1 /* 2 * Architecture-specific setup. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 7 * 8 * 2005-10-07 Keith Owens <kaos@sgi.com> 9 * Add notify_die() hooks. 10 */ 11 #include <linux/cpu.h> 12 #include <linux/pm.h> 13 #include <linux/elf.h> 14 #include <linux/errno.h> 15 #include <linux/kallsyms.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/notifier.h> 20 #include <linux/personality.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 #include <linux/stddef.h> 24 #include <linux/thread_info.h> 25 #include <linux/unistd.h> 26 #include <linux/efi.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/kdebug.h> 30 31 #include <asm/cpu.h> 32 #include <asm/delay.h> 33 #include <asm/elf.h> 34 #include <asm/ia32.h> 35 #include <asm/irq.h> 36 #include <asm/kexec.h> 37 #include <asm/pgalloc.h> 38 #include <asm/processor.h> 39 #include <asm/sal.h> 40 #include <asm/tlbflush.h> 41 #include <asm/uaccess.h> 42 #include <asm/unwind.h> 43 #include <asm/user.h> 44 45 #include "entry.h" 46 47 #ifdef CONFIG_PERFMON 48 # include <asm/perfmon.h> 49 #endif 50 51 #include "sigframe.h" 52 53 void (*ia64_mark_idle)(int); 54 static DEFINE_PER_CPU(unsigned int, cpu_idle_state); 55 56 unsigned long boot_option_idle_override = 0; 57 EXPORT_SYMBOL(boot_option_idle_override); 58 59 void 60 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 61 { 62 unsigned long ip, sp, bsp; 63 char buf[128]; /* don't make it so big that it overflows the stack! */ 64 65 printk("\nCall Trace:\n"); 66 do { 67 unw_get_ip(info, &ip); 68 if (ip == 0) 69 break; 70 71 unw_get_sp(info, &sp); 72 unw_get_bsp(info, &bsp); 73 snprintf(buf, sizeof(buf), 74 " [<%016lx>] %%s\n" 75 " sp=%016lx bsp=%016lx\n", 76 ip, sp, bsp); 77 print_symbol(buf, ip); 78 } while (unw_unwind(info) >= 0); 79 } 80 81 void 82 show_stack (struct task_struct *task, unsigned long *sp) 83 { 84 if (!task) 85 unw_init_running(ia64_do_show_stack, NULL); 86 else { 87 struct unw_frame_info info; 88 89 unw_init_from_blocked_task(&info, task); 90 ia64_do_show_stack(&info, NULL); 91 } 92 } 93 94 void 95 dump_stack (void) 96 { 97 show_stack(NULL, NULL); 98 } 99 100 EXPORT_SYMBOL(dump_stack); 101 102 void 103 show_regs (struct pt_regs *regs) 104 { 105 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 106 107 print_modules(); 108 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm); 109 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n", 110 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted()); 111 print_symbol("ip is at %s\n", ip); 112 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 113 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 114 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 115 regs->ar_rnat, regs->ar_bspstore, regs->pr); 116 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 117 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 118 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 119 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 120 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 121 regs->f6.u.bits[1], regs->f6.u.bits[0], 122 regs->f7.u.bits[1], regs->f7.u.bits[0]); 123 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 124 regs->f8.u.bits[1], regs->f8.u.bits[0], 125 regs->f9.u.bits[1], regs->f9.u.bits[0]); 126 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 127 regs->f10.u.bits[1], regs->f10.u.bits[0], 128 regs->f11.u.bits[1], regs->f11.u.bits[0]); 129 130 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 131 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 132 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 133 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 134 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 135 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 136 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 137 