xref: /openbmc/linux/arch/ia64/lib/copy_user.S (revision 498495dba268b20e8eadd7fe93c140c68b6cc9d2)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *
4 * Optimized version of the copy_user() routine.
5 * It is used to copy date across the kernel/user boundary.
6 *
7 * The source and destination are always on opposite side of
8 * the boundary. When reading from user space we must catch
9 * faults on loads. When writing to user space we must catch
10 * errors on stores. Note that because of the nature of the copy
11 * we don't need to worry about overlapping regions.
12 *
13 *
14 * Inputs:
15 *	in0	address of source buffer
16 *	in1	address of destination buffer
17 *	in2	number of bytes to copy
18 *
19 * Outputs:
20 *	ret0	0 in case of success. The number of bytes NOT copied in
21 *		case of error.
22 *
23 * Copyright (C) 2000-2001 Hewlett-Packard Co
24 *	Stephane Eranian <eranian@hpl.hp.com>
25 *
26 * Fixme:
27 *	- handle the case where we have more than 16 bytes and the alignment
28 *	  are different.
29 *	- more benchmarking
30 *	- fix extraneous stop bit introduced by the EX() macro.
31 */
32
33#include <asm/asmmacro.h>
34#include <asm/export.h>
35
36//
37// Tuneable parameters
38//
39#define COPY_BREAK	16	// we do byte copy below (must be >=16)
40#define PIPE_DEPTH	21	// pipe depth
41
42#define EPI		p[PIPE_DEPTH-1]
43
44//
45// arguments
46//
47#define dst		in0
48#define src		in1
49#define len		in2
50
51//
52// local registers
53//
54#define t1		r2	// rshift in bytes
55#define t2		r3	// lshift in bytes
56#define rshift		r14	// right shift in bits
57#define lshift		r15	// left shift in bits
58#define word1		r16
59#define word2		r17
60#define cnt		r18
61#define len2		r19
62#define saved_lc	r20
63#define saved_pr	r21
64#define tmp		r22
65#define val		r23
66#define src1		r24
67#define dst1		r25
68#define src2		r26
69#define dst2		r27
70#define len1		r28
71#define enddst		r29
72#define endsrc		r30
73#define saved_pfs	r31
74
75GLOBAL_ENTRY(__copy_user)
76	.prologue
77	.save ar.pfs, saved_pfs
78	alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7)
79
80	.rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH]
81	.rotp p[PIPE_DEPTH]
82
83	adds len2=-1,len	// br.ctop is repeat/until
84	mov ret0=r0
85
86	;;			// RAW of cfm when len=0
87	cmp.eq p8,p0=r0,len	// check for zero length
88	.save ar.lc, saved_lc
89	mov saved_lc=ar.lc	// preserve ar.lc (slow)
90(p8)	br.ret.spnt.many rp	// empty mempcy()
91	;;
92	add enddst=dst,len	// first byte after end of source
93	add endsrc=src,len	// first byte after end of destination
94	.save pr, saved_pr
95	mov saved_pr=pr		// preserve predicates
96
97	.body
98
99	mov dst1=dst		// copy because of rotation
100	mov ar.ec=PIPE_DEPTH
101	mov pr.rot=1<<16	// p16=true all others are false
102
103	mov src1=src		// copy because of rotation
104	mov ar.lc=len2		// initialize lc for small count
105	cmp.lt p10,p7=COPY_BREAK,len	// if len > COPY_BREAK then long copy
106
107	xor tmp=src,dst		// same alignment test prepare
108(p10)	br.cond.dptk .long_copy_user
109	;;			// RAW pr.rot/p16 ?
110	//
111	// Now we do the byte by byte loop with software pipeline
112	//
113	// p7 is necessarily false by now
1141:
115	EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
116	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
117	br.ctop.dptk.few 1b
118	;;
119	mov ar.lc=saved_lc
120	mov pr=saved_pr,0xffffffffffff0000
121	mov ar.pfs=saved_pfs		// restore ar.ec
122	br.ret.sptk.many rp		// end of short memcpy
123
124	//
125	// Not 8-byte aligned
126	//
127.diff_align_copy_user:
128	// At this point we know we have more than 16 bytes to copy
129	// and also that src and dest do _not_ have the same alignment.
130	and src2=0x7,src1				// src offset
131	and dst2=0x7,dst1				// dst offset
132	;;
133	// The basic idea is that we copy byte-by-byte at the head so
134	// that we can reach 8-byte alignment for both src1 and dst1.
