xref: /openbmc/linux/arch/ia64/kernel/topology.c (revision bd3ff1943509e641a34f2d8dd1d41ed12a4476c1)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *  	Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *	Populate cpu cache entries in sysfs for cpu cache info
14  */
15 
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <asm/mmzone.h>
27 #include <asm/numa.h>
28 #include <asm/cpu.h>
29 
30 static struct ia64_cpu *sysfs_cpus;
31 
32 void arch_fix_phys_package_id(int num, u32 slot)
33 {
34 #ifdef CONFIG_SMP
35 	if (cpu_data(num)->socket_id == -1)
36 		cpu_data(num)->socket_id = slot;
37 #endif
38 }
39 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
40 
41 
42 #ifdef CONFIG_HOTPLUG_CPU
43 int __ref arch_register_cpu(int num)
44 {
45 #ifdef CONFIG_ACPI
46 	/*
47 	 * If CPEI can be re-targeted or if this is not
48 	 * CPEI target, then it is hotpluggable
49 	 */
50 	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
51 		sysfs_cpus[num].cpu.hotpluggable = 1;
52 	map_cpu_to_node(num, node_cpuid[num].nid);
53 #endif
54 	return register_cpu(&sysfs_cpus[num].cpu, num);
55 }
56 EXPORT_SYMBOL(arch_register_cpu);
57 
58 void __ref arch_unregister_cpu(int num)
59 {
60 	unregister_cpu(&sysfs_cpus[num].cpu);
61 #ifdef CONFIG_ACPI
62 	unmap_cpu_from_node(num, cpu_to_node(num));
63 #endif
64 }
65 EXPORT_SYMBOL(arch_unregister_cpu);
66 #else
67 static int __init arch_register_cpu(int num)
68 {
69 	return register_cpu(&sysfs_cpus[num].cpu, num);
70 }
71 #endif /*CONFIG_HOTPLUG_CPU*/
72 
73 
74 static int __init topology_init(void)
75 {
76 	int i, err = 0;
77 
78 #ifdef CONFIG_NUMA
79 	/*
80 	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
81 	 */
82 	for_each_online_node(i) {
83 		if ((err = register_one_node(i)))
84 			goto out;
85 	}
86 #endif
87 
88 	sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
89 	if (!sysfs_cpus)
90 		panic("kzalloc in topology_init failed - NR_CPUS too big?");
91 
92 	for_each_present_cpu(i) {
93 		if((err = arch_register_cpu(i)))
94 			goto out;
95 	}
96 out:
97 	return err;
98 }
99 
100 subsys_initcall(topology_init);
101 
102 
103 /*
104  * Export cpu cache information through sysfs
105  */
106 
107 /*
108  *  A bunch of string array to get pretty printing
109  */
110 static const char *cache_types[] = {
111 	"",			/* not used */
112 	"Instruction",
113 	"Data",
114 	"Unified"	/* unified */
115 };
116 
117 static const char *cache_mattrib[]={
118 	"WriteThrough",
119 	"WriteBack",
120 	"",		/* reserved */
121 	""		/* reserved */
122 };
123 
124 struct cache_info {
125 	pal_cache_config_info_t	cci;
126 	cpumask_t shared_cpu_map;
127 	int level;
128 	int type;
129 	struct kobject kobj;
130 };
131 
132 struct cpu_cache_info {
133 	struct cache_info *cache_leaves;
134 	int	num_cache_leaves;
135 	struct kobject kobj;
136 };
137 
138 static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS] __cpuinitdata;
139 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
140 
141 #ifdef CONFIG_SMP
142 static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
143 		struct cache_info * this_leaf)
144 {
145 	pal_cache_shared_info_t	csi;
146 	int num_shared, i = 0;
147 	unsigned int j;
148 
149 	if (cpu_data(cpu)->threads_per_core <= 1 &&
150 		cpu_data(cpu)->cores_per_socket <= 1) {
151 		cpu_set(cpu, this_leaf->shared_cpu_map);
152 		return;
153 	}
154 
155 	if (ia64_pal_cache_shared_info(this_leaf->level,
156 					this_leaf->type,
157 					0,
158 					&csi) != PAL_STATUS_SUCCESS)
159 		return;
160 
161 	num_shared = (int) csi.num_shared;
162 	do {
163 		for_each_possible_cpu(j)
164 			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
165 				&& cpu_data(j)->core_id == csi.log1_cid
166 				&& cpu_data(j)->thread_id == csi.log1_tid)
167 				cpu_set(j, this_leaf->shared_cpu_map);
168 
169 		i++;
170 	} while (i < num_shared &&
171 		ia64_pal_cache_shared_info(this_leaf->level,
172 				this_leaf->type,
173 				i,
174 				&csi) == PAL_STATUS_SUCCESS);
175 }
176 #else
