xref: /openbmc/linux/arch/ia64/kernel/process.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #define __KERNEL_SYSCALLS__	/* see <asm/unistd.h> */
8 #include <linux/config.h>
9 
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/elf.h>
13 #include <linux/errno.h>
14 #include <linux/kallsyms.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/notifier.h>
19 #include <linux/personality.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/smp_lock.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 
30 #include <asm/cpu.h>
31 #include <asm/delay.h>
32 #include <asm/elf.h>
33 #include <asm/ia32.h>
34 #include <asm/irq.h>
35 #include <asm/pgalloc.h>
36 #include <asm/processor.h>
37 #include <asm/sal.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/unwind.h>
41 #include <asm/user.h>
42 
43 #include "entry.h"
44 
45 #ifdef CONFIG_PERFMON
46 # include <asm/perfmon.h>
47 #endif
48 
49 #include "sigframe.h"
50 
51 void (*ia64_mark_idle)(int);
52 static cpumask_t cpu_idle_map;
53 
54 unsigned long boot_option_idle_override = 0;
55 EXPORT_SYMBOL(boot_option_idle_override);
56 
57 void
58 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
59 {
60 	unsigned long ip, sp, bsp;
61 	char buf[128];			/* don't make it so big that it overflows the stack! */
62 
63 	printk("\nCall Trace:\n");
64 	do {
65 		unw_get_ip(info, &ip);
66 		if (ip == 0)
67 			break;
68 
69 		unw_get_sp(info, &sp);
70 		unw_get_bsp(info, &bsp);
71 		snprintf(buf, sizeof(buf),
72 			 " [<%016lx>] %%s\n"
73 			 "                                sp=%016lx bsp=%016lx\n",
74 			 ip, sp, bsp);
75 		print_symbol(buf, ip);
76 	} while (unw_unwind(info) >= 0);
77 }
78 
79 void
80 show_stack (struct task_struct *task, unsigned long *sp)
81 {
82 	if (!task)
83 		unw_init_running(ia64_do_show_stack, NULL);
84 	else {
85 		struct unw_frame_info info;
86 
87 		unw_init_from_blocked_task(&info, task);
88 		ia64_do_show_stack(&info, NULL);
89 	}
90 }
91 
92 void
93 dump_stack (void)
94 {
95 	show_stack(NULL, NULL);
96 }
97 
98 EXPORT_SYMBOL(dump_stack);
99 
100 void
101 show_regs (struct pt_regs *regs)
102 {
103 	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
104 
105 	print_modules();
106 	printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
107 	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s\n",
108 	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
109 	print_symbol("ip is at %s\n", ip);
110 	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
111 	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
112 	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
113 	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
114 	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
115 	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
116 	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
117 	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
118 	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
119 	       regs->f6.u.bits[1], regs->f6.u.bits[0],
120 	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
121 	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
122 	       regs->f8.u.bits[1], regs->f8.u.bits[0],
123 	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
124 	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
125 	       regs->f10.u.bits[1], regs->f10.u.bits[0],
126 	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
127 
128 	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
129 	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
130 	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
131 	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
132 	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
133 	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
134 	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
135 	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
136 	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
137 
138 	if (user_mode(regs)) {
139 		/* print the stacked registers */
140 		unsigned long val, *bsp, ndirty;
141 		int i, sof, is_nat = 0;
142 
143 		sof = regs->cr_ifs & 0x7f;	/* size of frame */
144 		ndirty = (regs->loadrs >> 19);
145 		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
146 		for (i = 0; i < sof; ++i) {
147 			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
148 			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
149 			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
150 		}
151 	} else
152 		show_stack(NULL, NULL);
153 }
154 
155 void
156 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
157 {
158 	if (fsys_mode(current, &scr->pt)) {
159 		/* defer signal-handling etc. until we return to privilege-level 0.  */
160 		if (!ia64_psr(&scr->pt)->lp)
161 			ia64_psr(&scr->pt)->lp = 1;
162 		return;
163 	}
164 
165 #ifdef CONFIG_PERFMON
166 	if (current->thread.pfm_needs_checking)
167 		pfm_handle_work();
168 #endif
169 
170 	/* deal with pending signal delivery */
171 	if (test_thread_flag(TIF_SIGPENDING))
172 		ia64_do_signal(oldset, scr, in_syscall);
173 }
174 
175 static int pal_halt = 1;
176 static int __init nohalt_setup(char * str)
177 {
178 	pal_halt = 0;
179 	return 1;
180 }
181 __setup("nohalt", nohalt_setup);
182 
183 /*
184  * We use this if we don't have any better idle routine..