135	// Then copy the body using software pipelined 8-byte copy,
136	// shifting the two back-to-back words right and left, then copy
137	// the tail by copying byte-by-byte.
138	//
139	// Fault handling. If the byte-by-byte at the head fails on the
140	// load, then restart and finish the pipleline by copying zeros
141	// to the dst1. Then copy zeros for the rest of dst1.
142	// If 8-byte software pipeline fails on the load, do the same as
143	// failure_in3 does. If the byte-by-byte at the tail fails, it is
144	// handled simply by failure_in_pipe1.
145	//
146	// The case p14 represents the source has more bytes in the
147	// the first word (by the shifted part), whereas the p15 needs to
148	// copy some bytes from the 2nd word of the source that has the
149	// tail of the 1st of the destination.
150	//
151
152	//
153	// Optimization. If dst1 is 8-byte aligned (quite common), we don't need
154	// to copy the head to dst1, to start 8-byte copy software pipeline.
155	// We know src1 is not 8-byte aligned in this case.
156	//
157	cmp.eq p14,p15=r0,dst2
158(p15)	br.cond.spnt 1f
159	;;
160	sub t1=8,src2
161	mov t2=src2
162	;;
163	shl rshift=t2,3
164	sub len1=len,t1					// set len1
165	;;
166	sub lshift=64,rshift
167	;;
168	br.cond.spnt .word_copy_user
169	;;
1701:
171	cmp.leu	p14,p15=src2,dst2
172	sub t1=dst2,src2
173	;;
174	.pred.rel "mutex", p14, p15
175(p14)	sub word1=8,src2				// (8 - src offset)
176(p15)	sub t1=r0,t1					// absolute value
177(p15)	sub word1=8,dst2				// (8 - dst offset)
178	;;
179	// For the case p14, we don't need to copy the shifted part to
180	// the 1st word of destination.
181	sub t2=8,t1
182(p14)	sub word1=word1,t1
183	;;
184	sub len1=len,word1				// resulting len
185(p15)	shl rshift=t1,3					// in bits
186(p14)	shl rshift=t2,3
187	;;
188(p14)	sub len1=len1,t1
189	adds cnt=-1,word1
190	;;
191	sub lshift=64,rshift
192	mov ar.ec=PIPE_DEPTH
193	mov pr.rot=1<<16	// p16=true all others are false
194	mov ar.lc=cnt
195	;;
1962:
197	EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1)
198	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
199	br.ctop.dptk.few 2b
200	;;
201	clrrrb
202	;;
203.word_copy_user:
204	cmp.gtu p9,p0=16,len1
205(p9)	br.cond.spnt 4f			// if (16 > len1) skip 8-byte copy
206	;;
207	shr.u cnt=len1,3		// number of 64-bit words
208	;;
209	adds cnt=-1,cnt
210	;;
211	.pred.rel "mutex", p14, p15
212(p14)	sub src1=src1,t2
213(p15)	sub src1=src1,t1
214	//
215	// Now both src1 and dst1 point to an 8-byte aligned address. And
216	// we have more than 8 bytes to copy.
217	//
218	mov ar.lc=cnt
219	mov ar.ec=PIPE_DEPTH
220	mov pr.rot=1<<16	// p16=true all others are false
221	;;
2223:
223	//
224	// The pipleline consists of 3 stages:
225	// 1 (p16):	Load a word from src1
226	// 2 (EPI_1):	Shift right pair, saving to tmp
227	// 3 (EPI):	Store tmp to dst1
228	//
229	// To make it simple, use at least 2 (p16) loops to set up val1[n]
230	// because we need 2 back-to-back val1[] to get tmp.
231	// Note that this implies EPI_2 must be p18 or greater.
232	//
233
234#define EPI_1		p[PIPE_DEPTH-2]
235#define SWITCH(pred, shift)	cmp.eq pred,p0=shift,rshift
236#define CASE(pred, shift)	\
237	(pred)	br.cond.spnt .copy_user_bit##shift
238#define BODY(rshift)						\
239.copy_user_bit##rshift:						\
2401:								\
241	EX(.failure_out,(EPI) st8 [dst1]=tmp,8);		\
242(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\
243	EX(3f,(p16) ld8 val1[1]=[src1],8);			\
244(p16)	mov val1[0]=r0;						\
245	br.ctop.dptk 1b;					\
246	;;							\
247	br.cond.sptk.many .diff_align_do_tail;			\
2482:								\
249(EPI)	st8 [dst1]=tmp,8;					\
250(EPI_1)	shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\
2513:								\
252(p16)	mov val1[1]=r0;						\
253(p16)	mov val1[0]=r0;						\
254	br.ctop.dptk 2b;					\
255	;;							\
256	br.cond.sptk.many .failure_in2
257
258	//
259	// Since the instruction 'shrp' requires a fixed 128-bit value
260	// specifying the bits to shift, we need to provide 7 cases
261	// below.