177 static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
178 		struct cache_info * this_leaf)
179 {
180 	cpu_set(cpu, this_leaf->shared_cpu_map);
181 	return;
182 }
183 #endif
184 
185 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
186 					char *buf)
187 {
188 	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
189 }
190 
191 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
192 					char *buf)
193 {
194 	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
195 }
196 
197 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
198 {
199 	return sprintf(buf,
200 			"%s\n",
201 			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
202 }
203 
204 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
205 {
206 	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
207 }
208 
209 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
210 {
211 	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
212 	number_of_sets /= this_leaf->cci.pcci_assoc;
213 	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
214 
215 	return sprintf(buf, "%u\n", number_of_sets);
216 }
217 
218 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
219 {
220 	ssize_t	len;
221 	cpumask_t shared_cpu_map;
222 
223 	cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
224 	len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
225 	len += sprintf(buf+len, "\n");
226 	return len;
227 }
228 
229 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
230 {
231 	int type = this_leaf->type + this_leaf->cci.pcci_unified;
232 	return sprintf(buf, "%s\n", cache_types[type]);
233 }
234 
235 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
236 {
237 	return sprintf(buf, "%u\n", this_leaf->level);
238 }
239 
240 struct cache_attr {
241 	struct attribute attr;
242 	ssize_t (*show)(struct cache_info *, char *);
243 	ssize_t (*store)(struct cache_info *, const char *, size_t count);
244 };
245 
246 #ifdef define_one_ro
247 	#undef define_one_ro
248 #endif
249 #define define_one_ro(_name) \
250 	static struct cache_attr _name = \
251 __ATTR(_name, 0444, show_##_name, NULL)
252 
253 define_one_ro(level);
254 define_one_ro(type);
255 define_one_ro(coherency_line_size);
256 define_one_ro(ways_of_associativity);
257 define_one_ro(size);
258 define_one_ro(number_of_sets);
259 define_one_ro(shared_cpu_map);
260 define_one_ro(attributes);
261 
262 static struct attribute * cache_default_attrs[] = {
263 	&type.attr,
264 	&level.attr,
265 	&coherency_line_size.attr,
266 	&ways_of_associativity.attr,
267 	&attributes.attr,
268 	&size.attr,
269 	&number_of_sets.attr,
270 	&shared_cpu_map.attr,
271 	NULL
272 };
273 
274 #define to_object(k) container_of(k, struct cache_info, kobj)
275 #define to_attr(a) container_of(a, struct cache_attr, attr)
276 
277 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
278 {
279 	struct cache_attr *fattr = to_attr(attr);
280 	struct cache_info *this_leaf = to_object(kobj);
281 	ssize_t ret;
282 
283 	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
284 	return ret;
285 }
286 
287 static const struct sysfs_ops cache_sysfs_ops = {
288 	.show   = cache_show
289 };
290 
291 static struct kobj_type cache_ktype = {
292 	.sysfs_ops	= &cache_sysfs_ops,
293 	.default_attrs	= cache_default_attrs,
294 };
295 
296 static struct kobj_type cache_ktype_percpu_entry = {
297 	.sysfs_ops	= &cache_sysfs_ops,
298 };
299 
300 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
301 {
302 	kfree(all_cpu_cache_info[cpu].cache_leaves);
303 	all_cpu_cache_info[cpu].cache_leaves = NULL;
304 	all_cpu_cache_info[cpu].num_cache_leaves = 0;
305 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
306 	return;
307 }
308 
309 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
310 {
311 	unsigned long i, levels, unique_caches;
312 	pal_cache_config_info_t cci;
313 	int j;
314 	long status;
315 	struct cache_info *this_cache;
316 	int num_cache_leaves = 0;
317 
318 	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
319 		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
