1 /* 2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. 3 * Copyright (c) 2001 Intel Corp. 4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> 5 * Copyright (c) 2002 NEC Corp. 6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> 7 * Copyright (c) 2004 Silicon Graphics, Inc 8 * Russ Anderson <rja@sgi.com> 9 * Jesse Barnes <jbarnes@sgi.com> 10 * Jack Steiner <steiner@sgi.com> 11 */ 12 13 /* 14 * Platform initialization for Discontig Memory 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/nmi.h> 20 #include <linux/swap.h> 21 #include <linux/bootmem.h> 22 #include <linux/acpi.h> 23 #include <linux/efi.h> 24 #include <linux/nodemask.h> 25 #include <asm/pgalloc.h> 26 #include <asm/tlb.h> 27 #include <asm/meminit.h> 28 #include <asm/numa.h> 29 #include <asm/sections.h> 30 31 /* 32 * Track per-node information needed to setup the boot memory allocator, the 33 * per-node areas, and the real VM. 34 */ 35 struct early_node_data { 36 struct ia64_node_data *node_data; 37 unsigned long pernode_addr; 38 unsigned long pernode_size; 39 struct bootmem_data bootmem_data; 40 unsigned long num_physpages; 41 #ifdef CONFIG_ZONE_DMA 42 unsigned long num_dma_physpages; 43 #endif 44 unsigned long min_pfn; 45 unsigned long max_pfn; 46 }; 47 48 static struct early_node_data mem_data[MAX_NUMNODES] __initdata; 49 static nodemask_t memory_less_mask __initdata; 50 51 pg_data_t *pgdat_list[MAX_NUMNODES]; 52 53 /* 54 * To prevent cache aliasing effects, align per-node structures so that they 55 * start at addresses that are strided by node number. 56 */ 57 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024) 58 #define NODEDATA_ALIGN(addr, node) \ 59 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \ 60 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1))) 61 62 /** 63 * build_node_maps - callback to setup bootmem structs for each node 64 * @start: physical start of range 65 * @len: length of range 66 * @node: node where this range resides 67 * 68 * We allocate a struct bootmem_data for each piece of memory that we wish to 69 * treat as a virtually contiguous block (i.e. each node). Each such block 70 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down 71 * if necessary. Any non-existent pages will simply be part of the virtual 72 * memmap. We also update min_low_pfn and max_low_pfn here as we receive 73 * memory ranges from the caller. 74 */ 75 static int __init build_node_maps(unsigned long start, unsigned long len, 76 int node) 77 { 78 unsigned long cstart, epfn, end = start + len; 79 struct bootmem_data *bdp = &mem_data[node].bootmem_data; 80 81 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; 82 cstart = GRANULEROUNDDOWN(start); 83 84 if (!bdp->node_low_pfn) { 85 bdp->node_boot_start = cstart; 86 bdp->node_low_pfn = epfn; 87 } else { 88 bdp->node_boot_start = min(cstart, bdp->node_boot_start); 89 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); 90 } 91 92 return 0; 93 } 94 95 /** 96 * early_nr_cpus_node - return number of cpus on a given node 97 * @node: node to check 98 * 99 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because 100 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been 101 * called yet. Note that node 0 will also count all non-existent cpus. 102 */ 103 static int __meminit early_nr_cpus_node(int node) 104 { 105 int cpu, n = 0; 106 107 for (cpu = 0; cpu < NR_CPUS; cpu++) 108 if (node == node_cpuid[cpu].nid) 109 n++; 110 111 return n; 112 } 113 114 /** 115 * compute_pernodesize - compute size of pernode data 116 * @node: the node id. 117 */ 118 static unsigned long __meminit compute_pernodesize(int node) 119 { 120 unsigned long pernodesize = 0, cpus; 121 122 cpus = early_nr_cpus_node(node); 123 pernodesize += PERCPU_PAGE_SIZE * cpus; 124 pernodesize += node * L1_CACHE_BYTES; 125 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); 126 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); 127 pernodesize = PAGE_ALIGN(pernodesize); 128 return pernodesize; 129 } 130 131 /** 132 * per_cpu_node_setup - setup per-cpu areas on each node 133 * @cpu_data: per-cpu area on this node 134 * @node: node to setup 135 * 136 * Copy the static per-cpu data into the region we just set aside and then 137 * setup __per_cpu_offset for each CPU on this node. Return a pointer to 138 * the end of the area. 139 */ 140 static void *per_cpu_node_setup(void *cpu_data, int node) 141 { 142 #ifdef CONFIG_SMP 143 int cpu; 144 145 for (cpu = 0; cpu < NR_CPUS; cpu++) { 146 if (node == node_cpuid[cpu].nid) { 147 memcpy(__va(cpu_data), __phys_per_cpu_start, 148 __per_cpu_end - __per_cpu_start); 149 __per_cpu_offset[cpu] = (char*)__va(cpu_data) - 150 __per_cpu_start; 151 cpu_data += PERCPU_PAGE_SIZE; 152 } 153 } 154 #endif 155 return cpu_data; 156 } 157 158 /** 159 * fill_pernode - initialize pernode data. 160 * @node: the node id. 161 * @pernode: physical address of pernode data 162 * @pernodesize: size of the pernode data 163 */ 164 static void __init fill_pernode(int node, unsigned long pernode, 165 unsigned long pernodesize) 166 { 167 void *cpu_data; 168 int cpus = early_nr_cpus_node(node); 169 struct bootmem_data *bdp = &mem_data[node].bootmem_data; 170 171 mem_data[node].pernode_addr = pernode; 172 mem_data[node].pernode_size = pernodesize; 173 memset(__va(pernode), 0, pernodesize); 174 175 cpu_data = (void *)pernode; 176 pernode += PERCPU_PAGE_SIZE * cpus; 177 pernode += node * L1_CACHE_BYTES; 178 179 pgdat_list[node] = __va(pernode); 180 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); 181 182 mem_data[node].node_data = __va(pernode); 183 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); 184 185 pgdat_list[node]->bdata = bdp; 186 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); 187 188 cpu_data = per_cpu_node_setup(cpu_data, node); 189 190 return; 191 } 192 193 /** 194 * find_pernode_space - allocate memory for memory map and per-node structures 195 * @start: physical start of range 196 * @len: length of range 197 * @node: node where this range resides 198 * 199 * This routine reserves space for the per-cpu data struct, the list of 200 * pg_data_ts and the per-node data struct. Each node will have something like 201 * the following in the first chunk of addr. space large enough to hold it. 202 * 203 * ________________________ 204 * | | 205 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first 206 * | PERCPU_PAGE_SIZE * | start and length big enough 207 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. 208 * |------------------------| 209 * | local pg_data_t * | 210 * |------------------------| 211 * | local ia64_node_data | 212 * |------------------------| 213 * | ??? | 214 * |________________________| 215 * 216 * Once this space has been set aside, the bootmem maps are initialized. We 217 * could probably move the allocation of the per-cpu and ia64_node_data space 218 * outside of this function and use alloc_bootmem_node(), but doing it here 219 * is straightforward and we get the alignments we want so... 220 */ 221 static int __init find_pernode_space(unsigned long start, unsigned long len, 222 int node) 223 { 224 unsigned long epfn; 225 unsigned long pernodesize = 0, pernode, pages, mapsize; 226 struct bootmem_data *bdp = &mem_data[node].bootmem_data; 227 228 epfn = (start + len) >> PAGE_SHIFT; 229 230 pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT); 231 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; 232 233 /* 234 * Make sure this memory falls within this node's usable memory 235 * since we may have thrown some away in build_maps(). 