xref: /openbmc/linux/arch/ia64/lib/do_csum.S (revision 498495dba268b20e8eadd7fe93c140c68b6cc9d2)
1*b2441318SGreg Kroah-Hartman/* SPDX-License-Identifier: GPL-2.0 */
21da177e4SLinus Torvalds/*
31da177e4SLinus Torvalds *
41da177e4SLinus Torvalds * Optmized version of the standard do_csum() function
51da177e4SLinus Torvalds *
61da177e4SLinus Torvalds * Return: a 64bit quantity containing the 16bit Internet checksum
71da177e4SLinus Torvalds *
81da177e4SLinus Torvalds * Inputs:
91da177e4SLinus Torvalds *	in0: address of buffer to checksum (char *)
101da177e4SLinus Torvalds *	in1: length of the buffer (int)
111da177e4SLinus Torvalds *
121da177e4SLinus Torvalds * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
131da177e4SLinus Torvalds *	Stephane Eranian <eranian@hpl.hp.com>
141da177e4SLinus Torvalds *
151da177e4SLinus Torvalds * 02/04/22	Ken Chen <kenneth.w.chen@intel.com>
161da177e4SLinus Torvalds *		Data locality study on the checksum buffer.
171da177e4SLinus Torvalds *		More optimization cleanup - remove excessive stop bits.
181da177e4SLinus Torvalds * 02/04/08	David Mosberger <davidm@hpl.hp.com>
191da177e4SLinus Torvalds *		More cleanup and tuning.
201da177e4SLinus Torvalds * 01/04/18	Jun Nakajima <jun.nakajima@intel.com>
211da177e4SLinus Torvalds *		Clean up and optimize and the software pipeline, loading two
221da177e4SLinus Torvalds *		back-to-back 8-byte words per loop. Clean up the initialization
231da177e4SLinus Torvalds *		for the loop. Support the cases where load latency = 1 or 2.
241da177e4SLinus Torvalds *		Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
251da177e4SLinus Torvalds */
261da177e4SLinus Torvalds
271da177e4SLinus Torvalds#include <asm/asmmacro.h>
281da177e4SLinus Torvalds
291da177e4SLinus Torvalds//
301da177e4SLinus Torvalds// Theory of operations:
311da177e4SLinus Torvalds//	The goal is to go as quickly as possible to the point where
321da177e4SLinus Torvalds//	we can checksum 16 bytes/loop. Before reaching that point we must
331da177e4SLinus Torvalds//	take care of incorrect alignment of first byte.
341da177e4SLinus Torvalds//
351da177e4SLinus Torvalds//	The code hereafter also takes care of the "tail" part of the buffer
361da177e4SLinus Torvalds//	before entering the core loop, if any. The checksum is a sum so it
371da177e4SLinus Torvalds//	allows us to commute operations. So we do the "head" and "tail"
381da177e4SLinus Torvalds//	first to finish at full speed in the body. Once we get the head and
391da177e4SLinus Torvalds//	tail values, we feed them into the pipeline, very handy initialization.
401da177e4SLinus Torvalds//
411da177e4SLinus Torvalds//	Of course we deal with the special case where the whole buffer fits
421da177e4SLinus Torvalds//	into one 8 byte word. In this case we have only one entry in the pipeline.
431da177e4SLinus Torvalds//
441da177e4SLinus Torvalds//	We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
451da177e4SLinus Torvalds//	possible load latency and also to accommodate for head and tail.
461da177e4SLinus Torvalds//
471da177e4SLinus Torvalds//	The end of the function deals with folding the checksum from 64bits
481da177e4SLinus Torvalds//	down to 16bits taking care of the carry.
491da177e4SLinus Torvalds//
501da177e4SLinus Torvalds//	This version avoids synchronization in the core loop by also using a
511da177e4SLinus Torvalds//	pipeline for the accumulation of the checksum in resultx[] (x=1,2).
