1f86b9e03SGreg Ungerer /*
2f86b9e03SGreg Ungerer * intc.c -- support for the old ColdFire interrupt controller
3f86b9e03SGreg Ungerer *
4f86b9e03SGreg Ungerer * (C) Copyright 2009, Greg Ungerer <gerg@snapgear.com>
5f86b9e03SGreg Ungerer *
6f86b9e03SGreg Ungerer * This file is subject to the terms and conditions of the GNU General Public
7f86b9e03SGreg Ungerer * License. See the file COPYING in the main directory of this archive
8f86b9e03SGreg Ungerer * for more details.
9f86b9e03SGreg Ungerer */
10f86b9e03SGreg Ungerer
11f86b9e03SGreg Ungerer #include <linux/types.h>
12f86b9e03SGreg Ungerer #include <linux/init.h>
13f86b9e03SGreg Ungerer #include <linux/kernel.h>
14f86b9e03SGreg Ungerer #include <linux/interrupt.h>
15f86b9e03SGreg Ungerer #include <linux/irq.h>
16f86b9e03SGreg Ungerer #include <linux/io.h>
17f86b9e03SGreg Ungerer #include <asm/traps.h>
18f86b9e03SGreg Ungerer #include <asm/coldfire.h>
19f86b9e03SGreg Ungerer #include <asm/mcfsim.h>
20f86b9e03SGreg Ungerer
21f86b9e03SGreg Ungerer /*
22f86b9e03SGreg Ungerer * The mapping of irq number to a mask register bit is not one-to-one.
23f86b9e03SGreg Ungerer * The irq numbers are either based on "level" of interrupt or fixed
24f86b9e03SGreg Ungerer * for an autovector-able interrupt. So we keep a local data structure
25f86b9e03SGreg Ungerer * that maps from irq to mask register. Not all interrupts will have
26f86b9e03SGreg Ungerer * an IMR bit.
27f86b9e03SGreg Ungerer */
28f86b9e03SGreg Ungerer unsigned char mcf_irq2imr[NR_IRQS];
29f86b9e03SGreg Ungerer
30f86b9e03SGreg Ungerer /*
31*968f0e1cSJulia Lawall * Define the minimum and maximum external interrupt numbers.
32f86b9e03SGreg Ungerer * This is also used as the "level" interrupt numbers.
33f86b9e03SGreg Ungerer */
34f86b9e03SGreg Ungerer #define EIRQ1 25
35f86b9e03SGreg Ungerer #define EIRQ7 31
36f86b9e03SGreg Ungerer
37f86b9e03SGreg Ungerer /*
38f86b9e03SGreg Ungerer * In the early version 2 core ColdFire parts the IMR register was 16 bits
39f86b9e03SGreg Ungerer * in size. Version 3 (and later version 2) core parts have a 32 bit
40f86b9e03SGreg Ungerer * sized IMR register. Provide some size independent methods to access the
41f86b9e03SGreg Ungerer * IMR register.
42f86b9e03SGreg Ungerer */
43f86b9e03SGreg Ungerer #ifdef MCFSIM_IMR_IS_16BITS
44f86b9e03SGreg Ungerer
mcf_setimr(int index)45f86b9e03SGreg Ungerer void mcf_setimr(int index)
46f86b9e03SGreg Ungerer {
47f86b9e03SGreg Ungerer u16 imr;
48f86b9e03SGreg Ungerer imr = __raw_readw(MCFSIM_IMR);
49f86b9e03SGreg Ungerer __raw_writew(imr | (0x1 << index), MCFSIM_IMR);
50f86b9e03SGreg Ungerer }
51f86b9e03SGreg Ungerer
mcf_clrimr(int index)52f86b9e03SGreg Ungerer void mcf_clrimr(int index)
53f86b9e03SGreg Ungerer {
54f86b9e03SGreg Ungerer u16 imr;
55f86b9e03SGreg Ungerer imr = __raw_readw(MCFSIM_IMR);
56f86b9e03SGreg Ungerer __raw_writew(imr & ~(0x1 << index), MCFSIM_IMR);
57f86b9e03SGreg Ungerer }
58f86b9e03SGreg Ungerer
mcf_maskimr(unsigned int mask)59f86b9e03SGreg Ungerer void mcf_maskimr(unsigned int mask)
60f86b9e03SGreg Ungerer {
61f86b9e03SGreg Ungerer u16 imr;
62f86b9e03SGreg Ungerer imr = __raw_readw(MCFSIM_IMR);
63f86b9e03SGreg Ungerer imr |= mask;
64f86b9e03SGreg Ungerer __raw_writew(imr, MCFSIM_IMR);
65f86b9e03SGreg Ungerer }
66f86b9e03SGreg Ungerer
67f86b9e03SGreg Ungerer #else
68f86b9e03SGreg Ungerer
mcf_setimr(int index)69f86b9e03SGreg Ungerer void mcf_setimr(int index)
70f86b9e03SGreg Ungerer {
71f86b9e03SGreg Ungerer u32 imr;
72f86b9e03SGreg Ungerer imr = __raw_readl(MCFSIM_IMR);
73f86b9e03SGreg Ungerer __raw_writel(imr | (0x1 << index), MCFSIM_IMR);
74f86b9e03SGreg Ungerer }
75f86b9e03SGreg Ungerer
mcf_clrimr(int index)76f86b9e03SGreg Ungerer void mcf_clrimr(int index)
