1 /* 2 * Initialize MMU support. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 */ 7 #include <linux/kernel.h> 8 #include <linux/init.h> 9 10 #include <linux/bootmem.h> 11 #include <linux/efi.h> 12 #include <linux/elf.h> 13 #include <linux/mm.h> 14 #include <linux/mmzone.h> 15 #include <linux/module.h> 16 #include <linux/personality.h> 17 #include <linux/reboot.h> 18 #include <linux/slab.h> 19 #include <linux/swap.h> 20 #include <linux/proc_fs.h> 21 #include <linux/bitops.h> 22 #include <linux/kexec.h> 23 24 #include <asm/a.out.h> 25 #include <asm/dma.h> 26 #include <asm/ia32.h> 27 #include <asm/io.h> 28 #include <asm/machvec.h> 29 #include <asm/numa.h> 30 #include <asm/patch.h> 31 #include <asm/pgalloc.h> 32 #include <asm/sal.h> 33 #include <asm/sections.h> 34 #include <asm/system.h> 35 #include <asm/tlb.h> 36 #include <asm/uaccess.h> 37 #include <asm/unistd.h> 38 #include <asm/mca.h> 39 40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 41 42 extern void ia64_tlb_init (void); 43 44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; 45 46 #ifdef CONFIG_VIRTUAL_MEM_MAP 47 unsigned long vmalloc_end = VMALLOC_END_INIT; 48 EXPORT_SYMBOL(vmalloc_end); 49 struct page *vmem_map; 50 EXPORT_SYMBOL(vmem_map); 51 #endif 52 53 struct page *zero_page_memmap_ptr; /* map entry for zero page */ 54 EXPORT_SYMBOL(zero_page_memmap_ptr); 55 56 void 57 lazy_mmu_prot_update (pte_t pte) 58 { 59 unsigned long addr; 60 struct page *page; 61 unsigned long order; 62 63 if (!pte_exec(pte)) 64 return; /* not an executable page... */ 65 66 page = pte_page(pte); 67 addr = (unsigned long) page_address(page); 68 69 if (test_bit(PG_arch_1, &page->flags)) 70 return; /* i-cache is already coherent with d-cache */ 71 72 if (PageCompound(page)) { 73 order = compound_order(page); 74 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT)); 75 } 76 else 77 flush_icache_range(addr, addr + PAGE_SIZE); 78 set_bit(PG_arch_1, &page->flags); /* mark page as clean */ 79 } 80 81 /* 82 * Since DMA is i-cache coherent, any (complete) pages that were written via 83 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to 84 * flush them when they get mapped into an executable vm-area. 85 */ 86 void 87 dma_mark_clean(void *addr, size_t size) 88 { 89 unsigned long pg_addr, end; 90 91 pg_addr = PAGE_ALIGN((unsigned long) addr); 92 end = (unsigned long) addr + size; 93 while (pg_addr + PAGE_SIZE <= end) { 94 struct page *page = virt_to_page(pg_addr); 95 set_bit(PG_arch_1, &page->flags); 96 pg_addr += PAGE_SIZE; 97 } 98 } 99 100 inline void 101 ia64_set_rbs_bot (void) 102 { 103 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16; 104 105 if (stack_size > MAX_USER_STACK_SIZE) 106 stack_size = MAX_USER_STACK_SIZE; 107 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); 108 } 109 110 /* 111 * This performs some platform-dependent address space initialization. 112 * On IA-64, we want to setup the VM area for the register backing 113 * store (which grows upwards) and install the gateway page which is 114 * used for signal trampolines, etc. 115 */ 116 void 117 ia64_init_addr_space (void) 118 { 119 struct vm_area_struct *vma; 120 121 ia64_set_rbs_bot(); 122 123 /* 124 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore 125 * the problem. When the process attempts to write to the register backing store 126 * for the first time, it will get a SEGFAULT in this case. 127 */ 128 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 129 if (vma) { 130 vma->vm_mm = current->mm; 131 vma->vm_start = current->thread.rbs_bot & PAGE_MASK; 132 vma->vm_end = vma->vm_start + PAGE_SIZE; 133 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7]; 134 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; 135 down_write(¤t->mm->mmap_sem); 136 if (insert_vm_struct(current->mm, vma)) { 137 up_write(¤t->mm->mmap_sem); 138 kmem_cache_free(vm_area_cachep, vma); 139 return; 140 } 141 up_write(¤t->mm->mmap_sem); 142 } 143 144 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ 145 if (!