262	//
263	SWITCH(p6, 8)
264	SWITCH(p7, 16)
265	SWITCH(p8, 24)
266	SWITCH(p9, 32)
267	SWITCH(p10, 40)
268	SWITCH(p11, 48)
269	SWITCH(p12, 56)
270	;;
271	CASE(p6, 8)
272	CASE(p7, 16)
273	CASE(p8, 24)
274	CASE(p9, 32)
275	CASE(p10, 40)
276	CASE(p11, 48)
277	CASE(p12, 56)
278	;;
279	BODY(8)
280	BODY(16)
281	BODY(24)
282	BODY(32)
283	BODY(40)
284	BODY(48)
285	BODY(56)
286	;;
287.diff_align_do_tail:
288	.pred.rel "mutex", p14, p15
289(p14)	sub src1=src1,t1
290(p14)	adds dst1=-8,dst1
291(p15)	sub dst1=dst1,t1
292	;;
2934:
294	// Tail correction.
295	//
296	// The problem with this piplelined loop is that the last word is not
297	// loaded and thus parf of the last word written is not correct.
298	// To fix that, we simply copy the tail byte by byte.
299
300	sub len1=endsrc,src1,1
301	clrrrb
302	;;
303	mov ar.ec=PIPE_DEPTH
304	mov pr.rot=1<<16	// p16=true all others are false
305	mov ar.lc=len1
306	;;
3075:
308	EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
309	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
310	br.ctop.dptk.few 5b
311	;;
312	mov ar.lc=saved_lc
313	mov pr=saved_pr,0xffffffffffff0000
314	mov ar.pfs=saved_pfs
315	br.ret.sptk.many rp
316
317	//
318	// Beginning of long mempcy (i.e. > 16 bytes)
319	//
320.long_copy_user:
321	tbit.nz p6,p7=src1,0	// odd alignment
322	and tmp=7,tmp
323	;;
324	cmp.eq p10,p8=r0,tmp
325	mov len1=len		// copy because of rotation
326(p8)	br.cond.dpnt .diff_align_copy_user
327	;;
328	// At this point we know we have more than 16 bytes to copy
329	// and also that both src and dest have the same alignment
330	// which may not be the one we want. So for now we must move
331	// forward slowly until we reach 16byte alignment: no need to
332	// worry about reaching the end of buffer.
333	//
334	EX(.failure_in1,(p6) ld1 val1[0]=[src1],1)	// 1-byte aligned
335(p6)	adds len1=-1,len1;;
336	tbit.nz p7,p0=src1,1
337	;;
338	EX(.failure_in1,(p7) ld2 val1[1]=[src1],2)	// 2-byte aligned
339(p7)	adds len1=-2,len1;;
340	tbit.nz p8,p0=src1,2
341	;;
342	//
343	// Stop bit not required after ld4 because if we fail on ld4
344	// we have never executed the ld1, therefore st1 is not executed.
345	//
346	EX(.failure_in1,(p8) ld4 val2[0]=[src1],4)	// 4-byte aligned
347	;;
348	EX(.failure_out,(p6) st1 [dst1]=val1[0],1)
349	tbit.nz p9,p0=src1,3
350	;;
351	//
352	// Stop bit not required after ld8 because if we fail on ld8
353	// we have never executed the ld2, therefore st2 is not executed.