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 138 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 139 140 if (user_mode(regs)) { 141 /* print the stacked registers */ 142 unsigned long val, *bsp, ndirty; 143 int i, sof, is_nat = 0; 144 145 sof = regs->cr_ifs & 0x7f; /* size of frame */ 146 ndirty = (regs->loadrs >> 19); 147 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 148 for (i = 0; i < sof; ++i) { 149 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 150 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 151 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 152 } 153 } else 154 show_stack(NULL, NULL); 155 } 156 157 void 158 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall) 159 { 160 if (fsys_mode(current, &scr->pt)) { 161 /* defer signal-handling etc. until we return to privilege-level 0. */ 162 if (!ia64_psr(&scr->pt)->lp) 163 ia64_psr(&scr->pt)->lp = 1; 164 return; 165 } 166 167 #ifdef CONFIG_PERFMON 168 if (current->thread.pfm_needs_checking) 169 pfm_handle_work(); 170 #endif 171 172 /* deal with pending signal delivery */ 173 if (test_thread_flag(TIF_SIGPENDING)) 174 ia64_do_signal(oldset, scr, in_syscall); 175 } 176 177 static int pal_halt = 1; 178 static int can_do_pal_halt = 1; 179 180 static int __init nohalt_setup(char * str) 181 { 182 pal_halt = can_do_pal_halt = 0; 183 return 1; 184 } 185 __setup("nohalt", nohalt_setup); 186 187 void 188 update_pal_halt_status(int status) 189 { 190 can_do_pal_halt = pal_halt && status; 191 } 192 193 /* 194 * We use this if we don't have any better idle routine.. 195 */ 196 void 197 default_idle (void) 198 { 199 local_irq_enable(); 200 while (!need_resched()) { 201 if (can_do_pal_halt) 202 safe_halt(); 203 else 204 cpu_relax(); 205 } 206 } 207 208 #ifdef CONFIG_HOTPLUG_CPU 209 /* We don't actually take CPU down, just spin without interrupts. */ 210 static inline void play_dead(void) 211 { 212 extern void ia64_cpu_local_tick (void); 213 unsigned int this_cpu = smp_processor_id(); 214 215 /* Ack it */ 216 __get_cpu_var(cpu_state) = CPU_DEAD; 217 218 max_xtp(); 219 local_irq_disable(); 220 idle_task_exit(); 221 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 222 /* 223 * The above is a point of no-return, the processor is 224 * expected to be in SAL loop now. 225 */ 226 BUG(); 227 } 228 #else 229 static inline void play_dead(void) 230 { 231 BUG(); 232 } 233 #endif /* CONFIG_HOTPLUG_CPU */ 234 235 void cpu_idle_wait(void) 236 { 237 unsigned int cpu, this_cpu = get_cpu(); 238 cpumask_t map; 239 240 set_cpus_allowed(current, cpumask_of_cpu(this_cpu)); 241 put_cpu(); 242 243 cpus_clear(map); 244 for_each_online_cpu(cpu) { 245 per_cpu(cpu_idle_state, cpu) = 1; 246 cpu_set(cpu, map); 247 } 248 249 __get_cpu_var(cpu_idle_state) = 0; 250 251 wmb(); 252 do { 253 ssleep(1); 254 for_each_online_cpu(cpu) { 255 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu)) 256 cpu_clear(cpu, map); 257 } 258 cpus_and(map, map, cpu_online_map); 259 } while (!cpus_empty(map)); 260 } 261 EXPORT_SYMBOL_GPL(cpu_idle_wait); 262 263 void __attribute__((noreturn)) 264 cpu_idle (void) 265 { 266 void (*mark_idle)(int) = ia64_mark_idle; 267 int cpu = smp_processor_id(); 268 269 /* endless idle loop with no priority at all */ 270 while (1) { 271 if (can_do_pal_halt) { 272 current_thread_info()->status &= ~TS_POLLING; 273 /* 274 * TS_POLLING-cleared state must be visible before we 275 * test NEED_RESCHED: 276 */ 277 smp_mb(); 278 } else { 279 current_thread_info()->status |= TS_POLLING; 280 } 281 282 if (!need_resched()) { 283 void (*idle)(void); 284 #ifdef CONFIG_SMP 285 min_xtp(); 286 #endif 287 if (__get_cpu_var(cpu_idle_state)) 288 __get_cpu_var(cpu_idle_state) = 0; 289 290 rmb(); 291 if (mark_idle) 292 (*mark_idle)(1); 293 294 idle = pm_idle; 295 if (!idle) 296 idle = default_idle; 297 (*idle)(); 298 if (mark_idle) 299 (*mark_idle)(0); 300 #ifdef CONFIG_SMP 301 normal_xtp(); 302 #endif 303 } 304 preempt_enable_no_resched(); 305 schedule(); 306 preempt_disable(); 307 check_pgt_cache(); 308 if (cpu_is_offline(cpu)) 309 play_dead(); 310 } 311 } 312 313 void 314 ia64_save_extra (struct task_struct *task) 315 { 316 #ifdef CONFIG_PERFMON 317 unsigned long info; 318 #endif 319 320 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 321 ia64_save_debug_regs(&task->thread.dbr[0]); 322 323 #ifdef CONFIG_PERFMON 324 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 325 pfm_save_regs(task); 326 327 info = __get_cpu_var(pfm_syst_info); 328 if (info & PFM_CPUINFO_SYST_WIDE) 329 pfm_syst_wide_update_task(task, info, 0); 330 #endif 331 332 #ifdef CONFIG_IA32_SUPPORT 333 if (IS_IA32_PROCESS(task_pt_regs(task))) 334 ia32_save_state(task); 335 #endif 336 } 337 338 void 339 ia64_load_extra (struct task_struct *task) 340 { 341 #ifdef CONFIG_PERFMON 342 unsigned long info; 343 #endif 344 345 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 346 ia64_load_debug_regs(&task->thread.dbr[0]); 347 348 #ifdef CONFIG_PERFMON 349 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 350 pfm_load_regs(task); 351 352 info = __get_cpu_var(pfm_syst_info); 353 if (info & PFM_CPUINFO_SYST_WIDE) 354 pfm_syst_wide_update_task(task, info, 1); 355 #endif 356 357 #ifdef CONFIG_IA32_SUPPORT 358 if (IS_IA32_PROCESS(task_pt_regs(task))) 359 ia32_load_state(task); 360 #endif 361 } 362 363 /* 364 * Copy the state of an ia-64 thread. 365 * 366 * We get here through the following call chain: 367 * 368 * from user-level: from kernel: 369 * 370 * <clone syscall> <some kernel call frames> 371 * sys_clone : 372 * do_fork do_fork 373 * copy_thread copy_thread 374 * 375 * This means that the stack layout is as follows: 376 * 377 * +---------------------+ (highest addr) 378 * | struct pt_regs | 379 * +---------------------+ 380 * | struct switch_stack | 381 * +---------------------+ 382 * | | 383 * | memory stack | 384 * | | <-- sp (lowest addr) 385 * +---------------------+ 386 * 387 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 388 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 389 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 390 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 391 * the stack is page aligned and the page size is at least 4KB, this is always the case, 392 * so there is nothing to worry about. 393 */ 394 int 395 copy_thread (int nr, unsigned long clone_flags, 396 unsigned long user_stack_base, unsigned long user_stack_size, 397 struct task_struct *p, struct pt_regs *regs) 398 { 399 extern char ia64_ret_from_clone, ia32_ret_from_clone; 400 struct switch_stack *child_stack, *stack; 401 unsigned long rbs, child_rbs, rbs_size; 402 struct pt_regs *child_ptregs; 403 int retval = 0; 404 405 #ifdef CONFIG_SMP 406 /* 407 * For SMP idle threads, fork_by_hand() calls do_fork with 408 * NULL regs. 409 */ 410 if (!regs) 411 return 0; 412 #endif 413 414 stack = ((struct switch_stack *) regs) - 1; 415 416 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 417 child_stack = (struct switch_stack *) child_ptregs - 1; 418 419 /* copy parent's switch_stack & pt_regs to child: */ 420 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 421 422 rbs = (unsigned long) current + IA64_RBS_OFFSET; 423 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 424 rbs_size = stack->ar_bspstore - rbs; 425 426 /* copy the parent's register backing store to the child: */ 427 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 428 429 if (likely(user_mode(child_ptregs))) { 430 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs)) 431 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 432 if (user_stack_base) { 433 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 434 child_ptregs->ar_bspstore = user_stack_base; 435 child_ptregs->ar_rnat = 0; 436 child_ptregs->loadrs = 0; 437 } 438 } else { 439 /* 440 * Note: we simply preserve the relative position of 441 * the stack pointer here. There is no need to 442 * allocate a scratch area here, since that will have 443 * been taken care of by the caller of sys_clone() 444 * already. 