1 /* 2 * Architecture-specific setup. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 7 * 8 * 2005-10-07 Keith Owens <kaos@sgi.com> 9 * Add notify_die() hooks. 10 */ 11 #include <linux/cpu.h> 12 #include <linux/pm.h> 13 #include <linux/elf.h> 14 #include <linux/errno.h> 15 #include <linux/kallsyms.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/notifier.h> 20 #include <linux/personality.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 #include <linux/smp_lock.h> 24 #include <linux/stddef.h> 25 #include <linux/thread_info.h> 26 #include <linux/unistd.h> 27 #include <linux/efi.h> 28 #include <linux/interrupt.h> 29 #include <linux/delay.h> 30 31 #include <asm/cpu.h> 32 #include <asm/delay.h> 33 #include <asm/elf.h> 34 #include <asm/ia32.h> 35 #include <asm/irq.h> 36 #include <asm/kdebug.h> 37 #include <asm/kexec.h> 38 #include <asm/pgalloc.h> 39 #include <asm/processor.h> 40 #include <asm/sal.h> 41 #include <asm/tlbflush.h> 42 #include <asm/uaccess.h> 43 #include <asm/unwind.h> 44 #include <asm/user.h> 45 46 #include "entry.h" 47 48 #ifdef CONFIG_PERFMON 49 # include <asm/perfmon.h> 50 #endif 51 52 #include "sigframe.h" 53 54 void (*ia64_mark_idle)(int); 55 static DEFINE_PER_CPU(unsigned int, cpu_idle_state); 56 57 unsigned long boot_option_idle_override = 0; 58 EXPORT_SYMBOL(boot_option_idle_override); 59 60 void 61 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 62 { 63 unsigned long ip, sp, bsp; 64 char buf[128]; /* don't make it so big that it overflows the stack! */ 65 66 printk("\nCall Trace:\n"); 67 do { 68 unw_get_ip(info, &ip); 69 if (ip == 0) 70 break; 71 72 unw_get_sp(info, &sp); 73 unw_get_bsp(info, &bsp); 74 snprintf(buf, sizeof(buf), 75 " [<%016lx>] %%s\n" 76 " sp=%016lx bsp=%016lx\n", 77 ip, sp, bsp); 78 print_symbol(buf, ip); 79 } while (unw_unwind(info) >= 0); 80 } 81 82 void 83 show_stack (struct task_struct *task, unsigned long *sp) 84 { 85 if (!task) 86 unw_init_running(ia64_do_show_stack, NULL); 87 else { 88 struct unw_frame_info info; 89 90 unw_init_from_blocked_task(&info, task); 91 ia64_do_show_stack(&info, NULL); 92 } 93 } 94 95 void 96 dump_stack (void) 97 { 98 show_stack(NULL, NULL); 99 } 100 101 EXPORT_SYMBOL(dump_stack); 102 103 void 104 show_regs (struct pt_regs *regs) 105 { 106 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 107 108 print_modules(); 109 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm); 110 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n", 111 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted()); 112 print_symbol("ip is at %s\n", ip); 113 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 114 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 115 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 116 regs->ar_rnat, regs->ar_bspstore, regs->pr); 117 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 118 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 119 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 120 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 121 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 122 regs->f6.u.bits[1], regs->f6.u.bits[0], 123 regs->f7.u.bits[1], regs->f7.u.bits[0]); 124 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 125 regs->f8.u.bits[1], regs->f8.u.bits[0], 126 regs->f9.u.bits[1], regs->f9.u.bits[0]); 127 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 128 regs->f10.u.bits[1], regs->f10.u.bits[0], 129 regs->f11.u.bits[1], regs->f11.u.bits[0]); 130 131 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 132 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 133 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 134 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 135 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 136 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 137 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 