354	//
355	EX(.failure_in1,(p9) ld8 val2[1]=[src1],8)	// 8-byte aligned
356	EX(.failure_out,(p7) st2 [dst1]=val1[1],2)
357(p8)	adds len1=-4,len1
358	;;
359	EX(.failure_out, (p8) st4 [dst1]=val2[0],4)
360(p9)	adds len1=-8,len1;;
361	shr.u cnt=len1,4		// number of 128-bit (2x64bit) words
362	;;
363	EX(.failure_out, (p9) st8 [dst1]=val2[1],8)
364	tbit.nz p6,p0=len1,3
365	cmp.eq p7,p0=r0,cnt
366	adds tmp=-1,cnt			// br.ctop is repeat/until
367(p7)	br.cond.dpnt .dotail		// we have less than 16 bytes left
368	;;
369	adds src2=8,src1
370	adds dst2=8,dst1
371	mov ar.lc=tmp
372	;;
373	//
374	// 16bytes/iteration
375	//
3762:
377	EX(.failure_in3,(p16) ld8 val1[0]=[src1],16)
378(p16)	ld8 val2[0]=[src2],16
379
380	EX(.failure_out, (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16)
381(EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16
382	br.ctop.dptk 2b
383	;;			// RAW on src1 when fall through from loop
384	//
385	// Tail correction based on len only
386	//
387	// No matter where we come from (loop or test) the src1 pointer
388	// is 16 byte aligned AND we have less than 16 bytes to copy.
389	//
390.dotail:
391	EX(.failure_in1,(p6) ld8 val1[0]=[src1],8)	// at least 8 bytes
392	tbit.nz p7,p0=len1,2
393	;;
394	EX(.failure_in1,(p7) ld4 val1[1]=[src1],4)	// at least 4 bytes
395	tbit.nz p8,p0=len1,1
396	;;
397	EX(.failure_in1,(p8) ld2 val2[0]=[src1],2)	// at least 2 bytes
398	tbit.nz p9,p0=len1,0
399	;;
400	EX(.failure_out, (p6) st8 [dst1]=val1[0],8)
401	;;
402	EX(.failure_in1,(p9) ld1 val2[1]=[src1])	// only 1 byte left
403	mov ar.lc=saved_lc
404	;;
405	EX(.failure_out,(p7) st4 [dst1]=val1[1],4)
406	mov pr=saved_pr,0xffffffffffff0000
407	;;
408	EX(.failure_out, (p8)	st2 [dst1]=val2[0],2)
409	mov ar.pfs=saved_pfs
410	;;
411	EX(.failure_out, (p9)	st1 [dst1]=val2[1])
412	br.ret.sptk.many rp
413
414
415	//
416	// Here we handle the case where the byte by byte copy fails
417	// on the load.
418	// Several factors make the zeroing of the rest of the buffer kind of
419	// tricky:
420	//	- the pipeline: loads/stores are not in sync (pipeline)
421	//
422	//	  In the same loop iteration, the dst1 pointer does not directly
423	//	  reflect where the faulty load was.
424	//
425	//	- pipeline effect
426	//	  When you get a fault on load, you may have valid data from
427	//	  previous loads not yet store in transit. Such data must be
428	//	  store normally before moving onto zeroing the rest.
429	//
430	//	- single/multi dispersal independence.
431	//
432	// solution:
433	//	- we don't disrupt the pipeline, i.e. data in transit in
434	//	  the software pipeline will be eventually move to memory.
435	//	  We simply replace the load with a simple mov and keep the
436	//	  pipeline going. We can't really do this inline because
437	//	  p16 is always reset to 1 when lc > 0.
438	//
439.failure_in_pipe1:
440	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
4411:
442(p16)	mov val1[0]=r0
443(EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1
444	br.ctop.dptk 1b
445	;;
446	mov pr=saved_pr,0xffffffffffff0000
447	mov ar.lc=saved_lc
448	mov ar.pfs=saved_pfs
449	br.ret.sptk.many rp
450
451	//
452	// This is the case where the byte by byte copy fails on the load
453	// when we copy the head. We need to finish the pipeline and copy
454	// zeros for the rest of the destination. Since this happens
455	// at the top we still need to fill the body and tail.
456.failure_in_pipe2:
457	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
4582:
459(p16)	mov val1[0]=r0
460(EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1
461	br.ctop.dptk 2b
462	;;
463	sub len=enddst,dst1,1		// precompute len
464	br.cond.dptk.many .failure_in1bis
465	;;
466
467	//
468	// Here we handle the head & tail part when we check for alignment.
469	// The following code handles only the load failures. The
470	// main diffculty comes from the fact that loads/stores are
471	// scheduled. So when you fail on a load, the stores corresponding
472	// to previous successful loads must be executed.
473	//
474	// However some simplifications are possible given the way
475	// things work.
476	//
477	// 1) HEAD
478	// Theory of operation:
479	//
480	//  Page A   | Page B
481	//  ---------|-----
482	//          1|8 x
483	//	  1 2|8 x
484	//	    4|8 x
485	//	  1 4|8 x
486	//        2 4|8 x
487	//      1 2 4|8 x
488	//	     |1
489	//	     |2 x
490	//	     |4 x
491	//
492	// page_size >= 4k (2^12).  (x means 4, 2, 1)
493	// Here we suppose Page A exists and Page B does not.
