xref: /openbmc/linux/arch/ia64/mm/discontig.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
4  * Copyright (c) 2001 Intel Corp.
5  * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
6  * Copyright (c) 2002 NEC Corp.
7  * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
8  * Copyright (c) 2004 Silicon Graphics, Inc
9  *	Russ Anderson <rja@sgi.com>
10  *	Jesse Barnes <jbarnes@sgi.com>
11  *	Jack Steiner <steiner@sgi.com>
12  */
13 
14 /*
15  * Platform initialization for Discontig Memory
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
22 #include <linux/memblock.h>
23 #include <linux/acpi.h>
24 #include <linux/efi.h>
25 #include <linux/nodemask.h>
26 #include <linux/slab.h>
27 #include <asm/tlb.h>
28 #include <asm/meminit.h>
29 #include <asm/numa.h>
30 #include <asm/sections.h>
31 
32 /*
33  * Track per-node information needed to setup the boot memory allocator, the
34  * per-node areas, and the real VM.
35  */
36 struct early_node_data {
37 	struct ia64_node_data *node_data;
38 	unsigned long pernode_addr;
39 	unsigned long pernode_size;
40 	unsigned long min_pfn;
41 	unsigned long max_pfn;
42 };
43 
44 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
45 static nodemask_t memory_less_mask __initdata;
46 
47 pg_data_t *pgdat_list[MAX_NUMNODES];
48 
49 /*
50  * To prevent cache aliasing effects, align per-node structures so that they
51  * start at addresses that are strided by node number.
52  */
53 #define MAX_NODE_ALIGN_OFFSET	(32 * 1024 * 1024)
54 #define NODEDATA_ALIGN(addr, node)						\
55 	((((addr) + 1024*1024-1) & ~(1024*1024-1)) + 				\
56 	     (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
57 
58 /**
59  * build_node_maps - callback to setup mem_data structs for each node
60  * @start: physical start of range
61  * @len: length of range
62  * @node: node where this range resides
63  *
64  * Detect extents of each piece of memory that we wish to
65  * treat as a virtually contiguous block (i.e. each node). Each such block
66  * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
67  * if necessary.  Any non-existent pages will simply be part of the virtual
68  * memmap.
69  */
70 static int __init build_node_maps(unsigned long start, unsigned long len,
71 				  int node)
72 {
73 	unsigned long spfn, epfn, end = start + len;
74 
75 	epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
76 	spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
77 
78 	if (!mem_data[node].min_pfn) {
79 		mem_data[node].min_pfn = spfn;
80 		mem_data[node].max_pfn = epfn;
81 	} else {
82 		mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn);
83 		mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn);
84 	}
85 
86 	return 0;
87 }
88 
89 /**
90  * early_nr_cpus_node - return number of cpus on a given node
91  * @node: node to check
92  *
93  * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
94  * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
95  * called yet.  Note that node 0 will also count all non-existent cpus.
96  */
97 static int __meminit early_nr_cpus_node(int node)
98 {
99 	int cpu, n = 0;
100 
101 	for_each_possible_early_cpu(cpu)
102 		if (node == node_cpuid[cpu].nid)
103 			n++;
104 
105 	return n;
106 }
107 
108 /**
109  * compute_pernodesize - compute size of pernode data
110  * @node: the node id.
111  */
112 static unsigned long __meminit compute_pernodesize(int node)
113 {
114 	unsigned long pernodesize = 0, cpus;
115 
116 	cpus = early_nr_cpus_node(node);
117 	pernodesize += PERCPU_PAGE_SIZE * cpus;
118 	pernodesize += node * L1_CACHE_BYTES;
119 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
120 	pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
121 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
122 	pernodesize = PAGE_ALIGN(pernodesize);
123 	return pernodesize;
124 }
125 
126 /**
127  * per_cpu_node_setup - setup per-cpu areas on each node
128  * @cpu_data: per-cpu area on this node
129  * @node: node to setup
130  *
131  * Copy the static per-cpu data into the region we just set aside and then
132  * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
133  * the end of the area.