521da177e4SLinus Torvalds//
531da177e4SLinus Torvalds//	 wordx[] (x=1,2)
541da177e4SLinus Torvalds//	|---|
551da177e4SLinus Torvalds//      |   | 0			: new value loaded in pipeline
561da177e4SLinus Torvalds//	|---|
571da177e4SLinus Torvalds//      |   | -			: in transit data
581da177e4SLinus Torvalds//	|---|
591da177e4SLinus Torvalds//      |   | LOAD_LATENCY	: current value to add to checksum
601da177e4SLinus Torvalds//	|---|
611da177e4SLinus Torvalds//      |   | LOAD_LATENCY+1	: previous value added to checksum
621da177e4SLinus Torvalds//      |---|			(previous iteration)
631da177e4SLinus Torvalds//
641da177e4SLinus Torvalds//	resultx[] (x=1,2)
651da177e4SLinus Torvalds//	|---|
661da177e4SLinus Torvalds//      |   | 0			: initial value
671da177e4SLinus Torvalds//	|---|
681da177e4SLinus Torvalds//      |   | LOAD_LATENCY-1	: new checksum
691da177e4SLinus Torvalds//	|---|
701da177e4SLinus Torvalds//      |   | LOAD_LATENCY	: previous value of checksum
711da177e4SLinus Torvalds//	|---|
721da177e4SLinus Torvalds//      |   | LOAD_LATENCY+1	: final checksum when out of the loop
731da177e4SLinus Torvalds//      |---|
741da177e4SLinus Torvalds//
751da177e4SLinus Torvalds//
761da177e4SLinus Torvalds//	See RFC1071 "Computing the Internet Checksum" for various techniques for
771da177e4SLinus Torvalds//	calculating the Internet checksum.
781da177e4SLinus Torvalds//
791da177e4SLinus Torvalds// NOT YET DONE:
801da177e4SLinus Torvalds//	- Maybe another algorithm which would take care of the folding at the
811da177e4SLinus Torvalds//	  end in a different manner
821da177e4SLinus Torvalds//	- Work with people more knowledgeable than me on the network stack
831da177e4SLinus Torvalds//	  to figure out if we could not split the function depending on the
841da177e4SLinus Torvalds//	  type of packet or alignment we get. Like the ip_fast_csum() routine
851da177e4SLinus Torvalds//	  where we know we have at least 20bytes worth of data to checksum.
861da177e4SLinus Torvalds//	- Do a better job of handling small packets.
871da177e4SLinus Torvalds//	- Note on prefetching: it was found that under various load, i.e. ftp read/write,
881da177e4SLinus Torvalds//	  nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
891da177e4SLinus Torvalds//	  on the data that buffer points to (partly because the checksum is often preceded by
901da177e4SLinus Torvalds//	  a copy_from_user()).  This finding indiate that lfetch will not be beneficial since
911da177e4SLinus Torvalds//	  the data is already in the cache.