445 */ 446 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */ 447 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */ 448 } 449 child_stack->ar_bspstore = child_rbs + rbs_size; 450 if (IS_IA32_PROCESS(regs)) 451 child_stack->b0 = (unsigned long) &ia32_ret_from_clone; 452 else 453 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 454 455 /* copy parts of thread_struct: */ 456 p->thread.ksp = (unsigned long) child_stack - 16; 457 458 /* stop some PSR bits from being inherited. 459 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 460 * therefore we must specify them explicitly here and not include them in 461 * IA64_PSR_BITS_TO_CLEAR. 462 */ 463 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 464 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 465 466 /* 467 * NOTE: The calling convention considers all floating point 468 * registers in the high partition (fph) to be scratch. Since 469 * the only way to get to this point is through a system call, 470 * we know that the values in fph are all dead. Hence, there 471 * is no need to inherit the fph state from the parent to the 472 * child and all we have to do is to make sure that 473 * IA64_THREAD_FPH_VALID is cleared in the child. 474 * 475 * XXX We could push this optimization a bit further by 476 * clearing IA64_THREAD_FPH_VALID on ANY system call. 477 * However, it's not clear this is worth doing. Also, it 478 * would be a slight deviation from the normal Linux system 479 * call behavior where scratch registers are preserved across 480 * system calls (unless used by the system call itself). 481 */ 482 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 483 | IA64_THREAD_PM_VALID) 484 # define THREAD_FLAGS_TO_SET 0 485 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 486 | THREAD_FLAGS_TO_SET); 487 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 488 #ifdef CONFIG_IA32_SUPPORT 489 /* 490 * If we're cloning an IA32 task then save the IA32 extra 491 * state from the current task to the new task 492 */ 493 if (IS_IA32_PROCESS(task_pt_regs(current))) { 494 ia32_save_state(p); 495 if (clone_flags & CLONE_SETTLS) 496 retval = ia32_clone_tls(p, child_ptregs); 497 498 /* Copy partially mapped page list */ 499 if (!retval) 500 retval = ia32_copy_partial_page_list(p, clone_flags); 501 } 502 #endif 503 504 #ifdef CONFIG_PERFMON 505 if (current->thread.pfm_context) 506 pfm_inherit(p, child_ptregs); 507 #endif 508 return retval; 509 } 510 511 static void 512 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 513 { 514 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm; 515 elf_greg_t *dst = arg; 516 struct pt_regs *pt; 517 char nat; 518 int i; 519 520 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 521 522 if (unw_unwind_to_user(info) < 0) 523 return; 524 525 unw_get_sp(info, &sp); 526 pt = (struct pt_regs *) (sp + 16); 527 528 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 529 530 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 531 return; 532 533 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 534 &ar_rnat); 535 536 /* 537 * coredump format: 538 * r0-r31 539 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 540 * predicate registers (p0-p63) 541 * b0-b7 542 * ip cfm user-mask 543 * ar.rsc ar.bsp ar.bspstore ar.rnat 544 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 545 */ 546 547 /* r0 is zero */ 548 for (i = 1, mask = (1UL << i); i < 32; ++i) { 549 unw_get_gr(info, i, &dst[i], &nat); 550 if (nat) 551 nat_bits |= mask; 552 mask <<= 1; 553 } 554 dst[32] = nat_bits; 555 