185  */
186 void
187 default_idle (void)
188 {
189 	unsigned long pmu_active = ia64_getreg(_IA64_REG_PSR) & (IA64_PSR_PP | IA64_PSR_UP);
190 
191 	while (!need_resched())
192 		if (pal_halt && !pmu_active)
193 			safe_halt();
194 		else
195 			cpu_relax();
196 }
197 
198 #ifdef CONFIG_HOTPLUG_CPU
199 /* We don't actually take CPU down, just spin without interrupts. */
200 static inline void play_dead(void)
201 {
202 	extern void ia64_cpu_local_tick (void);
203 	/* Ack it */
204 	__get_cpu_var(cpu_state) = CPU_DEAD;
205 
206 	/* We shouldn't have to disable interrupts while dead, but
207 	 * some interrupts just don't seem to go away, and this makes
208 	 * it "work" for testing purposes. */
209 	max_xtp();
210 	local_irq_disable();
211 	/* Death loop */
212 	while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
213 		cpu_relax();
214 
215 	/*
216 	 * Enable timer interrupts from now on
217 	 * Not required if we put processor in SAL_BOOT_RENDEZ mode.
218 	 */
219 	local_flush_tlb_all();
220 	cpu_set(smp_processor_id(), cpu_online_map);
221 	wmb();
222 	ia64_cpu_local_tick ();
223 	local_irq_enable();
224 }
225 #else
226 static inline void play_dead(void)
227 {
228 	BUG();
229 }
230 #endif /* CONFIG_HOTPLUG_CPU */
231 
232 
233 void cpu_idle_wait(void)
234 {
235         int cpu;
236         cpumask_t map;
237 
238         for_each_online_cpu(cpu)
239                 cpu_set(cpu, cpu_idle_map);
240 
241         wmb();
242         do {
243                 ssleep(1);
244                 cpus_and(map, cpu_idle_map, cpu_online_map);
245         } while (!cpus_empty(map));
246 }
247 EXPORT_SYMBOL_GPL(cpu_idle_wait);
248 
249 void __attribute__((noreturn))
250 cpu_idle (void)
251 {
252 	void (*mark_idle)(int) = ia64_mark_idle;
253 	int cpu = smp_processor_id();
254 
255 	/* endless idle loop with no priority at all */
256 	while (1) {
257 #ifdef CONFIG_SMP
258 		if (!need_resched())
259 			min_xtp();
260 #endif
261 		while (!need_resched()) {
262 			void (*idle)(void);
263 
264 			if (mark_idle)
265 				(*mark_idle)(1);
266 
267 			if (cpu_isset(cpu, cpu_idle_map))
268 				cpu_clear(cpu, cpu_idle_map);
269 			rmb();
270 			idle = pm_idle;
271 			if (!idle)
272 				idle = default_idle;
273 			(*idle)();
274 		}
275 
276 		if (mark_idle)
277 			(*mark_idle)(0);
278 
279 #ifdef CONFIG_SMP
280 		normal_xtp();
281 #endif
282 		schedule();
283 		check_pgt_cache();
284 		if (cpu_is_offline(smp_processor_id()))
285 			play_dead();
286 	}
287 }
288 
289 void
290 ia64_save_extra (struct task_struct *task)
291 {
292 #ifdef CONFIG_PERFMON
293 	unsigned long info;
294 #endif
295 
296 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
297 		ia64_save_debug_regs(&task->thread.dbr[0]);
298 
299 #ifdef CONFIG_PERFMON
300 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
301 		pfm_save_regs(task);
302 
303 	info = __get_cpu_var(pfm_syst_info);
304 	if (info & PFM_CPUINFO_SYST_WIDE)
305 		pfm_syst_wide_update_task(task, info, 0);
306 #endif
307 
308 #ifdef CONFIG_IA32_SUPPORT
309 	if (IS_IA32_PROCESS(ia64_task_regs(task)))
310 		ia32_save_state(task);
311 #endif
312 }
313 
314 void
315 ia64_load_extra (struct task_struct *task)
316 {
317 #ifdef CONFIG_PERFMON
318 	unsigned long info;
319 #endif
320 
321 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
322 		ia64_load_debug_regs(&task->thread.dbr[0]);