921da177e4SLinus Torvalds//
931da177e4SLinus Torvalds
941da177e4SLinus Torvalds#define saved_pfs	r11
951da177e4SLinus Torvalds#define hmask		r16
961da177e4SLinus Torvalds#define tmask		r17
971da177e4SLinus Torvalds#define first1		r18
981da177e4SLinus Torvalds#define firstval	r19
991da177e4SLinus Torvalds#define firstoff	r20
1001da177e4SLinus Torvalds#define last		r21
1011da177e4SLinus Torvalds#define lastval		r22
1021da177e4SLinus Torvalds#define lastoff		r23
1031da177e4SLinus Torvalds#define saved_lc	r24
1041da177e4SLinus Torvalds#define saved_pr	r25
1051da177e4SLinus Torvalds#define tmp1		r26
1061da177e4SLinus Torvalds#define tmp2		r27
1071da177e4SLinus Torvalds#define tmp3		r28
1081da177e4SLinus Torvalds#define carry1		r29
1091da177e4SLinus Torvalds#define carry2		r30
1101da177e4SLinus Torvalds#define first2		r31
1111da177e4SLinus Torvalds
1121da177e4SLinus Torvalds#define buf		in0
1131da177e4SLinus Torvalds#define len		in1
1141da177e4SLinus Torvalds
1151da177e4SLinus Torvalds#define LOAD_LATENCY	2	// XXX fix me
1161da177e4SLinus Torvalds
1171da177e4SLinus Torvalds#if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
1181da177e4SLinus Torvalds# error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
1191da177e4SLinus Torvalds#endif
1201da177e4SLinus Torvalds
1211da177e4SLinus Torvalds#define PIPE_DEPTH			(LOAD_LATENCY+2)
1221da177e4SLinus Torvalds#define ELD	p[LOAD_LATENCY]		// end of load
1231da177e4SLinus Torvalds#define ELD_1	p[LOAD_LATENCY+1]	// and next stage
1241da177e4SLinus Torvalds
1251da177e4SLinus Torvalds// unsigned long do_csum(unsigned char *buf,long len)
1261da177e4SLinus Torvalds
1271da177e4SLinus TorvaldsGLOBAL_ENTRY(do_csum)
1281da177e4SLinus Torvalds	.prologue
1291da177e4SLinus Torvalds	.save ar.pfs, saved_pfs
1301da177e4SLinus Torvalds	alloc saved_pfs=ar.pfs,2,16,0,16
1311da177e4SLinus Torvalds	.rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
1321da177e4SLinus Torvalds	.rotp p[PIPE_DEPTH], pC1[2], pC2[2]
1331da177e4SLinus Torvalds	mov ret0=r0		// in case we have zero length
1341da177e4SLinus Torvalds	cmp.lt p0,p6=r0,len	// check for zero length or negative (32bit len)
1351da177e4SLinus Torvalds	;;
1361da177e4SLinus Torvalds	add tmp1=buf,len	// last byte's address
1371da177e4SLinus Torvalds	.save pr, saved_pr
1381da177e4SLinus Torvalds	mov saved_pr=pr		// preserve predicates (rotation)
1391da177e4SLinus Torvalds(p6)	br.ret.spnt.many rp	// return if zero or negative length
1401da177e4SLinus Torvalds
1411da177e4SLinus Torvalds	mov hmask=-1		// initialize head mask
1421da177e4SLinus Torvalds	tbit.nz p15,p0=buf,0	// is buf an odd address?
1431da177e4SLinus Torvalds	and first1=-8,buf	// 8-byte align down address of first1 element
1441da177e4SLinus Torvalds
1451da177e4SLinus Torvalds	and firstoff=7,buf	// how many bytes off for first1 element
1461da177e4SLinus Torvalds	mov tmask=-1		// initialize tail mask
1471da177e4SLinus Torvalds
1481da177e4SLinus Torvalds	;;
1491da177e4SLinus Torvalds	adds tmp2=-1,tmp1	// last-1
1501da177e4SLinus Torvalds	and lastoff=7,tmp1	// how many bytes off for last element
1511da177e4SLinus Torvalds	;;
1521da177e4SLinus Torvalds	sub tmp1=8,lastoff	// complement to lastoff
1531da177e4SLinus Torvalds	and last=-8,tmp2	// address of word containing last byte
1541da177e4SLinus Torvalds	;;
1551da177e4SLinus Torvalds	sub tmp3=last,first1	// tmp3=distance from first1 to last
1561da177e4SLinus Torvalds	.save ar.lc, saved_lc
1571da177e4SLinus Torvalds	mov saved_lc=ar.lc	// save lc
1581da177e4SLinus Torvalds	cmp.eq p8,p9=last,first1	// everything fits in one word ?