(current->personality & MMAP_PAGE_ZERO)) { 146 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 147 if (vma) { 148 vma->vm_mm = current->mm; 149 vma->vm_end = PAGE_SIZE; 150 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); 151 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; 152 down_write(¤t->mm->mmap_sem); 153 if (insert_vm_struct(current->mm, vma)) { 154 up_write(¤t->mm->mmap_sem); 155 kmem_cache_free(vm_area_cachep, vma); 156 return; 157 } 158 up_write(¤t->mm->mmap_sem); 159 } 160 } 161 } 162 163 void 164 free_initmem (void) 165 { 166 unsigned long addr, eaddr; 167 168 addr = (unsigned long) ia64_imva(__init_begin); 169 eaddr = (unsigned long) ia64_imva(__init_end); 170 while (addr < eaddr) { 171 ClearPageReserved(virt_to_page(addr)); 172 init_page_count(virt_to_page(addr)); 173 free_page(addr); 174 ++totalram_pages; 175 addr += PAGE_SIZE; 176 } 177 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", 178 (__init_end - __init_begin) >> 10); 179 } 180 181 void __init 182 free_initrd_mem (unsigned long start, unsigned long end) 183 { 184 struct page *page; 185 /* 186 * EFI uses 4KB pages while the kernel can use 4KB or bigger. 187 * Thus EFI and the kernel may have different page sizes. It is 188 * therefore possible to have the initrd share the same page as 189 * the end of the kernel (given current setup). 190 * 191 * To avoid freeing/using the wrong page (kernel sized) we: 192 * - align up the beginning of initrd 193 * - align down the end of initrd 194 * 195 * | | 196 * |=============| a000 197 * | | 198 * | | 199 * | | 9000 200 * |/////////////| 201 * |/////////////| 202 * |=============| 8000 203 * |///INITRD////| 204 * |/////////////| 205 * |/////////////| 7000 206 * | | 207 * |KKKKKKKKKKKKK| 208 * |=============| 6000 209 * |KKKKKKKKKKKKK| 210 * |KKKKKKKKKKKKK| 211 * K=kernel using 8KB pages 212 * 213 * In this example, we must free page 8000 ONLY. So we must align up 214 * initrd_start and keep initrd_end as is. 215 */ 216 start = PAGE_ALIGN(start); 217 end = end & PAGE_MASK; 218 219 if (start < end) 220 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); 221 222 for (; start < end; start += PAGE_SIZE) { 223 if (!virt_addr_valid(start)) 224 continue; 225 page = virt_to_page(start); 226 ClearPageReserved(page); 227 init_page_count(page); 228 free_page(start); 229 ++totalram_pages; 230 } 231 } 232 233 /* 234 * This installs a clean page in the kernel's page table. 235 */ 236 static struct page * __init 237 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) 238 { 239 pgd_t *pgd; 240 pud_t *pud; 241 pmd_t *pmd; 242 pte_t *pte; 243 244 if (!PageReserved(page)) 245 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", 246 page_address(page)); 247 248 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ 249 250 { 251 pud = pud_alloc(&init_mm, pgd, address); 252 if (!pud) 253 goto out; 254 pmd = pmd_alloc(&init_mm, pud, address); 255 if (!pmd) 256 goto out; 257 pte = pte_alloc_kernel(pmd, address); 258 if (!pte) 259 goto out; 260 if (!pte_none(*pte)) 261 goto out; 262 set_pte(pte, mk_pte(page, pgprot)); 263 } 264 out: 265 /* no need for flush_tlb */ 266 return page; 267 } 268 269 static void __init 270 setup_gate (void) 271 { 272 struct page *page; 273 274 /* 275 * Map the gate page twice: once read-only to export the ELF 276 * headers etc. and once execute-only page to enable 277 * privilege-promotion via "epc": 278 */ 279 page = virt_to_page(ia64_imva(__start_gate_section)); 280 put_kernel_page(page, GATE_ADDR, PAGE_READONLY); 281 #ifdef HAVE_BUGGY_SEGREL 282 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE)); 283 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); 284 #else 285 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); 286 /* Fill in the holes (if any) with read-only zero pages: */ 287 { 288 unsigned long addr; 289 290 for (addr = GATE_ADDR + PAGE_SIZE; 291 addr < GATE_ADDR + PERCPU_PAGE_SIZE; 292 addr += PAGE_SIZE) 293 { 294 put_kernel_page(ZERO_PAGE(0), addr, 295 PAGE_READONLY); 296 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, 297 PAGE_READONLY); 298 } 299 } 300 #endif 301 ia64_patch_gate(); 302 } 303 304 void __devinit 305 ia64_mmu_init (void *my_cpu_data) 306 { 307 unsigned long pta, impl_va_bits; 308 