320 		return -1;
321 	}
322 
323 	this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
324 			GFP_KERNEL);
325 	if (this_cache == NULL)
326 		return -ENOMEM;
327 
328 	for (i=0; i < levels; i++) {
329 		for (j=2; j >0 ; j--) {
330 			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
331 					PAL_STATUS_SUCCESS)
332 				continue;
333 
334 			this_cache[num_cache_leaves].cci = cci;
335 			this_cache[num_cache_leaves].level = i + 1;
336 			this_cache[num_cache_leaves].type = j;
337 
338 			cache_shared_cpu_map_setup(cpu,
339 					&this_cache[num_cache_leaves]);
340 			num_cache_leaves ++;
341 		}
342 	}
343 
344 	all_cpu_cache_info[cpu].cache_leaves = this_cache;
345 	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
346 
347 	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
348 
349 	return 0;
350 }
351 
352 /* Add cache interface for CPU device */
353 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
354 {
355 	unsigned int cpu = sys_dev->id;
356 	unsigned long i, j;
357 	struct cache_info *this_object;
358 	int retval = 0;
359 	cpumask_t oldmask;
360 
361 	if (all_cpu_cache_info[cpu].kobj.parent)
362 		return 0;
363 
364 	oldmask = current->cpus_allowed;
365 	retval = set_cpus_allowed_ptr(current, cpumask_of(cpu));
366 	if (unlikely(retval))
367 		return retval;
368 
369 	retval = cpu_cache_sysfs_init(cpu);
370 	set_cpus_allowed_ptr(current, &oldmask);
371 	if (unlikely(retval < 0))
372 		return retval;
373 
374 	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
375 				      &cache_ktype_percpu_entry, &sys_dev->kobj,
376 				      "%s", "cache");
377 	if (unlikely(retval < 0)) {
378 		cpu_cache_sysfs_exit(cpu);
379 		return retval;
380 	}
381 
382 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
383 		this_object = LEAF_KOBJECT_PTR(cpu,i);
384 		retval = kobject_init_and_add(&(this_object->kobj),
385 					      &cache_ktype,
386 					      &all_cpu_cache_info[cpu].kobj,
387 					      "index%1lu", i);
388 		if (unlikely(retval)) {
389 			for (j = 0; j < i; j++) {
390 				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
391 			}
392 			kobject_put(&all_cpu_cache_info[cpu].kobj);
393 			cpu_cache_sysfs_exit(cpu);
394 			return retval;
395 		}
396 		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
397 	}
398 	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
399 	return retval;
400 }
401 
402 /* Remove cache interface for CPU device */
403 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
404 {
405 	unsigned int cpu = sys_dev->id;
406 	unsigned long i;
407 
408 	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
409 		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
410 
411 	if (all_cpu_cache_info[cpu].kobj.parent) {
412 		kobject_put(&all_cpu_cache_info[cpu].kobj);
413 		memset(&all_cpu_cache_info[cpu].kobj,
414 			0,
415 			sizeof(struct kobject));
416 	}
417 
418 	cpu_cache_sysfs_exit(cpu);
419 
420 	return 0;
421 }
422 
423 /*
424  * When a cpu is hot-plugged, do a check and initiate
425  * cache kobject if necessary
426  */
427 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
428 		unsigned long action, void *hcpu)
429 {
430 	unsigned int cpu = (unsigned long)hcpu;
431 	struct sys_device *sys_dev;
432 
433 	sys_dev = get_cpu_sysdev(cpu);
434 	switch (action) {
435 	case CPU_ONLINE:
436 	case CPU_ONLINE_FROZEN:
437 		cache_add_dev(sys_dev);
438 		break;
439 	case CPU_DEAD:
440 	case CPU_DEAD_FROZEN:
441 		cache_remove_dev(sys_dev);
442 		break;
443 	}
444 	return NOTIFY_OK;
445 }
446 
447 static struct notifier_block __cpuinitdata cache_cpu_notifier =
448 {
449 	.notifier_call = cache_cpu_callback
450 };
451 
452 static int __init cache_sysfs_init(void)
453 {
454 	int i;
455 
456 	for_each_online_cpu(i) {
457 		struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
458 		cache_add_dev(sys_dev);
459 	}
460 
461 	register_hotcpu_notifier(&cache_cpu_notifier);
462 
463 	return 0;
464 }
465 
466 device_initcall(cache_sysfs_init);
467 
468