1591da177e4SLinus Torvalds
1601da177e4SLinus Torvalds	ld8 firstval=[first1],8	// load, ahead of time, "first1" word
1611da177e4SLinus Torvalds	and tmp1=7, tmp1	// make sure that if tmp1==8 -> tmp1=0
1621da177e4SLinus Torvalds	shl tmp2=firstoff,3	// number of bits
1631da177e4SLinus Torvalds	;;
1641da177e4SLinus Torvalds(p9)	ld8 lastval=[last]	// load, ahead of time, "last" word, if needed
1651da177e4SLinus Torvalds	shl tmp1=tmp1,3		// number of bits
1661da177e4SLinus Torvalds(p9)	adds tmp3=-8,tmp3	// effectively loaded
1671da177e4SLinus Torvalds	;;
1681da177e4SLinus Torvalds(p8)	mov lastval=r0		// we don't need lastval if first1==last
1691da177e4SLinus Torvalds	shl hmask=hmask,tmp2	// build head mask, mask off [0,first1off[
1701da177e4SLinus Torvalds	shr.u tmask=tmask,tmp1	// build tail mask, mask off ]8,lastoff]
1711da177e4SLinus Torvalds	;;
1721da177e4SLinus Torvalds	.body
1731da177e4SLinus Torvalds#define count tmp3
1741da177e4SLinus Torvalds
1751da177e4SLinus Torvalds(p8)	and hmask=hmask,tmask	// apply tail mask to head mask if 1 word only
1761da177e4SLinus Torvalds(p9)	and word2[0]=lastval,tmask	// mask last it as appropriate
1771da177e4SLinus Torvalds	shr.u count=count,3	// how many 8-byte?
1781da177e4SLinus Torvalds	;;
1791da177e4SLinus Torvalds	// If count is odd, finish this 8-byte word so that we can
1801da177e4SLinus Torvalds	// load two back-to-back 8-byte words per loop thereafter.
1811da177e4SLinus Torvalds	and word1[0]=firstval,hmask	// and mask it as appropriate
1821da177e4SLinus Torvalds	tbit.nz p10,p11=count,0		// if (count is odd)
1831da177e4SLinus Torvalds	;;
1841da177e4SLinus Torvalds(p8)	mov result1[0]=word1[0]
1851da177e4SLinus Torvalds(p9)	add result1[0]=word1[0],word2[0]
1861da177e4SLinus Torvalds	;;
1871da177e4SLinus Torvalds	cmp.ltu p6,p0=result1[0],word1[0]	// check the carry
1881da177e4SLinus Torvalds	cmp.eq.or.andcm p8,p0=0,count		// exit if zero 8-byte
1891da177e4SLinus Torvalds	;;
1901da177e4SLinus Torvalds(p6)	adds result1[0]=1,result1[0]
1911da177e4SLinus Torvalds(p8)	br.cond.dptk .do_csum_exit	// if (within an 8-byte word)
1921da177e4SLinus Torvalds(p11)	br.cond.dptk .do_csum16		// if (count is even)
1931da177e4SLinus Torvalds
1941da177e4SLinus Torvalds	// Here count is odd.
1951da177e4SLinus Torvalds	ld8 word1[1]=[first1],8		// load an 8-byte word
1961da177e4SLinus Torvalds	cmp.eq p9,p10=1,count		// if (count == 1)
1971da177e4SLinus Torvalds	adds count=-1,count		// loaded an 8-byte word
1981da177e4SLinus Torvalds	;;
1991da177e4SLinus Torvalds	add result1[0]=result1[0],word1[1]
2001da177e4SLinus Torvalds	;;
2011da177e4SLinus Torvalds	cmp.ltu p6,p0=result1[0],word1[1]
2021da177e4SLinus Torvalds	;;
2031da177e4SLinus Torvalds(p6)	adds result1[0]=1,result1[0]
2041da177e4SLinus Torvalds(p9)	br.cond.sptk .do_csum_exit	// if (count == 1) exit
20525985edcSLucas De Marchi	// Fall through to calculate the checksum, feeding result1[0] as
2061da177e4SLinus Torvalds	// the initial value in result1[0].
2071da177e4SLinus Torvalds	//
2081da177e4SLinus Torvalds	// Calculate the checksum loading two 8-byte words per loop.
