| And are moved into their proper places in FP_SCR1. If digit e4 7951da177e4SLinus Torvalds| is non-zero, OPERR is signaled. In all cases, all 4 digits are 7961da177e4SLinus Torvalds| written as specified in the 881/882 manual for packed decimal. 7971da177e4SLinus Torvalds| 7981da177e4SLinus Torvalds| Register usage: 7991da177e4SLinus Torvalds| Input/Output 8001da177e4SLinus Torvalds| d0: x/LEN call to binstr - final is 0 8011da177e4SLinus Torvalds| d1: x/scratch (0);shift count for final exponent packing 8021da177e4SLinus Torvalds| d2: x/ms 32-bits of exp fraction/scratch 8031da177e4SLinus Torvalds| d3: x/ls 32-bits of exp fraction 8041da177e4SLinus Torvalds| d4: LEN/Unchanged 8051da177e4SLinus Torvalds| d5: ICTR:LAMBDA/LAMBDA:ICTR 8061da177e4SLinus Torvalds| d6: ILOG 8071da177e4SLinus Torvalds| d7: k-factor/Unchanged 8081da177e4SLinus Torvalds| a0: ptr to result string/ptr to L_SCR1(a6) 8091da177e4SLinus Torvalds| a1: ptr to PTENxx array/Unchanged 8101da177e4SLinus Torvalds| a2: ptr to FP_SCR2(a6)/Unchanged 8111da177e4SLinus Torvalds| fp0: abs(YINT) adjusted/float(ILOG) 8121da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 8131da177e4SLinus Torvalds| fp2: 10^LEN/Unchanged 8141da177e4SLinus Torvalds| F_SCR1:Work area for final result/BCD result 8151da177e4SLinus Torvalds| F_SCR2:Y with original exponent/ILOG/10^4 8161da177e4SLinus Torvalds| L_SCR1:original USER_FPCR/Exponent digits on return from binstr 8171da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 8181da177e4SLinus Torvalds 8191da177e4SLinus TorvaldsA15_st: 8201da177e4SLinus Torvalds tstb BINDEC_FLG(%a6) |check for denorm 8211da177e4SLinus Torvalds beqs not_denorm 8221da177e4SLinus Torvalds ftstx %fp0 |test for zero 8231da177e4SLinus Torvalds fbeq den_zero |if zero, use k-factor or 4933 8241da177e4SLinus Torvalds fmovel %d6,%fp0 |float ILOG 8251da177e4SLinus Torvalds fabsx %fp0 |get abs of ILOG 8261da177e4SLinus Torvalds bras convrt 8271da177e4SLinus Torvaldsden_zero: 8281da177e4SLinus Torvalds tstl %d7 |check sign of the k-factor 8291da177e4SLinus Torvalds blts use_ilog |if negative, use ILOG 8301da177e4SLinus Torvalds fmoves F4933,%fp0 |force exponent to 4933 8311da177e4SLinus Torvalds bras convrt |do it 8321da177e4SLinus Torvaldsuse_ilog: 8331da177e4SLinus Torvalds fmovel %d6,%fp0 |float ILOG 8341da177e4SLinus Torvalds fabsx %fp0 |get abs of ILOG 8351da177e4SLinus Torvalds bras convrt 8361da177e4SLinus Torvaldsnot_denorm: 8371da177e4SLinus Torvalds ftstx %fp0 |test for zero 8381da177e4SLinus Torvalds fbne not_zero |if zero, force exponent 8391da177e4SLinus Torvalds fmoves FONE,%fp0 |force exponent to 1 8401da177e4SLinus Torvalds bras convrt |do it 8411da177e4SLinus Torvaldsnot_zero: 8421da177e4SLinus Torvalds fmovel %d6,%fp0 |float ILOG 8431da177e4SLinus Torvalds fabsx %fp0 |get abs of ILOG 8441da177e4SLinus Torvaldsconvrt: 8451da177e4SLinus Torvalds fdivx 24(%a1),%fp0 |compute ILOG/10^4 8461da177e4SLinus Torvalds fmovex %fp0,FP_SCR2(%a6) |store fp0 in memory 8471da177e4SLinus Torvalds movel 4(%a2),%d2 |move word 2 to d2 8481da177e4SLinus Torvalds movel 8(%a2),%d3 |move word 3 to d3 8491da177e4SLinus Torvalds movew (%a2),%d0 |move exp to d0 8501da177e4SLinus Torvalds beqs x_loop_fin |if zero, skip the shift 8511da177e4SLinus Torvalds subiw #0x3ffd,%d0 |subtract off bias 8521da177e4SLinus Torvalds negw %d0 |make exp positive 8531da177e4SLinus Torvaldsx_loop: 8541da177e4SLinus Torvalds lsrl #1,%d2 |shift d2:d3 right 8551da177e4SLinus Torvalds roxrl #1,%d3 |the number of places 8561da177e4SLinus Torvalds dbf %d0,x_loop |given