extern void __devinit tlb_init (void); 309 310 #ifdef CONFIG_DISABLE_VHPT 311 # define VHPT_ENABLE_BIT 0 312 #else 313 # define VHPT_ENABLE_BIT 1 314 #endif 315 316 /* 317 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped 318 * address space. The IA-64 architecture guarantees that at least 50 bits of 319 * virtual address space are implemented but if we pick a large enough page size 320 * (e.g., 64KB), the mapped address space is big enough that it will overlap with 321 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, 322 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a 323 * problem in practice. Alternatively, we could truncate the top of the mapped 324 * address space to not permit mappings that would overlap with the VMLPT. 325 * --davidm 00/12/06 326 */ 327 # define pte_bits 3 328 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) 329 /* 330 * The virtual page table has to cover the entire implemented address space within 331 * a region even though not all of this space may be mappable. The reason for 332 * this is that the Access bit and Dirty bit fault handlers perform 333 * non-speculative accesses to the virtual page table, so the address range of the 334 * virtual page table itself needs to be covered by virtual page table. 335 */ 336 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) 337 # define POW2(n) (1ULL << (n)) 338 339 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); 340 341 if (impl_va_bits < 51 || impl_va_bits > 61) 342 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); 343 /* 344 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, 345 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of 346 * the test makes sure that our mapped space doesn't overlap the 347 * unimplemented hole in the middle of the region. 348 */ 349 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || 350 (mapped_space_bits > impl_va_bits - 1)) 351 panic("Cannot build a big enough virtual-linear page table" 352 " to cover mapped address space.\n" 353 " Try using a smaller page size.\n"); 354 355 356 /* place the VMLPT at the end of each page-table mapped region: */ 357 pta = POW2(61) - POW2(vmlpt_bits); 358 359 /* 360 * Set the (virtually mapped linear) page table address. Bit 361 * 8 selects between the short and long format, bits 2-7 the 362 * size of the table, and bit 0 whether the VHPT walker is 363 * enabled. 364 */ 365 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); 366 367 ia64_tlb_init(); 368 369 #ifdef CONFIG_HUGETLB_PAGE 370 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); 371 ia64_srlz_d(); 372 #endif 373 } 374 375 #ifdef CONFIG_VIRTUAL_MEM_MAP 376 int vmemmap_find_next_valid_pfn(int node, int i) 377 { 378 unsigned long end_address, hole_next_pfn; 379 unsigned long stop_address; 380 pg_data_t *pgdat = NODE_DATA(node); 381 382 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; 383 end_address = PAGE_ALIGN(end_address); 384 385 stop_address = (unsigned long) &vmem_map[ 386 pgdat->node_start_pfn + pgdat->node_spanned_pages]; 387 388 do { 389 pgd_t *pgd; 390 pud_t *pud; 391 pmd_t *pmd; 392 pte_t *pte; 393 394 pgd = pgd_offset_k(end_address); 395 if (pgd_none(*pgd)) { 396 end_address += PGDIR_SIZE; 397 continue; 398 } 399 400 pud = pud_offset(pgd, end_address); 401 if (pud_none(*pud)) { 402 end_address += PUD_SIZE; 403 continue; 404 } 405 406 pmd = pmd_offset(pud, end_address); 407 if (pmd_none(*pmd)) { 408 end_address += PMD_SIZE; 409 continue; 410 } 411 412 pte = pte_offset_kernel(pmd, end_address); 413 retry_pte: 414 if (pte_none(*pte)) { 415 end_address += PAGE_SIZE; 416 pte++; 417 if ((end_address < stop_address) && 418 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) 419 goto retry_pte; 420 continue; 421 } 422 /* Found next valid vmem_map page */ 423 break; 424 } while (end_address < stop_address); 425 426 end_address = min(end_address, stop_address); 427 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; 428 hole_next_pfn = end_address / sizeof(struct page); 429 return hole_next_pfn - pgdat->node_start_pfn; 430 } 431 432 int __init 433 create_mem_map_page_table (u64 start, u64 