unw_get_pr(info, &dst[33]); 556 557 for (i = 0; i < 8; ++i) 558 unw_get_br(info, i, &dst[34 + i]); 559 560 unw_get_rp(info, &ip); 561 dst[42] = ip + ia64_psr(pt)->ri; 562 dst[43] = cfm; 563 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 564 565 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 566 /* 567 * For bsp and bspstore, unw_get_ar() would return the kernel 568 * addresses, but we need the user-level addresses instead: 569 */ 570 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 571 dst[47] = pt->ar_bspstore; 572 dst[48] = ar_rnat; 573 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 574 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 575 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 576 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 577 unw_get_ar(info, UNW_AR_LC, &dst[53]); 578 unw_get_ar(info, UNW_AR_EC, &dst[54]); 579 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 580 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 581 } 582 583 void 584 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 585 { 586 elf_fpreg_t *dst = arg; 587 int i; 588 589 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 590 591 if (unw_unwind_to_user(info) < 0) 592 return; 593 594 /* f0 is 0.0, f1 is 1.0 */ 595 596 for (i = 2; i < 32; ++i) 597 unw_get_fr(info, i, dst + i); 598 599 ia64_flush_fph(task); 600 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 601 memcpy(dst + 32, task->thread.fph, 96*16); 602 } 603 604 void 605 do_copy_regs (struct unw_frame_info *info, void *arg) 606 { 607 do_copy_task_regs(current, info, arg); 608 } 609 610 void 611 do_dump_fpu (struct unw_frame_info *info, void *arg) 612 { 613 do_dump_task_fpu(current, info, arg); 614 } 615 616 int 617 dump_task_regs(struct task_struct *task, elf_gregset_t *regs) 618 { 619 struct unw_frame_info tcore_info; 620 621 if (current == task) { 622 unw_init_running(do_copy_regs, regs); 623 } else { 624 memset(&tcore_info, 0, sizeof(tcore_info)); 625 unw_init_from_blocked_task(&tcore_info, task); 626 do_copy_task_regs(task, &tcore_info, regs); 627 } 628 return 1; 629 } 630 631 void 632 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 633 { 634 unw_init_running(do_copy_regs, dst); 635 } 636 637 int 638 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst) 639 { 640 struct unw_frame_info tcore_info; 641 642 if (current == task) { 643 unw_init_running(do_dump_fpu, dst); 644 } else { 645 memset(&tcore_info, 0, sizeof(tcore_info)); 646 unw_init_from_blocked_task(&tcore_info, task); 647 do_dump_task_fpu(task, &tcore_info, dst); 648 } 649 return 1; 650 } 651 652 int 653 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 654 { 655 unw_init_running(do_dump_fpu, dst); 656 return 1; /* f0-f31 are always valid so we always return 1 */ 657 } 658 659 long 660 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp, 661 struct pt_regs *regs) 662 { 663 char *fname; 664 int error; 665 666 fname = getname(filename); 667 error = PTR_ERR(fname); 668 if (IS_ERR(fname)) 669 goto out; 670 error = do_execve(fname, argv, envp, regs); 671 putname(fname); 672 out: 673 return error; 674 } 675 676 pid_t 677 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) 678 { 679 extern void start_kernel_thread (void); 680 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread; 681 struct { 682 struct switch_stack sw; 683 struct pt_regs pt; 684 } regs; 685 686 memset(®s, 0, sizeof(regs)); 687 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */ 688 regs.pt.r1 = helper_fptr[1]; /* set GP */ 689 regs.pt.r9 = (unsigned long) fn; /* 1st argument */ 690 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */ 691 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */ 692 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 693 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */ 694 