134  */
135 static void *per_cpu_node_setup(void *cpu_data, int node)
136 {
137 #ifdef CONFIG_SMP
138 	int cpu;
139 
140 	for_each_possible_early_cpu(cpu) {
141 		void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
142 
143 		if (node != node_cpuid[cpu].nid)
144 			continue;
145 
146 		memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
147 		__per_cpu_offset[cpu] = (char *)__va(cpu_data) -
148 			__per_cpu_start;
149 
150 		/*
151 		 * percpu area for cpu0 is moved from the __init area
152 		 * which is setup by head.S and used till this point.
153 		 * Update ar.k3.  This move is ensures that percpu
154 		 * area for cpu0 is on the correct node and its
155 		 * virtual address isn't insanely far from other
156 		 * percpu areas which is important for congruent
157 		 * percpu allocator.
158 		 */
159 		if (cpu == 0)
160 			ia64_set_kr(IA64_KR_PER_CPU_DATA,
161 				    (unsigned long)cpu_data -
162 				    (unsigned long)__per_cpu_start);
163 
164 		cpu_data += PERCPU_PAGE_SIZE;
165 	}
166 #endif
167 	return cpu_data;
168 }
169 
170 #ifdef CONFIG_SMP
171 /**
172  * setup_per_cpu_areas - setup percpu areas
173  *
174  * Arch code has already allocated and initialized percpu areas.  All
175  * this function has to do is to teach the determined layout to the
176  * dynamic percpu allocator, which happens to be more complex than
177  * creating whole new ones using helpers.
178  */
179 void __init setup_per_cpu_areas(void)
180 {
181 	struct pcpu_alloc_info *ai;
182 	struct pcpu_group_info *gi;
183 	unsigned int *cpu_map;
184 	void *base;
185 	unsigned long base_offset;
186 	unsigned int cpu;
187 	ssize_t static_size, reserved_size, dyn_size;
188 	int node, prev_node, unit, nr_units;
189 
190 	ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
191 	if (!ai)
192 		panic("failed to allocate pcpu_alloc_info");
193 	cpu_map = ai->groups[0].cpu_map;
194 
195 	/* determine base */
196 	base = (void *)ULONG_MAX;
197 	for_each_possible_cpu(cpu)
198 		base = min(base,
199 			   (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
200 	base_offset = (void *)__per_cpu_start - base;
201 
202 	/* build cpu_map, units are grouped by node */
203 	unit = 0;
204 	for_each_node(node)
205 		for_each_possible_cpu(cpu)
206 			if (node == node_cpuid[cpu].nid)
207 				cpu_map[unit++] = cpu;
208 	nr_units = unit;
209 
210 	/* set basic parameters */
211 	static_size = __per_cpu_end - __per_cpu_start;
212 	reserved_size = PERCPU_MODULE_RESERVE;
213 	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
214 	if (dyn_size < 0)
215 		panic("percpu area overflow static=%zd reserved=%zd\n",
216 		      static_size, reserved_size);
217 
218 	ai->static_size		= static_size;
219 	ai->reserved_size	= reserved_size;
220 	ai->dyn_size		= dyn_size;
221 	ai->unit_size		= PERCPU_PAGE_SIZE;
222 	ai->atom_size		= PAGE_SIZE;
223 	ai->alloc_size		= PERCPU_PAGE_SIZE;
224 
225 	/*
226 	 * CPUs are put into groups according to node.  Walk cpu_map
227 	 * and create new groups at node boundaries.
228 	 */
229 	prev_node = NUMA_NO_NODE;
230 	ai->nr_groups = 0;
231 	for (unit = 0; unit < nr_units; unit++) {
232 		cpu = cpu_map[unit];
233 		node = node_cpuid[cpu].nid;
234 
235 		if (node == prev_node) {
236 			gi->nr_units++;
237 			continue;
238 		}
239 		prev_node = node;
240 
241 		gi = &ai->groups[ai->nr_groups++];
242 		gi->nr_units		= 1;
243 		gi->base_offset		= __per_cpu_offset[cpu] + base_offset;
244 		gi->cpu_map		= &cpu_map[unit];
245 	}
246 
247 	pcpu_setup_first_chunk(ai, base);
248 	pcpu_free_alloc_info(ai);
249 }
250 #endif
251 
252 /**
253  * fill_pernode - initialize pernode data.
254  * @node: the node id.