138 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 139 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 140 141 if (user_mode(regs)) { 142 /* print the stacked registers */ 143 unsigned long val, *bsp, ndirty; 144 int i, sof, is_nat = 0; 145 146 sof = regs->cr_ifs & 0x7f; /* size of frame */ 147 ndirty = (regs->loadrs >> 19); 148 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 149 for (i = 0; i < sof; ++i) { 150 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 151 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 152 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 153 } 154 } else 155 show_stack(NULL, NULL); 156 } 157 158 void 159 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall) 160 { 161 if (fsys_mode(current, &scr->pt)) { 162 /* defer signal-handling etc. until we return to privilege-level 0. */ 163 if (!ia64_psr(&scr->pt)->lp) 164 ia64_psr(&scr->pt)->lp = 1; 165 return; 166 } 167 168 #ifdef CONFIG_PERFMON 169 if (current->thread.pfm_needs_checking) 170 pfm_handle_work(); 171 #endif 172 173 /* deal with pending signal delivery */ 174 if (test_thread_flag(TIF_SIGPENDING)) 175 ia64_do_signal(oldset, scr, in_syscall); 176 } 177 178 static int pal_halt = 1; 179 static int can_do_pal_halt = 1; 180 181 static int __init nohalt_setup(char * str) 182 { 183 pal_halt = can_do_pal_halt = 0; 184 return 1; 185 } 186 __setup("nohalt", nohalt_setup); 187 188 void 189 update_pal_halt_status(int status) 190 { 191 can_do_pal_halt = pal_halt && status; 192 } 193 194 /* 195 * We use this if we don't have any better idle routine.. 196 */ 197 void 198 default_idle (void) 199 { 200 local_irq_enable(); 201 while (!need_resched()) { 202 if (can_do_pal_halt) 203 safe_halt(); 204 else 205 cpu_relax(); 206 } 207 } 208 209 #ifdef CONFIG_HOTPLUG_CPU 210 /* We don't actually take CPU down, just spin without interrupts. */ 211 static inline void play_dead(void) 212 { 213 extern void ia64_cpu_local_tick (void); 214 unsigned int this_cpu = smp_processor_id(); 215 216 /* Ack it */ 217 __get_cpu_var(cpu_state) = CPU_DEAD; 218 219 max_xtp(); 220 local_irq_disable(); 221 idle_task_exit(); 222 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 223 /* 224 * The above is a point of no-return, the processor is 225 * expected to be in SAL loop now. 226 */ 227 BUG(); 228 } 229 #else 230 static inline void play_dead(void) 231 { 232 BUG(); 233 } 234 #endif /* CONFIG_HOTPLUG_CPU */ 235 236 void cpu_idle_wait(void) 237 { 238 unsigned int cpu, this_cpu = get_cpu(); 239 cpumask_t map; 240 cpumask_t tmp = current->cpus_allowed; 241 242 set_cpus_allowed(current, cpumask_of_cpu(this_cpu)); 243 put_cpu(); 244 245 cpus_clear(map); 246 for_each_online_cpu(cpu) { 247 per_cpu(cpu_idle_state, cpu) = 1; 248 cpu_set(cpu, map); 249 } 250 251 __get_cpu_var(cpu_idle_state) = 0; 252 253 wmb(); 254 do { 255 ssleep(1); 256 for_each_online_cpu(cpu) { 257 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu)) 258 cpu_clear(cpu, map); 259 } 260 cpus_and(map, map, cpu_online_map); 261 } while (!cpus_empty(map)); 262 set_cpus_allowed(current, tmp); 263 } 264 EXPORT_SYMBOL_GPL(cpu_idle_wait); 265 266 void __attribute__((noreturn)) 267 cpu_idle (void) 268 { 269 void (*mark_idle)(int) = ia64_mark_idle; 270 int cpu = smp_processor_id(); 271 272 /* endless idle loop with no priority at all */ 273 while (1) { 274 if (can_do_pal_halt) { 275 current_thread_info()->status &= ~TS_POLLING; 276 /* 277 * TS_POLLING-cleared state must be visible before we 278 * test NEED_RESCHED: 279 */ 280 smp_mb(); 281 } else { 282 current_thread_info()->status |= TS_POLLING; 283 } 284 285 if (!need_resched()) { 286 void (*idle)(void); 287 #ifdef CONFIG_SMP 288 min_xtp(); 289 #endif 290 if (__get_cpu_var(cpu_idle_state)) 291 __get_cpu_var(cpu_idle_state) = 0; 292 293 rmb(); 294 if (mark_idle) 295 (*mark_idle)(1); 296 297 idle = pm_idle; 298 if (!idle) 299 idle = default_idle; 300 (*idle)(); 301 if (mark_idle) 302 (*mark_idle)(0); 303 #ifdef CONFIG_SMP 304 normal_xtp(); 305 #endif 306 } 307 preempt_enable_no_resched(); 308 schedule(); 309 preempt_disable(); 310 check_pgt_cache(); 311 if (cpu_is_offline(cpu)) 312 play_dead(); 313 } 314 } 315 316 void 317 ia64_save_extra (struct task_struct *task) 318 { 319 #ifdef CONFIG_PERFMON 320 unsigned long info; 321 #endif 322 323 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 324 ia64_save_debug_regs(&task->thread.dbr[0]); 325 326 #ifdef CONFIG_PERFMON 327 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 328 pfm_save_regs(task); 329 330 info = __get_cpu_var(pfm_syst_info); 331 if (info & PFM_CPUINFO_SYST_WIDE) 332 pfm_syst_wide_update_task(task, info, 0); 333 #endif 334 335 #ifdef CONFIG_IA32_SUPPORT 336 if (IS_IA32_PROCESS(task_pt_regs(task))) 337 ia32_save_state(task); 338 #endif 339 } 340 341 void 342 ia64_load_extra (struct task_struct *task) 343 { 344 #ifdef CONFIG_PERFMON 345 unsigned long info; 346 #endif 347 348 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 349 ia64_load_debug_regs(&task->thread.dbr[0]); 350 351 #ifdef CONFIG_PERFMON 352 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 353 pfm_load_regs(task); 354 355 info = __get_cpu_var(pfm_syst_info); 356 if (info & PFM_CPUINFO_SYST_WIDE) 357 pfm_syst_wide_update_task(task, info, 1); 358 #endif 359 360 #ifdef CONFIG_IA32_SUPPORT 361 if (IS_IA32_PROCESS(task_pt_regs(task))) 362 ia32_load_state(task); 363 #endif 364 } 365 366 /* 367 * Copy the state of an ia-64 thread. 368 * 369 * We get here through the following call chain: 370 * 371 * from user-level: from kernel: 372 * 373 * <clone syscall> <some kernel call frames> 374 * sys_clone : 375 * do_fork do_fork 376 * copy_thread copy_thread 377 * 378 * This means that the stack layout is as follows: 379 * 380 * +---------------------+ (highest addr) 381 * | struct pt_regs | 382 * +---------------------+ 383 * | struct switch_stack | 384 * +---------------------+ 385 * | | 386 * | memory stack | 387 * | | <-- sp (lowest addr) 388 * +---------------------+ 389 * 390 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 391 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 392 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 393 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 394 * the stack is page aligned and the page size is at least 4KB, this is always the case, 395 * so there is nothing to worry about. 396 */ 397 int 398 copy_thread (int nr, unsigned long clone_flags, 399 unsigned long user_stack_base, unsigned long user_stack_size, 400 struct task_struct *p, struct pt_regs *regs) 401 { 402 extern char ia64_ret_from_clone, ia32_ret_from_clone; 403 struct switch_stack *child_stack, *stack; 404 unsigned long rbs, child_rbs, rbs_size; 405 struct pt_regs *child_ptregs; 406 int retval = 0; 407 408 #ifdef CONFIG_SMP 409 /* 410 * For SMP idle threads, fork_by_hand() calls do_fork with 411 * NULL regs. 412 */ 413 if (!regs) 414 return 0; 415 #endif 416 417 stack = ((struct switch_stack *) regs) - 1; 418 419 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 420 child_stack = (struct switch_stack *) child_ptregs - 1; 421 422 /* copy parent's switch_stack & pt_regs to child: */ 423 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 424 425 rbs = (unsigned long) current + IA64_RBS_OFFSET; 426 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 427 rbs_size = stack->ar_bspstore - rbs; 428 429 /* copy the parent's register backing store to the child: */ 430 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 431 432 if (likely(user_mode(child_ptregs))) { 433 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs)) 434 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 435 if (user_stack_base) { 436 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 437 child_ptregs->ar_bspstore = user_stack_base; 438 child_ptregs->ar_rnat = 0; 439 child_ptregs->loadrs = 0; 440 } 441 } else { 442 /* 443 * Note: we simply preserve the relative position of 444 * the stack pointer here. There is no need to 445 * allocate a scratch area here, since that will have 446 * been taken care of by the caller of sys_clone() 447 * already. 