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR); 695 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET; 696 regs.sw.pr = (1 << PRED_KERNEL_STACK); 697 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL); 698 } 699 EXPORT_SYMBOL(kernel_thread); 700 701 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */ 702 int 703 kernel_thread_helper (int (*fn)(void *), void *arg) 704 { 705 #ifdef CONFIG_IA32_SUPPORT 706 if (IS_IA32_PROCESS(task_pt_regs(current))) { 707 /* A kernel thread is always a 64-bit process. */ 708 current->thread.map_base = DEFAULT_MAP_BASE; 709 current->thread.task_size = DEFAULT_TASK_SIZE; 710 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); 711 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); 712 } 713 #endif 714 return (*fn)(arg); 715 } 716 717 /* 718 * Flush thread state. This is called when a thread does an execve(). 719 */ 720 void 721 flush_thread (void) 722 { 723 /* drop floating-point and debug-register state if it exists: */ 724 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 725 ia64_drop_fpu(current); 726 #ifdef CONFIG_IA32_SUPPORT 727 if (IS_IA32_PROCESS(task_pt_regs(current))) { 728 ia32_drop_partial_page_list(current); 729 current->thread.task_size = IA32_PAGE_OFFSET; 730 set_fs(USER_DS); 731 } 732 #endif 733 } 734 735 /* 736 * Clean up state associated with current thread. This is called when 737 * the thread calls exit(). 738 */ 739 void 740 exit_thread (void) 741 { 742 743 ia64_drop_fpu(current); 744 #ifdef CONFIG_PERFMON 745 /* if needed, stop monitoring and flush state to perfmon context */ 746 if (current->thread.pfm_context) 747 pfm_exit_thread(current); 748 749 /* free debug register resources */ 750 if (current->thread.flags & IA64_THREAD_DBG_VALID) 751 pfm_release_debug_registers(current); 752 #endif 753 if (IS_IA32_PROCESS(task_pt_regs(current))) 754 ia32_drop_partial_page_list(current); 755 } 756 757 unsigned long 758 get_wchan (struct task_struct *p) 759 { 760 struct unw_frame_info info; 761 unsigned long ip; 762 int count = 0; 763 764 /* 765 * Note: p may not be a blocked task (it could be current or 766 * another process running on some other CPU. Rather than 767 * trying to determine if p is really blocked, we just assume 768 * it's blocked and rely on the unwind routines to fail 769 * gracefully if the process wasn't really blocked after all. 770 * --davidm 99/12/15 771 */ 772 unw_init_from_blocked_task(&info, p); 773 do { 774 if (unw_unwind(&info) < 0) 775 return 0; 776 unw_get_ip(&info, &ip); 777 if (!in_sched_functions(ip)) 778 return ip; 779 } while (count++ < 16); 780 return 0; 781 } 782 783 void 784 cpu_halt (void) 785 { 786 pal_power_mgmt_info_u_t power_info[8]; 787 unsigned long min_power; 788 int i, min_power_state; 789 790 if (ia64_pal_halt_info(power_info) != 0) 791 return; 792 793 min_power_state = 0; 794 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 795 for (i = 1; i < 8; ++i) 796 if (power_info[i].pal_power_mgmt_info_s.im 797 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 798 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 799 min_power_state = i; 800 } 801 802 while (1) 803 ia64_pal_halt(min_power_state); 804 } 805 806 void machine_shutdown(void) 807 { 808 #ifdef CONFIG_HOTPLUG_CPU 809 int cpu; 810 811 for_each_online_cpu(cpu) { 812 if (cpu != smp_processor_id()) 813 cpu_down(cpu); 814 } 815 #endif 816 #ifdef CONFIG_KEXEC 817 kexec_disable_iosapic(); 818 #endif 819 } 820 821 void 822 machine_restart (char *restart_cmd) 823 { 824 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 825 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL); 826 } 827 828 void 829 machine_halt (void) 830 { 831 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 832 cpu_halt(); 833 } 834 835 void 836 machine_power_off (void) 837 { 838 if (pm_power_off) 839 pm_power_off(); 840 machine_halt(); 841 } 842 843