236 */ 237 if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn) 238 return 0; 239 240 /* Don't setup this node's local space twice... */ 241 if (mem_data[node].pernode_addr) 242 return 0; 243 244 /* 245 * Calculate total size needed, incl. what's necessary 246 * for good alignment and alias prevention. 247 */ 248 pernodesize = compute_pernodesize(node); 249 pernode = NODEDATA_ALIGN(start, node); 250 251 /* Is this range big enough for what we want to store here? */ 252 if (start + len > (pernode + pernodesize + mapsize)) 253 fill_pernode(node, pernode, pernodesize); 254 255 return 0; 256 } 257 258 /** 259 * free_node_bootmem - free bootmem allocator memory for use 260 * @start: physical start of range 261 * @len: length of range 262 * @node: node where this range resides 263 * 264 * Simply calls the bootmem allocator to free the specified ranged from 265 * the given pg_data_t's bdata struct. After this function has been called 266 * for all the entries in the EFI memory map, the bootmem allocator will 267 * be ready to service allocation requests. 268 */ 269 static int __init free_node_bootmem(unsigned long start, unsigned long len, 270 int node) 271 { 272 free_bootmem_node(pgdat_list[node], start, len); 273 274 return 0; 275 } 276 277 /** 278 * reserve_pernode_space - reserve memory for per-node space 279 * 280 * Reserve the space used by the bootmem maps & per-node space in the boot 281 * allocator so that when we actually create the real mem maps we don't 282 * use their memory. 283 */ 284 static void __init reserve_pernode_space(void) 285 { 286 unsigned long base, size, pages; 287 struct bootmem_data *bdp; 288 int node; 289 290 for_each_online_node(node) { 291 pg_data_t *pdp = pgdat_list[node]; 292 293 if (node_isset(node, memory_less_mask)) 294 continue; 295 296 bdp = pdp->bdata; 297 298 /* First the bootmem_map itself */ 299 pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT); 300 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; 301 base = __pa(bdp->node_bootmem_map); 302 reserve_bootmem_node(pdp, base, size); 303 304 /* Now the per-node space */ 305 size = mem_data[node].pernode_size; 306 base = __pa(mem_data[node].pernode_addr); 307 reserve_bootmem_node(pdp, base, size); 308 } 309 } 310 311 static void __meminit scatter_node_data(void) 312 { 313 pg_data_t **dst; 314 int node; 315 316 /* 317 * for_each_online_node() can't be used at here. 318 * node_online_map is not set for hot-added nodes at this time, 319 * because we are halfway through initialization of the new node's 320 * structures. If for_each_online_node() is used, a new node's 321 * pg_data_ptrs will be not initialized. Instead of using it, 322 * pgdat_list[] is checked. 323 */ 324 for_each_node(node) { 325 if (pgdat_list[node]) { 326 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs; 327 memcpy(dst, pgdat_list, sizeof(pgdat_list)); 328 } 329 } 330 } 331 332 /** 333 * initialize_pernode_data - fixup per-cpu & per-node pointers 334 * 335 * Each node's per-node area has a copy of the global pg_data_t list, so 336 * we copy that to each node here, as well as setting the per-cpu pointer 337 * to the local node data structure. The active_cpus field of the per-node 338 * structure gets setup by the platform_cpu_init() function later. 