end, void *arg) 434 { 435 unsigned long address, start_page, end_page; 436 struct page *map_start, *map_end; 437 int node; 438 pgd_t *pgd; 439 pud_t *pud; 440 pmd_t *pmd; 441 pte_t *pte; 442 443 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 444 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 445 446 start_page = (unsigned long) map_start & PAGE_MASK; 447 end_page = PAGE_ALIGN((unsigned long) map_end); 448 node = paddr_to_nid(__pa(start)); 449 450 for (address = start_page; address < end_page; address += PAGE_SIZE) { 451 pgd = pgd_offset_k(address); 452 if (pgd_none(*pgd)) 453 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 454 pud = pud_offset(pgd, address); 455 456 if (pud_none(*pud)) 457 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 458 pmd = pmd_offset(pud, address); 459 460 if (pmd_none(*pmd)) 461 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); 462 pte = pte_offset_kernel(pmd, address); 463 464 if (pte_none(*pte)) 465 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, 466 PAGE_KERNEL)); 467 } 468 return 0; 469 } 470 471 struct memmap_init_callback_data { 472 struct page *start; 473 struct page *end; 474 int nid; 475 unsigned long zone; 476 }; 477 478 static int 479 virtual_memmap_init (u64 start, u64 end, void *arg) 480 { 481 struct memmap_init_callback_data *args; 482 struct page *map_start, *map_end; 483 484 args = (struct memmap_init_callback_data *) arg; 485 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); 486 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); 487 488 if (map_start < args->start) 489 map_start = args->start; 490 if (map_end > args->end) 491 map_end = args->end; 492 493 /* 494 * We have to initialize "out of bounds" struct page elements that fit completely 495 * on the same pages that were allocated for the "in bounds" elements because they 496 * may be referenced later (and found to be "reserved"). 497 */ 498 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); 499 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) 500 / sizeof(struct page)); 501 502 if (map_start < map_end) 503 memmap_init_zone((unsigned long)(map_end - map_start), 504 args->nid, args->zone, page_to_pfn(map_start), 505 MEMMAP_EARLY); 506 return 0; 507 } 508 509 void 510 memmap_init (unsigned long size, int nid, unsigned long zone, 511 unsigned long start_pfn) 512 { 513 if (!vmem_map) 514 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY); 515 else { 516 struct page *start; 517 struct memmap_init_callback_data args; 518 519 start = pfn_to_page(start_pfn); 520 args.start = start; 521 args.end = start + size; 522 args.nid = nid; 523 args.zone = zone; 524 525 efi_memmap_walk(virtual_memmap_init, &args); 526 } 527 } 528 529 int 530 ia64_pfn_valid (unsigned long pfn) 531 { 532 char byte; 533 struct page *pg = pfn_to_page(pfn); 534 535 return (__get_user(byte, (char __user *) pg) == 0) 536 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) 537 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); 538 } 539 EXPORT_SYMBOL(ia64_pfn_valid); 540 541 int __init 542 find_largest_hole (u64 start, u64 end, void *arg) 543 { 544 u64 *max_gap = arg; 545 546 static u64 last_end = PAGE_OFFSET; 547 548 /* NOTE: this algorithm assumes efi memmap table is ordered */ 549 550 if (*max_gap < (start - last_end)) 551 *max_gap = start - last_end; 552 last_end = end; 553 return 0; 554 } 555 556 #endif /* CONFIG_VIRTUAL_MEM_MAP */ 557 558 int __init 559 register_active_ranges(u64 start, u64 end, void *arg) 560 { 561 int nid = paddr_to_nid(__pa(start)); 562 563 if (nid < 0) 564 nid = 0; 565 #ifdef CONFIG_KEXEC 566 if (start > crashk_res.start && start < crashk_res.end) 567 start = crashk_res.end; 568 if (end > crashk_res.start && end < crashk_res.end) 569 end = crashk_res.start; 570 #endif 571 572 if (start < end) 573 add_active_range(nid, __pa(start) >> PAGE_SHIFT, 574 __pa(end) >> PAGE_SHIFT); 575 return 0; 576 } 577 578 static int __init 579 count_reserved_pages (u64 start, u64 end, void *arg) 580 { 581 unsigned long num_reserved = 0; 582 unsigned long *count = arg; 583 584 for (; start < end; start += PAGE_SIZE) 585 