2091da177e4SLinus Torvalds	//
2101da177e4SLinus Torvalds.do_csum16:
2111da177e4SLinus Torvalds	add first2=8,first1
2121da177e4SLinus Torvalds	shr.u count=count,1	// we do 16 bytes per loop
2131da177e4SLinus Torvalds	;;
2141da177e4SLinus Torvalds	adds count=-1,count
2151da177e4SLinus Torvalds	mov carry1=r0
2161da177e4SLinus Torvalds	mov carry2=r0
2171da177e4SLinus Torvalds	brp.loop.imp 1f,2f
2181da177e4SLinus Torvalds	;;
2191da177e4SLinus Torvalds	mov ar.ec=PIPE_DEPTH
2201da177e4SLinus Torvalds	mov ar.lc=count	// set lc
2211da177e4SLinus Torvalds	mov pr.rot=1<<16
2221da177e4SLinus Torvalds	// result1[0] must be initialized in advance.
2231da177e4SLinus Torvalds	mov result2[0]=r0
2241da177e4SLinus Torvalds	;;
2251da177e4SLinus Torvalds	.align 32
2261da177e4SLinus Torvalds1:
2271da177e4SLinus Torvalds(ELD_1)	cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
2281da177e4SLinus Torvalds(pC1[1])adds carry1=1,carry1
2291da177e4SLinus Torvalds(ELD_1)	cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
2301da177e4SLinus Torvalds(pC2[1])adds carry2=1,carry2
2311da177e4SLinus Torvalds(ELD)	add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
2321da177e4SLinus Torvalds(ELD)	add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
2331da177e4SLinus Torvalds2:
2341da177e4SLinus Torvalds(p[0])	ld8 word1[0]=[first1],16
2351da177e4SLinus Torvalds(p[0])	ld8 word2[0]=[first2],16
2361da177e4SLinus Torvalds	br.ctop.sptk 1b
2371da177e4SLinus Torvalds	;;
2381da177e4SLinus Torvalds	// Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
2391da177e4SLinus Torvalds(pC1[1])adds carry1=1,carry1	// since we miss the last one
2401da177e4SLinus Torvalds(pC2[1])adds carry2=1,carry2
2411da177e4SLinus Torvalds	;;
2421da177e4SLinus Torvalds	add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
2431da177e4SLinus Torvalds	add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
2441da177e4SLinus Torvalds	;;
2451da177e4SLinus Torvalds	cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
2461da177e4SLinus Torvalds	cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
2471da177e4SLinus Torvalds	;;
2481da177e4SLinus Torvalds(p6)	adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
2491da177e4SLinus Torvalds(p7)	adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
2501da177e4SLinus Torvalds	;;
2511da177e4SLinus Torvalds	add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
2521da177e4SLinus Torvalds	;;
2531da177e4SLinus Torvalds	cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
2541da177e4SLinus Torvalds	;;
2551da177e4SLinus Torvalds(p6)	adds result1[0]=1,result1[0]
2561da177e4SLinus Torvalds	;;
2571da177e4SLinus Torvalds.do_csum_exit:
2581da177e4SLinus Torvalds	//
2591da177e4SLinus Torvalds	// now fold 64 into 16 bits taking care of carry
2601da177e4SLinus Torvalds	// that's not very good because it has lots of sequentiality
2611da177e4SLinus Torvalds	//
2621da177e4SLinus Torvalds	mov tmp3=0xffff
2631da177e4SLinus Torvalds	zxt4 tmp1=result1[0]