339 */ 340 static void __init initialize_pernode_data(void) 341 { 342 int cpu, node; 343 344 scatter_node_data(); 345 346 #ifdef CONFIG_SMP 347 /* Set the node_data pointer for each per-cpu struct */ 348 for (cpu = 0; cpu < NR_CPUS; cpu++) { 349 node = node_cpuid[cpu].nid; 350 per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data; 351 } 352 #else 353 { 354 struct cpuinfo_ia64 *cpu0_cpu_info; 355 cpu = 0; 356 node = node_cpuid[cpu].nid; 357 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start + 358 ((char *)&per_cpu__cpu_info - __per_cpu_start)); 359 cpu0_cpu_info->node_data = mem_data[node].node_data; 360 } 361 #endif /* CONFIG_SMP */ 362 } 363 364 /** 365 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit 366 * node but fall back to any other node when __alloc_bootmem_node fails 367 * for best. 368 * @nid: node id 369 * @pernodesize: size of this node's pernode data 370 */ 371 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize) 372 { 373 void *ptr = NULL; 374 u8 best = 0xff; 375 int bestnode = -1, node, anynode = 0; 376 377 for_each_online_node(node) { 378 if (node_isset(node, memory_less_mask)) 379 continue; 380 else if (node_distance(nid, node) < best) { 381 best = node_distance(nid, node); 382 bestnode = node; 383 } 384 anynode = node; 385 } 386 387 if (bestnode == -1) 388 bestnode = anynode; 389 390 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize, 391 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 392 393 return ptr; 394 } 395 396 /** 397 * memory_less_nodes - allocate and initialize CPU only nodes pernode 398 * information. 399 */ 400 static void __init memory_less_nodes(void) 401 { 402 unsigned long pernodesize; 403 void *pernode; 404 int node; 405 406 for_each_node_mask(node, memory_less_mask) { 407 pernodesize = compute_pernodesize(node); 408 pernode = memory_less_node_alloc(node, pernodesize); 409 fill_pernode(node, __pa(pernode), pernodesize); 410 } 411 412 return; 413 } 414 415 /** 416 * find_memory - walk the EFI memory map and setup the bootmem allocator 417 * 418 * Called early in boot to setup the bootmem allocator, and to 419 * allocate the per-cpu and per-node structures. 420 */ 421 void __init find_memory(void) 422 { 423 int node; 424 425 reserve_memory(); 426 427 if (num_online_nodes() == 0) { 428 printk(KERN_ERR "node info missing!\n"); 429 node_set_online(0); 430 } 431 432 nodes_or(memory_less_mask, memory_less_mask, node_online_map); 433 min_low_pfn = -1; 434 max_low_pfn = 0; 435 436 /* These actually end up getting called by call_pernode_memory() */ 437 efi_memmap_walk(filter_rsvd_memory, build_node_maps); 438 efi_memmap_walk(filter_rsvd_memory, find_pernode_space); 439 efi_memmap_walk(find_max_min_low_pfn, NULL); 440 441 for_each_online_node(node) 442 if (mem_data[node].bootmem_data.node_low_pfn) { 443 node_clear(node, memory_less_mask); 444 mem_data[node].min_pfn = ~0UL; 445 } 446 447 efi_memmap_walk(register_active_ranges, NULL); 448 449 /* 450 * Initialize the boot memory maps in reverse order since that's 451 * what the bootmem allocator expects 452 */ 453 for (node = MAX_NUMNODES - 1; node >= 0; node--) { 454 unsigned long pernode, pernodesize, map; 455 struct bootmem_data *bdp; 456 457 if (!node_online(node)) 458 continue; 459 else if (node_isset(node, memory_less_mask)) 460 continue; 461 462 bdp = &mem_data[node].bootmem_data; 463 pernode = mem_data[node].pernode_addr; 464 pernodesize = mem_data[node].pernode_size; 465 map = pernode + pernodesize; 466 467 init_bootmem_node(pgdat_list[node], 468 map>>PAGE_SHIFT, 469 bdp->node_boot_start>>PAGE_SHIFT, 470 bdp->node_low_pfn); 471 } 472 473 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); 474 475 reserve_pernode_space(); 476 memory_less_nodes(); 477 initialize_pernode_data(); 478 479 max_pfn = max_low_pfn; 480 481 find_initrd(); 482 } 483 484 #ifdef CONFIG_SMP 485 /** 486 * per_cpu_init - setup per-cpu variables 487 * 488 * find_pernode_space() does most of this already, we just need to set 489 * local_per_cpu_offset 490 */ 491 void __cpuinit *per_cpu_init(void) 492 { 493 int cpu; 494 static int first_time = 1; 495 496 497 if (smp_processor_id() != 0) 498 return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; 499 500 if (first_time) { 501 first_time = 0; 502 for (cpu = 0; cpu < NR_CPUS; cpu++) 503 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; 504 } 505 506 return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; 507 } 508 #endif /* CONFIG_SMP */ 509 510 /** 511 * show_mem - give short summary of memory stats 512 * 513 * Shows a simple page count of reserved and used pages in the system. 514 * For discontig machines, it does this on a per-pgdat basis. 515 */ 516 void show_mem(void) 517 { 518 int i, total_reserved = 0; 519 int total_shared = 0, total_cached = 0; 520 unsigned long total_present = 0; 521 pg_data_t *pgdat; 522 523 printk(KERN_INFO "Mem-info:\n"); 524 show_free_areas(); 525 printk(KERN_INFO "Free swap: %6ldkB\n", 526 nr_swap_pages<<(PAGE_SHIFT-10)); 527 printk(KERN_INFO "Node memory in pages:\n"); 528 for_each_online_pgdat(pgdat) { 529 unsigned long present; 530 unsigned long flags; 531 int shared = 0, cached = 0, reserved = 0; 532 533 pgdat_resize_lock(pgdat, &flags); 534 present = pgdat->node_present_pages; 535 for(i = 0; i < pgdat->node_spanned_pages; i++) { 536 struct page *page; 537 if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) 538 touch_nmi_watchdog(); 539 if (pfn_valid(pgdat->node_start_pfn + i)) 540 page = pfn_to_page(pgdat->node_start_pfn + i); 541 else { 542 i = vmemmap_find_next_valid_pfn(pgdat->node_id, 543 i) - 1; 544 continue; 545 } 546 if (PageReserved(page)) 547 reserved++; 548 else if (PageSwapCache(page)) 549 cached++; 550 else if (page_count(page)) 551 shared += page_count(page)-1; 552 } 553 pgdat_resize_unlock(pgdat, &flags); 554 total_present += present; 555 total_reserved += reserved; 556 total_cached += cached; 557 total_shared += shared; 558 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, " 559 "shrd: %10d, swpd: %10d\n", pgdat->node_id, 560 present, reserved, shared, cached); 561 } 562 printk(KERN_INFO "%ld pages of RAM\n", total_present); 563 printk(KERN_INFO "%d reserved pages\n", total_reserved); 564 printk(KERN_INFO "%d pages shared\n", total_shared); 565 printk(KERN_INFO "%d pages swap cached\n", total_cached); 566 printk(KERN_INFO "Total of %ld pages in page table cache\n", 567 quicklist_total_size()); 568 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages()); 569 } 570 571 /** 572 * call_pernode_memory - use SRAT to call callback functions with node info 573 * @start: physical start of range 574 * @len: length of range 575 * @arg: function to call for each range 576 * 577 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find 578 * out to which node a block of memory belongs. Ignore memory that we cannot 579 * identify, and split blocks that run across multiple nodes. 580 * 581 * Take this opportunity to round the start address up and the end address 582 * down to page boundaries. 