494	//
495	// As we move towards eight byte alignment we may encounter faults.
496	// The numbers on each page show the size of the load (current alignment).
497	//
498	// Key point:
499	//	- if you fail on 1, 2, 4 then you have never executed any smaller
500	//	  size loads, e.g. failing ld4 means no ld1 nor ld2 executed
501	//	  before.
502	//
503	// This allows us to simplify the cleanup code, because basically you
504	// only have to worry about "pending" stores in the case of a failing
505	// ld8(). Given the way the code is written today, this means only
506	// worry about st2, st4. There we can use the information encapsulated
507	// into the predicates.
508	//
509	// Other key point:
510	//	- if you fail on the ld8 in the head, it means you went straight
511	//	  to it, i.e. 8byte alignment within an unexisting page.
512	// Again this comes from the fact that if you crossed just for the ld8 then
513	// you are 8byte aligned but also 16byte align, therefore you would
514	// either go for the 16byte copy loop OR the ld8 in the tail part.
515	// The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible
516	// because it would mean you had 15bytes to copy in which case you
517	// would have defaulted to the byte by byte copy.
518	//
519	//
520	// 2) TAIL
521	// Here we now we have less than 16 bytes AND we are either 8 or 16 byte
522	// aligned.
523	//
524	// Key point:
525	// This means that we either:
526	//		- are right on a page boundary
527	//	OR
528	//		- are at more than 16 bytes from a page boundary with
529	//		  at most 15 bytes to copy: no chance of crossing.
530	//
531	// This allows us to assume that if we fail on a load we haven't possibly
532	// executed any of the previous (tail) ones, so we don't need to do
533	// any stores. For instance, if we fail on ld2, this means we had
534	// 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4.
535	//
536	// This means that we are in a situation similar the a fault in the
537	// head part. That's nice!
538	//
539.failure_in1:
540	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
541	sub len=endsrc,src1,1
542	//
543	// we know that ret0 can never be zero at this point
544	// because we failed why trying to do a load, i.e. there is still
545	// some work to do.
546	// The failure_in1bis and length problem is taken care of at the
547	// calling side.
548	//
549	;;
550.failure_in1bis:		// from (.failure_in3)
551	mov ar.lc=len		// Continue with a stupid byte store.
552	;;
5535:
554	st1 [dst1]=r0,1
555	br.cloop.dptk 5b
556	;;
557	mov pr=saved_pr,0xffffffffffff0000
558	mov ar.lc=saved_lc
559	mov ar.pfs=saved_pfs
560	br.ret.sptk.many rp
561
562	//
563	// Here we simply restart the loop but instead
564	// of doing loads we fill the pipeline with zeroes
565	// We can't simply store r0 because we may have valid
566	// data in transit in the pipeline.
567	// ar.lc and ar.ec are setup correctly at this point
568	//
569	// we MUST use src1/endsrc here and not dst1/enddst because
570	// of the pipeline effect.
571	//
572.failure_in3:
573	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied
574	;;
5752:
576(p16)	mov val1[0]=r0
577(p16)	mov val2[0]=r0
578(EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16
579(EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16
580	br.ctop.dptk 2b
581	;;
582	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ?
583	sub len=enddst,dst1,1		// precompute len
584(p6)	br.cond.dptk .failure_in1bis
585	;;
586	mov pr=saved_pr,0xffffffffffff0000
587	mov ar.lc=saved_lc
588	mov ar.pfs=saved_pfs
589	br.ret.sptk.many rp
590
591.failure_in2:
592	sub ret0=endsrc,src1
593	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ?
594	sub len=enddst,dst1,1		// precompute len
595(p6)	br.cond.dptk .failure_in1bis
596	;;
597	mov pr=saved_pr,0xffffffffffff0000
598	mov ar.lc=saved_lc
599	mov ar.pfs=saved_pfs
600	br.ret.sptk.many rp
601
602	//
603	// handling of failures on stores: that's the easy part
604	//
605.failure_out:
606	sub ret0=enddst,dst1
607	mov pr=saved_pr,0xffffffffffff0000
608	mov ar.lc=saved_lc
609
610	mov ar.pfs=saved_pfs
611	br.ret.sptk.many rp
612END(__copy_user)
613EXPORT_SYMBOL(__copy_user)
614