77f86b9e03SGreg Ungerer {
78f86b9e03SGreg Ungerer u32 imr;
79f86b9e03SGreg Ungerer imr = __raw_readl(MCFSIM_IMR);
80f86b9e03SGreg Ungerer __raw_writel(imr & ~(0x1 << index), MCFSIM_IMR);
81f86b9e03SGreg Ungerer }
82f86b9e03SGreg Ungerer
mcf_maskimr(unsigned int mask)83f86b9e03SGreg Ungerer void mcf_maskimr(unsigned int mask)
84f86b9e03SGreg Ungerer {
85f86b9e03SGreg Ungerer u32 imr;
86f86b9e03SGreg Ungerer imr = __raw_readl(MCFSIM_IMR);
87f86b9e03SGreg Ungerer imr |= mask;
88f86b9e03SGreg Ungerer __raw_writel(imr, MCFSIM_IMR);
89f86b9e03SGreg Ungerer }
90f86b9e03SGreg Ungerer
91f86b9e03SGreg Ungerer #endif
92f86b9e03SGreg Ungerer
93f86b9e03SGreg Ungerer /*
94f86b9e03SGreg Ungerer * Interrupts can be "vectored" on the ColdFire cores that support this old
95f86b9e03SGreg Ungerer * interrupt controller. That is, the device raising the interrupt can also
96f86b9e03SGreg Ungerer * supply the vector number to interrupt through. The AVR register of the
97f86b9e03SGreg Ungerer * interrupt controller enables or disables this for each external interrupt,
98f86b9e03SGreg Ungerer * so provide generic support for this. Setting this up is out-of-band for
99f86b9e03SGreg Ungerer * the interrupt system API's, and needs to be done by the driver that
100f86b9e03SGreg Ungerer * supports this device. Very few devices actually use this.
101f86b9e03SGreg Ungerer */
mcf_autovector(int irq)102f86b9e03SGreg Ungerer void mcf_autovector(int irq)
103f86b9e03SGreg Ungerer {
104f86b9e03SGreg Ungerer #ifdef MCFSIM_AVR
105f86b9e03SGreg Ungerer if ((irq >= EIRQ1) && (irq <= EIRQ7)) {
106f86b9e03SGreg Ungerer u8 avec;
107f86b9e03SGreg Ungerer avec = __raw_readb(MCFSIM_AVR);
108f86b9e03SGreg Ungerer avec |= (0x1 << (irq - EIRQ1 + 1));
109f86b9e03SGreg Ungerer __raw_writeb(avec, MCFSIM_AVR);
110f86b9e03SGreg Ungerer }
111f86b9e03SGreg Ungerer #endif
112f86b9e03SGreg Ungerer }
113f86b9e03SGreg Ungerer
intc_irq_mask(struct irq_data * d)114f86b9e03SGreg Ungerer static void intc_irq_mask(struct irq_data *d)
115f86b9e03SGreg Ungerer {
116f86b9e03SGreg Ungerer if (mcf_irq2imr[d->irq])
117f86b9e03SGreg Ungerer mcf_setimr(mcf_irq2imr[d->irq]);
118f86b9e03SGreg Ungerer }
119f86b9e03SGreg Ungerer
intc_irq_unmask(struct irq_data * d)120f86b9e03SGreg Ungerer static void intc_irq_unmask(struct irq_data *d)
121f86b9e03SGreg Ungerer {
122f86b9e03SGreg Ungerer if (mcf_irq2imr[d->irq])
123f86b9e03SGreg Ungerer mcf_clrimr(mcf_irq2imr[d->irq]);
124f86b9e03SGreg Ungerer }
125f86b9e03SGreg Ungerer
intc_irq_set_type(struct irq_data * d,unsigned int type)126f86b9e03SGreg Ungerer static int intc_irq_set_type(struct irq_data *d, unsigned int type)
127f86b9e03SGreg Ungerer {
128f86b9e03SGreg Ungerer return 0;
129f86b9e03SGreg Ungerer }
130f86b9e03SGreg Ungerer
131f86b9e03SGreg Ungerer static struct irq_chip intc_irq_chip = {
132f86b9e03SGreg Ungerer .name = "CF-INTC",
133f86b9e03SGreg Ungerer .irq_mask = intc_irq_mask,
134f86b9e03SGreg Ungerer .irq_unmask = intc_irq_unmask,
135f86b9e03SGreg Ungerer .irq_set_type = intc_irq_set_type,
136f86b9e03SGreg Ungerer };
137f86b9e03SGreg Ungerer
init_IRQ(void)138f86b9e03SGreg Ungerer void __init init_IRQ(void)
139f86b9e03SGreg Ungerer {
140f86b9e03SGreg Ungerer int irq;
141f86b9e03SGreg Ungerer
142f86b9e03SGreg Ungerer mcf_maskimr(0xffffffff);
143f86b9e03SGreg Ungerer
144f86b9e03SGreg Ungerer for (irq = 0; (irq < NR_IRQS); irq++) {
145f86b9e03SGreg Ungerer irq_set_chip(irq, &intc_irq_chip);
146f86b9e03SGreg Ungerer irq_set_irq_type(irq, IRQ_TYPE_LEVEL_HIGH);
147f86b9e03SGreg Ungerer irq_set_handler(irq, handle_level_irq);
148f86b9e03SGreg Ungerer }
149f86b9e03SGreg Ungerer }
150f86b9e03SGreg Ungerer
151