448 */ 449 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */ 450 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */ 451 } 452 child_stack->ar_bspstore = child_rbs + rbs_size; 453 if (IS_IA32_PROCESS(regs)) 454 child_stack->b0 = (unsigned long) &ia32_ret_from_clone; 455 else 456 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 457 458 /* copy parts of thread_struct: */ 459 p->thread.ksp = (unsigned long) child_stack - 16; 460 461 /* stop some PSR bits from being inherited. 462 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 463 * therefore we must specify them explicitly here and not include them in 464 * IA64_PSR_BITS_TO_CLEAR. 465 */ 466 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 467 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 468 469 /* 470 * NOTE: The calling convention considers all floating point 471 * registers in the high partition (fph) to be scratch. Since 472 * the only way to get to this point is through a system call, 473 * we know that the values in fph are all dead. Hence, there 474 * is no need to inherit the fph state from the parent to the 475 * child and all we have to do is to make sure that 476 * IA64_THREAD_FPH_VALID is cleared in the child. 477 * 478 * XXX We could push this optimization a bit further by 479 * clearing IA64_THREAD_FPH_VALID on ANY system call. 480 * However, it's not clear this is worth doing. Also, it 481 * would be a slight deviation from the normal Linux system 482 * call behavior where scratch registers are preserved across 483 * system calls (unless used by the system call itself). 484 */ 485 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 486 | IA64_THREAD_PM_VALID) 487 # define THREAD_FLAGS_TO_SET 0 488 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 489 | THREAD_FLAGS_TO_SET); 490 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 491 #ifdef CONFIG_IA32_SUPPORT 492 /* 493 * If we're cloning an IA32 task then save the IA32 extra 494 * state from the current task to the new task 495 */ 496 if (IS_IA32_PROCESS(task_pt_regs(current))) { 497 ia32_save_state(p); 498 if (clone_flags & CLONE_SETTLS) 499 retval = ia32_clone_tls(p, child_ptregs); 500 501 /* Copy partially mapped page list */ 502 if (!retval) 503 retval = ia32_copy_partial_page_list(p, clone_flags); 504 } 505 #endif 506 507 #ifdef CONFIG_PERFMON 508 if (current->thread.pfm_context) 509 pfm_inherit(p, child_ptregs); 510 #endif 511 return retval; 512 } 513 514 static void 515 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 516 { 517 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm; 518 elf_greg_t *dst = arg; 519 struct pt_regs *pt; 520 char nat; 521 int i; 522 523 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 524 525 if (unw_unwind_to_user(info) < 0) 526 return; 527 528 unw_get_sp(info, &sp); 529 pt = (struct pt_regs *) (sp + 16); 530 531 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 532 533 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 534 return; 535 536 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 537 &ar_rnat); 538 539 /* 540 * coredump format: 541 * r0-r31 542 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 543 * predicate registers (p0-p63) 544 * b0-b7 545 * ip cfm user-mask 546 * ar.rsc ar.bsp ar.bspstore ar.rnat 547 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 548 */ 549 550 /* r0 is zero */ 551 for (i = 1, mask = (1UL << i); i < 32; ++i) { 552 unw_get_gr(info, i, &dst[i], &nat); 553 if (nat) 554 nat_bits |= mask; 555 mask <<= 