if (PageReserved(virt_to_page(start))) 586 ++num_reserved; 587 *count += num_reserved; 588 return 0; 589 } 590 591 int 592 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg) 593 { 594 unsigned long pfn_start, pfn_end; 595 #ifdef CONFIG_FLATMEM 596 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; 597 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; 598 #else 599 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; 600 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; 601 #endif 602 min_low_pfn = min(min_low_pfn, pfn_start); 603 max_low_pfn = max(max_low_pfn, pfn_end); 604 return 0; 605 } 606 607 /* 608 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight 609 * system call handler. When this option is in effect, all fsyscalls will end up bubbling 610 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is 611 * useful for performance testing, but conceivably could also come in handy for debugging 612 * purposes. 613 */ 614 615 static int nolwsys __initdata; 616 617 static int __init 618 nolwsys_setup (char *s) 619 { 620 nolwsys = 1; 621 return 1; 622 } 623 624 __setup("nolwsys", nolwsys_setup); 625 626 void __init 627 mem_init (void) 628 { 629 long reserved_pages, codesize, datasize, initsize; 630 pg_data_t *pgdat; 631 int i; 632 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel; 633 634 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); 635 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); 636 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); 637 638 #ifdef CONFIG_PCI 639 /* 640 * This needs to be called _after_ the command line has been parsed but _before_ 641 * any drivers that may need the PCI DMA interface are initialized or bootmem has 642 * been freed. 643 */ 644 platform_dma_init(); 645 #endif 646 647 #ifdef CONFIG_FLATMEM 648 if (!mem_map) 649 BUG(); 650 max_mapnr = max_low_pfn; 651 #endif 652 653 high_memory = __va(max_low_pfn * PAGE_SIZE); 654 655 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE); 656 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); 657 kclist_add(&kcore_kernel, _stext, _end - _stext); 658 659 for_each_online_pgdat(pgdat) 660 if (pgdat->bdata->node_bootmem_map) 661 totalram_pages += free_all_bootmem_node(pgdat); 662 663 reserved_pages = 0; 664 efi_memmap_walk(count_reserved_pages, &reserved_pages); 665 666 codesize = (unsigned long) _etext - (unsigned long) _stext; 667 datasize = (unsigned long) _edata - (unsigned long) _etext; 668 initsize = (unsigned long) __init_end - (unsigned long) __init_begin; 669 670 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " 671 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10), 672 num_physpages << (PAGE_SHIFT - 10), codesize >> 10, 673 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); 674 675 676 /* 677 * For fsyscall entrpoints with no light-weight handler, use the ordinary 678 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry 679 * code can tell them apart. 680 */ 681 for (i = 0; i < NR_syscalls; ++i) { 682 extern unsigned long fsyscall_table[NR_syscalls]; 683 extern unsigned long sys_call_table[NR_syscalls]; 684 685 if (!fsyscall_table[i] || nolwsys) 686 fsyscall_table[i] = sys_call_table[i] | 1; 687 } 688 setup_gate(); 689 690 #ifdef CONFIG_IA32_SUPPORT 691 ia32_mem_init(); 692 #endif 693 } 694 695 #ifdef CONFIG_MEMORY_HOTPLUG 696 void online_page(struct page *page) 697 { 698 ClearPageReserved(page); 699 init_page_count(page); 700 __free_page(page); 701 totalram_pages++; 702 num_physpages++; 703 } 704 705 int arch_add_memory(int nid, u64 start, u64 size) 706 { 707 pg_data_t *pgdat; 708 struct zone *zone; 709 unsigned long start_pfn = start >> PAGE_SHIFT; 710 unsigned long nr_pages = size >> PAGE_SHIFT; 711 int ret; 712 713 pgdat = NODE_DATA(nid); 714 715 zone = pgdat->node_zones + ZONE_NORMAL; 716 ret = __add_pages(zone, start_pfn, nr_pages); 717 718 if (ret) 719 printk("%s: Problem encountered in __add_pages() as ret=%d\n", 720 __FUNCTION__, ret); 721 722 return ret; 723 } 724 725 int remove_memory(u64 start, u64 size) 726 { 727 return -EINVAL; 728 } 729 EXPORT_SYMBOL_GPL(remove_memory); 730 #endif 731