255  * @pernode: physical address of pernode data
256  * @pernodesize: size of the pernode data
257  */
258 static void __init fill_pernode(int node, unsigned long pernode,
259 	unsigned long pernodesize)
260 {
261 	void *cpu_data;
262 	int cpus = early_nr_cpus_node(node);
263 
264 	mem_data[node].pernode_addr = pernode;
265 	mem_data[node].pernode_size = pernodesize;
266 	memset(__va(pernode), 0, pernodesize);
267 
268 	cpu_data = (void *)pernode;
269 	pernode += PERCPU_PAGE_SIZE * cpus;
270 	pernode += node * L1_CACHE_BYTES;
271 
272 	pgdat_list[node] = __va(pernode);
273 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
274 
275 	mem_data[node].node_data = __va(pernode);
276 	pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
277 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
278 
279 	cpu_data = per_cpu_node_setup(cpu_data, node);
280 
281 	return;
282 }
283 
284 /**
285  * find_pernode_space - allocate memory for memory map and per-node structures
286  * @start: physical start of range
287  * @len: length of range
288  * @node: node where this range resides
289  *
290  * This routine reserves space for the per-cpu data struct, the list of
291  * pg_data_ts and the per-node data struct.  Each node will have something like
292  * the following in the first chunk of addr. space large enough to hold it.
293  *
294  *    ________________________
295  *   |                        |
296  *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
297  *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
298  *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
299  *   |------------------------|
300  *   |   local pg_data_t *    |
301  *   |------------------------|
302  *   |  local ia64_node_data  |
303  *   |------------------------|
304  *   |          ???           |
305  *   |________________________|
306  *
307  * Once this space has been set aside, the bootmem maps are initialized.  We
308  * could probably move the allocation of the per-cpu and ia64_node_data space
309  * outside of this function and use alloc_bootmem_node(), but doing it here
310  * is straightforward and we get the alignments we want so...
311  */
312 static int __init find_pernode_space(unsigned long start, unsigned long len,
313 				     int node)
314 {
315 	unsigned long spfn, epfn;
316 	unsigned long pernodesize = 0, pernode;
317 
318 	spfn = start >> PAGE_SHIFT;
319 	epfn = (start + len) >> PAGE_SHIFT;
320 
321 	/*
322 	 * Make sure this memory falls within this node's usable memory
323 	 * since we may have thrown some away in build_maps().
324 	 */
325 	if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn)
326 		return 0;
327 
328 	/* Don't setup this node's local space twice... */
329 	if (mem_data[node].pernode_addr)
330 		return 0;
331 
332 	/*
333 	 * Calculate total size needed, incl. what's necessary
334 	 * for good alignment and alias prevention.
335 	 */
336 	pernodesize = compute_pernodesize(node);
337 	pernode = NODEDATA_ALIGN(start, node);
338 
339 	/* Is this range big enough for what we want to store here? */
340 	if (start + len > (pernode + pernodesize))
341 		fill_pernode(node, pernode, pernodesize);
342 
343 	return 0;
344 }
345 
346 /**
347  * reserve_pernode_space - reserve memory for per-node space
348  *
349  * Reserve the space used by the bootmem maps & per-node space in the boot
350  * allocator so that when we actually create the real mem maps we don't
351  * use their memory.
352  */
353 static void __init reserve_pernode_space(void)
354 {
355 	unsigned long base, size;
356 	int node;
357 
358 	for_each_online_node(node) {
359 		if (node_isset(node, memory_less_mask))
360 			continue;
361 
362 		/* Now the per-node space */
363 		size = mem_data[node].pernode_size;
364 		base = __pa(mem_data[node].pernode_addr);
365 		memblock_reserve(base, size);
366 	}
367 }
368 
369 static void __meminit scatter_node_data(void)
370 {
371 	pg_data_t **dst;
372 	int node;
373 
374 	/*
375 	 * for_each_online_node() can't be used at here.
376 	 * node_online_map is not set for hot-added nodes at this time,
377 	 * because we are halfway through initialization of the new node's
378 	 * structures.  If for_each_online_node() is used, a new node's
379 	 * pg_data_ptrs will be not initialized. Instead of using it,
380 	 * pgdat_list[] is checked.