323 
324 #ifdef CONFIG_PERFMON
325 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
326 		pfm_load_regs(task);
327 
328 	info = __get_cpu_var(pfm_syst_info);
329 	if (info & PFM_CPUINFO_SYST_WIDE)
330 		pfm_syst_wide_update_task(task, info, 1);
331 #endif
332 
333 #ifdef CONFIG_IA32_SUPPORT
334 	if (IS_IA32_PROCESS(ia64_task_regs(task)))
335 		ia32_load_state(task);
336 #endif
337 }
338 
339 /*
340  * Copy the state of an ia-64 thread.
341  *
342  * We get here through the following  call chain:
343  *
344  *	from user-level:	from kernel:
345  *
346  *	<clone syscall>	        <some kernel call frames>
347  *	sys_clone		   :
348  *	do_fork			do_fork
349  *	copy_thread		copy_thread
350  *
351  * This means that the stack layout is as follows:
352  *
353  *	+---------------------+ (highest addr)
354  *	|   struct pt_regs    |
355  *	+---------------------+
356  *	| struct switch_stack |
357  *	+---------------------+
358  *	|                     |
359  *	|    memory stack     |
360  *	|                     | <-- sp (lowest addr)
361  *	+---------------------+
362  *
363  * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
364  * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
365  * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
366  * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
367  * the stack is page aligned and the page size is at least 4KB, this is always the case,
368  * so there is nothing to worry about.
369  */
370 int
371 copy_thread (int nr, unsigned long clone_flags,
372 	     unsigned long user_stack_base, unsigned long user_stack_size,
373 	     struct task_struct *p, struct pt_regs *regs)
374 {
375 	extern char ia64_ret_from_clone, ia32_ret_from_clone;
376 	struct switch_stack *child_stack, *stack;
377 	unsigned long rbs, child_rbs, rbs_size;
378 	struct pt_regs *child_ptregs;
379 	int retval = 0;
380 
381 #ifdef CONFIG_SMP
382 	/*
383 	 * For SMP idle threads, fork_by_hand() calls do_fork with
384 	 * NULL regs.
385 	 */
386 	if (!regs)
387 		return 0;
388 #endif
389 
390 	stack = ((struct switch_stack *) regs) - 1;
391 
392 	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
393 	child_stack = (struct switch_stack *) child_ptregs - 1;
394 
395 	/* copy parent's switch_stack & pt_regs to child: */
396 	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
397 
398 	rbs = (unsigned long) current + IA64_RBS_OFFSET;
399 	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
400 	rbs_size = stack->ar_bspstore - rbs;
401 
402 	/* copy the parent's register backing store to the child: */
403 	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
404 
405 	if (likely(user_mode(child_ptregs))) {
406 		if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
407 			child_ptregs->r13 = regs->r16;	/* see sys_clone2() in entry.S */
408 		if (user_stack_base) {
409 			child_ptregs->r12 = user_stack_base + user_stack_size - 16;
410 			child_ptregs->ar_bspstore = user_stack_base;
411 			child_ptregs->ar_rnat = 0;
412 			child_ptregs->loadrs = 0;
413 		}
414 	} else {
415 		/*
416 		 * Note: we simply preserve the relative position of
417 		 * the stack pointer here.  There is no need to
418 		 * allocate a scratch area here, since that will have
419 		 * been taken care of by the caller of sys_clone()
420 		 * already.