in d0 8571da177e4SLinus Torvaldsx_loop_fin: 8581da177e4SLinus Torvalds clrl %d1 |put zero in d1 for addx 8591da177e4SLinus Torvalds addil #0x00000080,%d3 |inc at bit 6 8601da177e4SLinus Torvalds addxl %d1,%d2 |continue inc 8611da177e4SLinus Torvalds andil #0xffffff80,%d3 |strip off lsb not used by 882 8621da177e4SLinus Torvalds movel #4,%d0 |put 4 in d0 for binstr call 8631da177e4SLinus Torvalds leal L_SCR1(%a6),%a0 |a0 is ptr to L_SCR1 for exp digits 8641da177e4SLinus Torvalds bsr binstr |call binstr to convert exp 8651da177e4SLinus Torvalds movel L_SCR1(%a6),%d0 |load L_SCR1 lword to d0 8661da177e4SLinus Torvalds movel #12,%d1 |use d1 for shift count 8671da177e4SLinus Torvalds lsrl %d1,%d0 |shift d0 right by 12 8681da177e4SLinus Torvalds bfins %d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1 8691da177e4SLinus Torvalds lsrl %d1,%d0 |shift d0 right by 12 8701da177e4SLinus Torvalds bfins %d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1 8711da177e4SLinus Torvalds tstb %d0 |check if e4 is zero 8721da177e4SLinus Torvalds beqs A16_st |if zero, skip rest 8731da177e4SLinus Torvalds orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR 8741da177e4SLinus Torvalds 8751da177e4SLinus Torvalds 8761da177e4SLinus Torvalds| A16. Write sign bits to final string. 8771da177e4SLinus Torvalds| Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). 8781da177e4SLinus Torvalds| 8791da177e4SLinus Torvalds| Register usage: 8801da177e4SLinus Torvalds| Input/Output 8811da177e4SLinus Torvalds| d0: x/scratch - final is x 8821da177e4SLinus Torvalds| d2: x/x 8831da177e4SLinus Torvalds| d3: x/x 8841da177e4SLinus Torvalds| d4: LEN/Unchanged 8851da177e4SLinus Torvalds| d5: ICTR:LAMBDA/LAMBDA:ICTR 8861da177e4SLinus Torvalds| d6: ILOG/ILOG adjusted 8871da177e4SLinus Torvalds| d7: k-factor/Unchanged 8881da177e4SLinus Torvalds| a0: ptr to L_SCR1(a6)/Unchanged 8891da177e4SLinus Torvalds| a1: ptr to PTENxx array/Unchanged 8901da177e4SLinus Torvalds| a2: ptr to FP_SCR2(a6)/Unchanged 8911da177e4SLinus Torvalds| fp0: float(ILOG)/Unchanged 8921da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 8931da177e4SLinus Torvalds| fp2: 10^LEN/Unchanged 8941da177e4SLinus Torvalds| F_SCR1:BCD result with correct signs 8951da177e4SLinus Torvalds| F_SCR2:ILOG/10^4 8961da177e4SLinus Torvalds| L_SCR1:Exponent digits on return from binstr 8971da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 8981da177e4SLinus Torvalds 8991da177e4SLinus TorvaldsA16_st: 9001da177e4SLinus Torvalds clrl %d0 |clr d0 for collection of signs 9011da177e4SLinus Torvalds andib #0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1 9021da177e4SLinus Torvalds tstl L_SCR2(%a6) |check sign of original mantissa 9031da177e4SLinus Torvalds bges mant_p |if pos, don't set SM 9041da177e4SLinus Torvalds moveql #2,%d0 |move 2 in to d0 for SM 9051da177e4SLinus Torvaldsmant_p: 9061da177e4SLinus Torvalds tstl %d6 |check sign of ILOG 9071da177e4SLinus Torvalds bges wr_sgn |if pos, don't set SE 9081da177e4SLinus Torvalds addql #1,%d0 |set bit 0 in d0 for SE 9091da177e4SLinus Torvaldswr_sgn: 9101da177e4SLinus Torvalds bfins %d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1 9111da177e4SLinus Torvalds 9121da177e4SLinus Torvalds| Clean up and restore all registers used. 9131da177e4SLinus Torvalds 9141da177e4SLinus Torvalds fmovel #0,%FPSR |clear possible inex2/ainex bits 9151da177e4SLinus Torvalds fmovemx (%a7)+,%fp0-%fp2 9161da177e4SLinus Torvalds moveml (%a7)+,%d2-%d7/%a2 9171da177e4SLinus Torvalds rts 9181da177e4SLinus Torvalds 9191da177e4SLinus Torvalds |end 920