1; 556 } 557 dst[32] = nat_bits; 558 unw_get_pr(info, &dst[33]); 559 560 for (i = 0; i < 8; ++i) 561 unw_get_br(info, i, &dst[34 + i]); 562 563 unw_get_rp(info, &ip); 564 dst[42] = ip + ia64_psr(pt)->ri; 565 dst[43] = cfm; 566 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 567 568 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 569 /* 570 * For bsp and bspstore, unw_get_ar() would return the kernel 571 * addresses, but we need the user-level addresses instead: 572 */ 573 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 574 dst[47] = pt->ar_bspstore; 575 dst[48] = ar_rnat; 576 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 577 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 578 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 579 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 580 unw_get_ar(info, UNW_AR_LC, &dst[53]); 581 unw_get_ar(info, UNW_AR_EC, &dst[54]); 582 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 583 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 584 } 585 586 void 587 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 588 { 589 elf_fpreg_t *dst = arg; 590 int i; 591 592 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 593 594 if (unw_unwind_to_user(info) < 0) 595 return; 596 597 /* f0 is 0.0, f1 is 1.0 */ 598 599 for (i = 2; i < 32; ++i) 600 unw_get_fr(info, i, dst + i); 601 602 ia64_flush_fph(task); 603 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 604 memcpy(dst + 32, task->thread.fph, 96*16); 605 } 606 607 void 608 do_copy_regs (struct unw_frame_info *info, void *arg) 609 { 610 do_copy_task_regs(current, info, arg); 611 } 612 613 void 614 do_dump_fpu (struct unw_frame_info *info, void *arg) 615 { 616 do_dump_task_fpu(current, info, arg); 617 } 618 619 int 620 dump_task_regs(struct task_struct *task, elf_gregset_t *regs) 621 { 622 struct unw_frame_info tcore_info; 623 624 if (current == task) { 625 unw_init_running(do_copy_regs, regs); 626 } else { 627 memset(&tcore_info, 0, sizeof(tcore_info)); 628 unw_init_from_blocked_task(&tcore_info, task); 629 do_copy_task_regs(task, &tcore_info, regs); 630 } 631 return 1; 632 } 633 634 void 635 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 636 { 637 unw_init_running(do_copy_regs, dst); 638 } 639 640 int 641 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst) 642 { 643 struct unw_frame_info tcore_info; 644 645 if (current == task) { 646 unw_init_running(do_dump_fpu, dst); 647 } else { 648 memset(&tcore_info, 0, sizeof(tcore_info)); 649 unw_init_from_blocked_task(&tcore_info, task); 650 do_dump_task_fpu(task, &tcore_info, dst); 651 } 652 return 1; 653 } 654 655 int 656 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 657 { 658 unw_init_running(do_dump_fpu, dst); 659 return 1; /* f0-f31 are always valid so we always return 1 */ 660 } 661 662 long 663 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp, 664 struct pt_regs *regs) 665 { 666 char *fname; 667 int error; 668 669 fname = getname(filename); 670 error = PTR_ERR(fname); 671 if (IS_ERR(fname)) 672 goto out; 673 error = do_execve(fname, argv, envp, regs); 674 putname(fname); 675 out: 676 return error; 677 } 678 679 pid_t 680 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) 681 { 682 extern void start_kernel_thread (void); 683 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread; 684 struct { 685 struct switch_stack sw; 686 struct pt_regs pt; 687 } regs; 688 689 memset(®s, 0, sizeof(regs)); 690 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */ 691 regs.pt.r1 = helper_fptr[1]; /* set GP */ 692 regs.pt.r9 = (unsigned long) fn; /* 1st argument */ 693 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */ 694 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */ 695 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 696 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */ 697 