421 		 */
422 		child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
423 		child_ptregs->r13 = (unsigned long) p;		/* set `current' pointer */
424 	}
425 	child_stack->ar_bspstore = child_rbs + rbs_size;
426 	if (IS_IA32_PROCESS(regs))
427 		child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
428 	else
429 		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
430 
431 	/* copy parts of thread_struct: */
432 	p->thread.ksp = (unsigned long) child_stack - 16;
433 
434 	/* stop some PSR bits from being inherited.
435 	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
436 	 * therefore we must specify them explicitly here and not include them in
437 	 * IA64_PSR_BITS_TO_CLEAR.
438 	 */
439 	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
440 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
441 
442 	/*
443 	 * NOTE: The calling convention considers all floating point
444 	 * registers in the high partition (fph) to be scratch.  Since
445 	 * the only way to get to this point is through a system call,
446 	 * we know that the values in fph are all dead.  Hence, there
447 	 * is no need to inherit the fph state from the parent to the
448 	 * child and all we have to do is to make sure that
449 	 * IA64_THREAD_FPH_VALID is cleared in the child.
450 	 *
451 	 * XXX We could push this optimization a bit further by
452 	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
453 	 * However, it's not clear this is worth doing.  Also, it
454 	 * would be a slight deviation from the normal Linux system
455 	 * call behavior where scratch registers are preserved across
456 	 * system calls (unless used by the system call itself).
457 	 */
458 #	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
459 					 | IA64_THREAD_PM_VALID)
460 #	define THREAD_FLAGS_TO_SET	0
461 	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
462 			   | THREAD_FLAGS_TO_SET);
463 	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
464 #ifdef CONFIG_IA32_SUPPORT
465 	/*
466 	 * If we're cloning an IA32 task then save the IA32 extra
467 	 * state from the current task to the new task
468 	 */
469 	if (IS_IA32_PROCESS(ia64_task_regs(current))) {
470 		ia32_save_state(p);
471 		if (clone_flags & CLONE_SETTLS)
472 			retval = ia32_clone_tls(p, child_ptregs);
473 
474 		/* Copy partially mapped page list */
475 		if (!retval)
476 			retval = ia32_copy_partial_page_list(p, clone_flags);
477 	}
478 #endif
479 
480 #ifdef CONFIG_PERFMON
481 	if (current->thread.pfm_context)
482 		pfm_inherit(p, child_ptregs);
483 #endif
484 	return retval;
485 }
486 
487 static void
488 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
489 {
490 	unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
491 	elf_greg_t *dst = arg;
492 	struct pt_regs *pt;
493 	char nat;
494 	int i;
495 
496 	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
497 
498 	if (unw_unwind_to_user(info) < 0)
499 		return;
500 
501 	unw_get_sp(info, &sp);
502 	pt = (struct pt_regs *) (sp + 16);
503 
504 	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
505 
506 	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
507 		return;
508 
509 	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
510 		  &ar_rnat);
511 
512 	/*
513 	 * coredump format:
514 	 *	r0-r31
515 	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
516 	 *	predicate registers (p0-p63)
517 	 *	b0-b7
518 	 *	ip cfm user-mask
519 	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
520 	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
521 	 */
522 
523 	/* r0 is zero */
524 	for (i = 1, mask = (1UL << i); i < 32; ++i) {
525 		unw_get_gr(info, i, &dst[i], &nat);
526 		if (nat)
527 			nat_bits |= mask;
528 		mask <<= 1;
529 	}
530 	dst[32] = nat_bits;
531 	unw_get_pr(info, &dst[33]);
532 
533 	for (i = 0; i < 8; ++i)
534 		unw_get_br(info, i, &dst[34 + i]);
535 
536 	unw_get_rp(info, &ip);
537 	dst[42] = ip + ia64_psr(pt)->ri;
538 	dst[43] = cfm;
539 	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
540 
541 	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
542 	/*
543 	 * For bsp and bspstore, unw_get_ar() would return the kernel
544 	 * addresses, but we need the user-level addresses instead:
545 	 */
546 	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
547 	dst[47] = pt->ar_bspstore;
548 	dst[48] = ar_rnat;