2641da177e4SLinus Torvalds	shr.u tmp2=result1[0],32
2651da177e4SLinus Torvalds	;;
2661da177e4SLinus Torvalds	add result1[0]=tmp1,tmp2
2671da177e4SLinus Torvalds	;;
2681da177e4SLinus Torvalds	and tmp1=result1[0],tmp3
2691da177e4SLinus Torvalds	shr.u tmp2=result1[0],16
2701da177e4SLinus Torvalds	;;
2711da177e4SLinus Torvalds	add result1[0]=tmp1,tmp2
2721da177e4SLinus Torvalds	;;
2731da177e4SLinus Torvalds	and tmp1=result1[0],tmp3
2741da177e4SLinus Torvalds	shr.u tmp2=result1[0],16
2751da177e4SLinus Torvalds	;;
2761da177e4SLinus Torvalds	add result1[0]=tmp1,tmp2
2771da177e4SLinus Torvalds	;;
2781da177e4SLinus Torvalds	and tmp1=result1[0],tmp3
2791da177e4SLinus Torvalds	shr.u tmp2=result1[0],16
2801da177e4SLinus Torvalds	;;
2811da177e4SLinus Torvalds	add ret0=tmp1,tmp2
2821da177e4SLinus Torvalds	mov pr=saved_pr,0xffffffffffff0000
2831da177e4SLinus Torvalds	;;
2841da177e4SLinus Torvalds	// if buf was odd then swap bytes
2851da177e4SLinus Torvalds	mov ar.pfs=saved_pfs		// restore ar.ec
2861da177e4SLinus Torvalds(p15)	mux1 ret0=ret0,@rev		// reverse word
2871da177e4SLinus Torvalds	;;
2881da177e4SLinus Torvalds	mov ar.lc=saved_lc
2891da177e4SLinus Torvalds(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
2901da177e4SLinus Torvalds	br.ret.sptk.many rp
2911da177e4SLinus Torvalds
2921da177e4SLinus Torvalds//	I (Jun Nakajima) wrote an equivalent code (see below), but it was
2931da177e4SLinus Torvalds//	not much better than the original. So keep the original there so that
2941da177e4SLinus Torvalds//	someone else can challenge.
2951da177e4SLinus Torvalds//
2961da177e4SLinus Torvalds//	shr.u word1[0]=result1[0],32
2971da177e4SLinus Torvalds//	zxt4 result1[0]=result1[0]
2981da177e4SLinus Torvalds//	;;
2991da177e4SLinus Torvalds//	add result1[0]=result1[0],word1[0]
3001da177e4SLinus Torvalds//	;;
3011da177e4SLinus Torvalds//	zxt2 result2[0]=result1[0]
3021da177e4SLinus Torvalds//	extr.u word1[0]=result1[0],16,16
3031da177e4SLinus Torvalds//	shr.u carry1=result1[0],32
3041da177e4SLinus Torvalds//	;;
3051da177e4SLinus Torvalds//	add result2[0]=result2[0],word1[0]
3061da177e4SLinus Torvalds//	;;
3071da177e4SLinus Torvalds//	add result2[0]=result2[0],carry1
3081da177e4SLinus Torvalds//	;;
3091da177e4SLinus Torvalds//	extr.u ret0=result2[0],16,16
3101da177e4SLinus Torvalds//	;;
3111da177e4SLinus Torvalds//	add ret0=ret0,result2[0]
3121da177e4SLinus Torvalds//	;;
3131da177e4SLinus Torvalds//	zxt2 ret0=ret0
3141da177e4SLinus Torvalds//	mov ar.pfs=saved_pfs		 // restore ar.ec
3151da177e4SLinus Torvalds//	mov pr=saved_pr,0xffffffffffff0000
3161da177e4SLinus Torvalds//	;;
3171da177e4SLinus Torvalds//	// if buf was odd then swap bytes
3181da177e4SLinus Torvalds//	mov ar.lc=saved_lc
3191da177e4SLinus Torvalds//(p15)	mux1 ret0=ret0,@rev		// reverse word
3201da177e4SLinus Torvalds//	;;
3211da177e4SLinus Torvalds//(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
3221da177e4SLinus Torvalds//	br.ret.sptk.many rp
3231da177e4SLinus Torvalds
3241da177e4SLinus TorvaldsEND(do_csum)
325