583 */ 584 void call_pernode_memory(unsigned long start, unsigned long len, void *arg) 585 { 586 unsigned long rs, re, end = start + len; 587 void (*func)(unsigned long, unsigned long, int); 588 int i; 589 590 start = PAGE_ALIGN(start); 591 end &= PAGE_MASK; 592 if (start >= end) 593 return; 594 595 func = arg; 596 597 if (!num_node_memblks) { 598 /* No SRAT table, so assume one node (node 0) */ 599 if (start < end) 600 (*func)(start, end - start, 0); 601 return; 602 } 603 604 for (i = 0; i < num_node_memblks; i++) { 605 rs = max(start, node_memblk[i].start_paddr); 606 re = min(end, node_memblk[i].start_paddr + 607 node_memblk[i].size); 608 609 if (rs < re) 610 (*func)(rs, re - rs, node_memblk[i].nid); 611 612 if (re == end) 613 break; 614 } 615 } 616 617 /** 618 * count_node_pages - callback to build per-node memory info structures 619 * @start: physical start of range 620 * @len: length of range 621 * @node: node where this range resides 622 * 623 * Each node has it's own number of physical pages, DMAable pages, start, and 624 * end page frame number. This routine will be called by call_pernode_memory() 625 * for each piece of usable memory and will setup these values for each node. 626 * Very similar to build_maps(). 627 */ 628 static __init int count_node_pages(unsigned long start, unsigned long len, int node) 629 { 630 unsigned long end = start + len; 631 632 mem_data[node].num_physpages += len >> PAGE_SHIFT; 633 #ifdef CONFIG_ZONE_DMA 634 if (start <= __pa(MAX_DMA_ADDRESS)) 635 mem_data[node].num_dma_physpages += 636 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; 637 #endif 638 start = GRANULEROUNDDOWN(start); 639 start = ORDERROUNDDOWN(start); 640 end = GRANULEROUNDUP(end); 641 mem_data[node].max_pfn = max(mem_data[node].max_pfn, 642 end >> PAGE_SHIFT); 643 mem_data[node].min_pfn = min(mem_data[node].min_pfn, 644 start >> PAGE_SHIFT); 645 646 return 0; 647 } 648 649 /** 650 * paging_init - setup page tables 651 * 652 * paging_init() sets up the page tables for each node of the system and frees 653 * the bootmem allocator memory for general use. 654 */ 655 void __init paging_init(void) 656 { 657 unsigned long max_dma; 658 unsigned long pfn_offset = 0; 659 unsigned long max_pfn = 0; 660 int node; 661 unsigned long max_zone_pfns[MAX_NR_ZONES]; 662 663 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; 664 665 efi_memmap_walk(filter_rsvd_memory, count_node_pages); 666 667 sparse_memory_present_with_active_regions(MAX_NUMNODES); 668 sparse_init(); 669 670 #ifdef CONFIG_VIRTUAL_MEM_MAP 671 vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * 672 sizeof(struct page)); 673 vmem_map = (struct page *) vmalloc_end; 674 efi_memmap_walk(create_mem_map_page_table, NULL); 675 printk("Virtual mem_map starts at 0x%p\n", vmem_map); 676 #endif 677 678 for_each_online_node(node) { 679 num_physpages += mem_data[node].num_physpages; 680 pfn_offset = mem_data[node].min_pfn; 681 682 #ifdef CONFIG_VIRTUAL_MEM_MAP 683 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; 684 #endif 685 if (mem_data[node].max_pfn > max_pfn) 686 max_pfn = mem_data[node].max_pfn; 687 } 688 689 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 690 #ifdef CONFIG_ZONE_DMA 691 max_zone_pfns[ZONE_DMA] = max_dma; 692 #endif 693 max_zone_pfns[ZONE_NORMAL] = max_pfn; 694 free_area_init_nodes(max_zone_pfns); 695 696 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); 697 } 698 699 #ifdef CONFIG_MEMORY_HOTPLUG 700 pg_data_t *arch_alloc_nodedata(int nid) 701 { 702 unsigned long size = compute_pernodesize(nid); 703 704 return kzalloc(size, GFP_KERNEL); 705 } 706 707 void arch_free_nodedata(pg_data_t *pgdat) 708 { 709 kfree(pgdat); 710 } 711 712 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat) 713 { 714 pgdat_list[update_node] = update_pgdat; 715 scatter_node_data(); 716 } 717 #endif 718 719 #ifdef CONFIG_SPARSEMEM_VMEMMAP 720 int __meminit vmemmap_populate(struct page *start_page, 721 unsigned long size, int node) 722 { 723 return vmemmap_populate_basepages(start_page, size, node); 724 } 725 #endif 726