549 	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
550 	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
551 	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
552 	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
553 	unw_get_ar(info, UNW_AR_LC, &dst[53]);
554 	unw_get_ar(info, UNW_AR_EC, &dst[54]);
555 	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
556 	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
557 }
558 
559 void
560 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
561 {
562 	elf_fpreg_t *dst = arg;
563 	int i;
564 
565 	memset(dst, 0, sizeof(elf_fpregset_t));	/* don't leak any "random" bits */
566 
567 	if (unw_unwind_to_user(info) < 0)
568 		return;
569 
570 	/* f0 is 0.0, f1 is 1.0 */
571 
572 	for (i = 2; i < 32; ++i)
573 		unw_get_fr(info, i, dst + i);
574 
575 	ia64_flush_fph(task);
576 	if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
577 		memcpy(dst + 32, task->thread.fph, 96*16);
578 }
579 
580 void
581 do_copy_regs (struct unw_frame_info *info, void *arg)
582 {
583 	do_copy_task_regs(current, info, arg);
584 }
585 
586 void
587 do_dump_fpu (struct unw_frame_info *info, void *arg)
588 {
589 	do_dump_task_fpu(current, info, arg);
590 }
591 
592 int
593 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
594 {
595 	struct unw_frame_info tcore_info;
596 
597 	if (current == task) {
598 		unw_init_running(do_copy_regs, regs);
599 	} else {
600 		memset(&tcore_info, 0, sizeof(tcore_info));
601 		unw_init_from_blocked_task(&tcore_info, task);
602 		do_copy_task_regs(task, &tcore_info, regs);
603 	}
604 	return 1;
605 }
606 
607 void
608 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
609 {
610 	unw_init_running(do_copy_regs, dst);
611 }
612 
613 int
614 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
615 {
616 	struct unw_frame_info tcore_info;
617 
618 	if (current == task) {
619 		unw_init_running(do_dump_fpu, dst);
620 	} else {
621 		memset(&tcore_info, 0, sizeof(tcore_info));
622 		unw_init_from_blocked_task(&tcore_info, task);
623 		do_dump_task_fpu(task, &tcore_info, dst);
624 	}
625 	return 1;
626 }
627 
628 int
629 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
630 {
631 	unw_init_running(do_dump_fpu, dst);
632 	return 1;	/* f0-f31 are always valid so we always return 1 */
633 }
634 
635 long
636 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
637 	    struct pt_regs *regs)
638 {
639 	char *fname;
640 	int error;
641 
642 	fname = getname(filename);
643 	error = PTR_ERR(fname);
644 	if (IS_ERR(fname))
645 		goto out;
646 	error = do_execve(fname, argv, envp, regs);
647 	putname(fname);
648 out:
649 	return error;
650 }
651 
652 pid_t
653 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
654 {
655 	extern void start_kernel_thread (void);
656 	unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
657 	struct {
658 		struct switch_stack sw;
659 		struct pt_regs pt;
660 	} regs;
661 
662 	memset(&regs, 0, sizeof(regs));
663 	regs.pt.cr_iip = helper_fptr[0];	/* set entry point (IP) */
664 	regs.pt.r1 = helper_fptr[1];		/* set GP */
665 	regs.pt.r9 = (unsigned long) fn;	/* 1st argument */
666 	regs.pt.r11 = (unsigned long) arg;	/* 2nd argument */
667 	/* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read.  */
668 	regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
669 	regs.pt.cr_ifs = 1UL << 63;		/* mark as valid, empty frame */
670 	regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
671 	regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
672 	regs.sw.pr = (1 << PRED_KERNEL_STACK);
673 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
674 }
675 EXPORT_SYMBOL(kernel_thread);
676 
677 /* This gets called from kernel_thread() via ia64_invoke_thread_helper().  */
678 int
679 kernel_thread_helper (int (*fn)(void *), void *arg)
680 {
681 #ifdef CONFIG_IA32_SUPPORT
682 	if (IS_IA32_PROCESS(ia64_task_regs(current))) {
683 		/* A kernel thread is always a 64-bit process. */
684 		current->thread.map_base  = DEFAULT_MAP_BASE;
685 		current->thread.task_size = DEFAULT_TASK_SIZE;
686 		ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
687 		ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
688 	}
689 #endif
690 	return (*fn)(arg);
691 }
692 
693 /*
694  * Flush thread state.  This is called when a thread does an execve().