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR); 698 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET; 699 regs.sw.pr = (1 << PRED_KERNEL_STACK); 700 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL); 701 } 702 EXPORT_SYMBOL(kernel_thread); 703 704 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */ 705 int 706 kernel_thread_helper (int (*fn)(void *), void *arg) 707 { 708 #ifdef CONFIG_IA32_SUPPORT 709 if (IS_IA32_PROCESS(task_pt_regs(current))) { 710 /* A kernel thread is always a 64-bit process. */ 711 current->thread.map_base = DEFAULT_MAP_BASE; 712 current->thread.task_size = DEFAULT_TASK_SIZE; 713 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); 714 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); 715 } 716 #endif 717 return (*fn)(arg); 718 } 719 720 /* 721 * Flush thread state. This is called when a thread does an execve(). 722 */ 723 void 724 flush_thread (void) 725 { 726 /* drop floating-point and debug-register state if it exists: */ 727 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 728 ia64_drop_fpu(current); 729 #ifdef CONFIG_IA32_SUPPORT 730 if (IS_IA32_PROCESS(task_pt_regs(current))) { 731 ia32_drop_partial_page_list(current); 732 current->thread.task_size = IA32_PAGE_OFFSET; 733 set_fs(USER_DS); 734 } 735 #endif 736 } 737 738 /* 739 * Clean up state associated with current thread. This is called when 740 * the thread calls exit(). 741 */ 742 void 743 exit_thread (void) 744 { 745 746 ia64_drop_fpu(current); 747 #ifdef CONFIG_PERFMON 748 /* if needed, stop monitoring and flush state to perfmon context */ 749 if (current->thread.pfm_context) 750 pfm_exit_thread(current); 751 752 /* free debug register resources */ 753 if (current->thread.flags & IA64_THREAD_DBG_VALID) 754 pfm_release_debug_registers(current); 755 #endif 756 if (IS_IA32_PROCESS(task_pt_regs(current))) 757 ia32_drop_partial_page_list(current); 758 } 759 760 unsigned long 761 get_wchan (struct task_struct *p) 762 { 763 struct unw_frame_info info; 764 unsigned long ip; 765 int count = 0; 766 767 /* 768 * Note: p may not be a blocked task (it could be current or 769 * another process running on some other CPU. Rather than 770 * trying to determine if p is really blocked, we just assume 771 * it's blocked and rely on the unwind routines to fail 772 * gracefully if the process wasn't really blocked after all. 773 * --davidm 99/12/15 774 */ 775 unw_init_from_blocked_task(&info, p); 776 do { 777 if (unw_unwind(&info) < 0) 778 return 0; 779 unw_get_ip(&info, &ip); 780 if (!in_sched_functions(ip)) 781 return ip; 782 } while (count++ < 16); 783 return 0; 784 } 785 786 void 787 cpu_halt (void) 788 { 789 pal_power_mgmt_info_u_t power_info[8]; 790 unsigned long min_power; 791 int i, min_power_state; 792 793 if (ia64_pal_halt_info(power_info) != 0) 794 return; 795 796 min_power_state = 0; 797 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 798 for (i = 1; i < 8; ++i) 799 if (power_info[i].pal_power_mgmt_info_s.im 800 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 801 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 802 min_power_state = i; 803 } 804 805 while (1) 806 ia64_pal_halt(min_power_state); 807 } 808 809 void machine_shutdown(void) 810 { 811 #ifdef CONFIG_HOTPLUG_CPU 812 int cpu; 813 814 for_each_online_cpu(cpu) { 815 if (cpu != smp_processor_id()) 816 cpu_down(cpu); 817 } 818 #endif 819 #ifdef CONFIG_KEXEC 820 kexec_disable_iosapic(); 821 #endif 822 } 823 824 void 825 machine_restart (char *restart_cmd) 826 { 827 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 828 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL); 829 } 830 831 void 832 machine_halt (void) 833 { 834 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 835 cpu_halt(); 836 } 837 838 void 839 machine_power_off (void) 840 { 841 if (pm_power_off) 842 pm_power_off(); 843 machine_halt(); 844 } 845 846