381 	 */
382 	for_each_node(node) {
383 		if (pgdat_list[node]) {
384 			dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
385 			memcpy(dst, pgdat_list, sizeof(pgdat_list));
386 		}
387 	}
388 }
389 
390 /**
391  * initialize_pernode_data - fixup per-cpu & per-node pointers
392  *
393  * Each node's per-node area has a copy of the global pg_data_t list, so
394  * we copy that to each node here, as well as setting the per-cpu pointer
395  * to the local node data structure.
396  */
397 static void __init initialize_pernode_data(void)
398 {
399 	int cpu, node;
400 
401 	scatter_node_data();
402 
403 #ifdef CONFIG_SMP
404 	/* Set the node_data pointer for each per-cpu struct */
405 	for_each_possible_early_cpu(cpu) {
406 		node = node_cpuid[cpu].nid;
407 		per_cpu(ia64_cpu_info, cpu).node_data =
408 			mem_data[node].node_data;
409 	}
410 #else
411 	{
412 		struct cpuinfo_ia64 *cpu0_cpu_info;
413 		cpu = 0;
414 		node = node_cpuid[cpu].nid;
415 		cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
416 			((char *)&ia64_cpu_info - __per_cpu_start));
417 		cpu0_cpu_info->node_data = mem_data[node].node_data;
418 	}
419 #endif /* CONFIG_SMP */
420 }
421 
422 /**
423  * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
424  * 	node but fall back to any other node when __alloc_bootmem_node fails
425  *	for best.
426  * @nid: node id
427  * @pernodesize: size of this node's pernode data
428  */
429 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
430 {
431 	void *ptr = NULL;
432 	u8 best = 0xff;
433 	int bestnode = NUMA_NO_NODE, node, anynode = 0;
434 
435 	for_each_online_node(node) {
436 		if (node_isset(node, memory_less_mask))
437 			continue;
438 		else if (node_distance(nid, node) < best) {
439 			best = node_distance(nid, node);
440 			bestnode = node;
441 		}
442 		anynode = node;
443 	}
444 
445 	if (bestnode == NUMA_NO_NODE)
446 		bestnode = anynode;
447 
448 	ptr = memblock_alloc_try_nid(pernodesize, PERCPU_PAGE_SIZE,
449 				     __pa(MAX_DMA_ADDRESS),
450 				     MEMBLOCK_ALLOC_ACCESSIBLE,
451 				     bestnode);
452 	if (!ptr)
453 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%lx\n",
454 		      __func__, pernodesize, PERCPU_PAGE_SIZE, bestnode,
455 		      __pa(MAX_DMA_ADDRESS));
456 
457 	return ptr;
458 }
459 
460 /**
461  * memory_less_nodes - allocate and initialize CPU only nodes pernode
462  *	information.
463  */
464 static void __init memory_less_nodes(void)
465 {
466 	unsigned long pernodesize;
467 	void *pernode;
468 	int node;
469 
470 	for_each_node_mask(node, memory_less_mask) {
471 		pernodesize = compute_pernodesize(node);
472 		pernode = memory_less_node_alloc(node, pernodesize);
473 		fill_pernode(node, __pa(pernode), pernodesize);
474 	}
475 
476 	return;
477 }
478 
479 /**
480  * find_memory - walk the EFI memory map and setup the bootmem allocator
481  *
482  * Called early in boot to setup the bootmem allocator, and to
483  * allocate the per-cpu and per-node structures.