695  */
696 void
697 flush_thread (void)
698 {
699 	/* drop floating-point and debug-register state if it exists: */
700 	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
701 	ia64_drop_fpu(current);
702 	if (IS_IA32_PROCESS(ia64_task_regs(current)))
703 		ia32_drop_partial_page_list(current);
704 }
705 
706 /*
707  * Clean up state associated with current thread.  This is called when
708  * the thread calls exit().
709  */
710 void
711 exit_thread (void)
712 {
713 	ia64_drop_fpu(current);
714 #ifdef CONFIG_PERFMON
715        /* if needed, stop monitoring and flush state to perfmon context */
716 	if (current->thread.pfm_context)
717 		pfm_exit_thread(current);
718 
719 	/* free debug register resources */
720 	if (current->thread.flags & IA64_THREAD_DBG_VALID)
721 		pfm_release_debug_registers(current);
722 #endif
723 	if (IS_IA32_PROCESS(ia64_task_regs(current)))
724 		ia32_drop_partial_page_list(current);
725 }
726 
727 unsigned long
728 get_wchan (struct task_struct *p)
729 {
730 	struct unw_frame_info info;
731 	unsigned long ip;
732 	int count = 0;
733 
734 	/*
735 	 * Note: p may not be a blocked task (it could be current or
736 	 * another process running on some other CPU.  Rather than
737 	 * trying to determine if p is really blocked, we just assume
738 	 * it's blocked and rely on the unwind routines to fail
739 	 * gracefully if the process wasn't really blocked after all.
740 	 * --davidm 99/12/15
741 	 */
742 	unw_init_from_blocked_task(&info, p);
743 	do {
744 		if (unw_unwind(&info) < 0)
745 			return 0;
746 		unw_get_ip(&info, &ip);
747 		if (!in_sched_functions(ip))
748 			return ip;
749 	} while (count++ < 16);
750 	return 0;
751 }
752 
753 void
754 cpu_halt (void)
755 {
756 	pal_power_mgmt_info_u_t power_info[8];
757 	unsigned long min_power;
758 	int i, min_power_state;
759 
760 	if (ia64_pal_halt_info(power_info) != 0)
761 		return;
762 
763 	min_power_state = 0;
764 	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
765 	for (i = 1; i < 8; ++i)
766 		if (power_info[i].pal_power_mgmt_info_s.im
767 		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
768 			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
769 			min_power_state = i;
770 		}
771 
772 	while (1)
773 		ia64_pal_halt(min_power_state);
774 }
775 
776 void
777 machine_restart (char *restart_cmd)
778 {
779 	(*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
780 }
781 
782 EXPORT_SYMBOL(machine_restart);
783 
784 void
785 machine_halt (void)
786 {
787 	cpu_halt();
788 }
789 
790 EXPORT_SYMBOL(machine_halt);
791 
792 void
793 machine_power_off (void)
794 {
795 	if (pm_power_off)
796 		pm_power_off();
797 	machine_halt();
798 }
799 
800 EXPORT_SYMBOL(machine_power_off);
801