484  */
485 void __init find_memory(void)
486 {
487 	int node;
488 
489 	reserve_memory();
490 	efi_memmap_walk(filter_memory, register_active_ranges);
491 
492 	if (num_online_nodes() == 0) {
493 		printk(KERN_ERR "node info missing!\n");
494 		node_set_online(0);
495 	}
496 
497 	nodes_or(memory_less_mask, memory_less_mask, node_online_map);
498 	min_low_pfn = -1;
499 	max_low_pfn = 0;
500 
501 	/* These actually end up getting called by call_pernode_memory() */
502 	efi_memmap_walk(filter_rsvd_memory, build_node_maps);
503 	efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
504 	efi_memmap_walk(find_max_min_low_pfn, NULL);
505 
506 	for_each_online_node(node)
507 		if (mem_data[node].min_pfn)
508 			node_clear(node, memory_less_mask);
509 
510 	reserve_pernode_space();
511 	memory_less_nodes();
512 	initialize_pernode_data();
513 
514 	max_pfn = max_low_pfn;
515 
516 	find_initrd();
517 }
518 
519 #ifdef CONFIG_SMP
520 /**
521  * per_cpu_init - setup per-cpu variables
522  *
523  * find_pernode_space() does most of this already, we just need to set
524  * local_per_cpu_offset
525  */
526 void *per_cpu_init(void)
527 {
528 	int cpu;
529 	static int first_time = 1;
530 
531 	if (first_time) {
532 		first_time = 0;
533 		for_each_possible_early_cpu(cpu)
534 			per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
535 	}
536 
537 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
538 }
539 #endif /* CONFIG_SMP */
540 
541 /**
542  * call_pernode_memory - use SRAT to call callback functions with node info
543  * @start: physical start of range
544  * @len: length of range
545  * @arg: function to call for each range
546  *
547  * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
548  * out to which node a block of memory belongs.  Ignore memory that we cannot
549  * identify, and split blocks that run across multiple nodes.
550  *
551  * Take this opportunity to round the start address up and the end address
552  * down to page boundaries.
553  */
554 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
555 {
556 	unsigned long rs, re, end = start + len;
557 	void (*func)(unsigned long, unsigned long, int);
558 	int i;
559 
560 	start = PAGE_ALIGN(start);
561 	end &= PAGE_MASK;
562 	if (start >= end)
563 		return;
564 
565 	func = arg;
566 
567 	if (!num_node_memblks) {
568 		/* No SRAT table, so assume one node (node 0) */
569 		if (start < end)
570 			(*func)(start, end - start, 0);
571 		return;
572 	}
573 
574 	for (i = 0; i < num_node_memblks; i++) {
575 		rs = max(start, node_memblk[i].start_paddr);
576 		re = min(end, node_memblk[i].start_paddr +
577 			 node_memblk[i].size);
578 
579 		if (rs < re)
580 			(*func)(rs, re - rs, node_memblk[i].nid);
581 
582 		if (re == end)
583 			break;
584 	}
585 }
586 
587 static void __init virtual_map_init(void)
588 {
589 #ifdef CONFIG_VIRTUAL_MEM_MAP
590 	int node;
591 
592 	VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
593 		sizeof(struct page));
594 	vmem_map = (struct page *) VMALLOC_END;
595 	efi_memmap_walk(create_mem_map_page_table, NULL);
596 	printk("Virtual mem_map starts at 0x%p\n", vmem_map);
597 
598 	for_each_online_node(node) {
599 		unsigned long pfn_offset = mem_data[node].min_pfn;
600 
601 		NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
602 	}
603 #endif
604 }
605 
606 /**
607  * paging_init - setup page tables
608  *
609  * paging_init() sets up the page tables for each node of the system and frees
610  * the bootmem allocator memory for general use.
611  */
612 void __init paging_init(void)
613 {
614 	unsigned long max_dma;
615 	unsigned long max_zone_pfns[MAX_NR_ZONES];
616 
617 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
618 
619 	sparse_init();
620 
621 	virtual_map_init();
622 
623 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
624 	max_zone_pfns[ZONE_DMA32] = max_dma;
625 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
626 	free_area_init(max_zone_pfns);
627 
628 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
629 }
630 
631 #ifdef CONFIG_MEMORY_HOTPLUG
632 pg_data_t *arch_alloc_nodedata(int nid)
633 {
634 	unsigned long size = compute_pernodesize(nid);
635 
636 	return kzalloc(size, GFP_KERNEL);
637 }
638 
639 void arch_free_nodedata(pg_data_t *pgdat)
640 {
641 	kfree(pgdat);
642 }
643 
644 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
645 {
646 	pgdat_list[update_node] = update_pgdat;
647 	scatter_node_data();
648 }
649 #endif
650 
651 #ifdef CONFIG_SPARSEMEM_VMEMMAP
652 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
653 		struct vmem_altmap *altmap)
654 {
655 	return vmemmap_populate_basepages(start, end, node, NULL);
656 }
657 
658 void vmemmap_free(unsigned long start, unsigned long end,
659 		struct vmem_altmap *altmap)
660 {
661 }
662 #endif
663