1 /* 2 * Architecture-specific setup. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 */ 7 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */ 8 #include <linux/config.h> 9 10 #include <linux/cpu.h> 11 #include <linux/pm.h> 12 #include <linux/elf.h> 13 #include <linux/errno.h> 14 #include <linux/kallsyms.h> 15 #include <linux/kernel.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/notifier.h> 19 #include <linux/personality.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/smp_lock.h> 23 #include <linux/stddef.h> 24 #include <linux/thread_info.h> 25 #include <linux/unistd.h> 26 #include <linux/efi.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 30 #include <asm/cpu.h> 31 #include <asm/delay.h> 32 #include <asm/elf.h> 33 #include <asm/ia32.h> 34 #include <asm/irq.h> 35 #include <asm/pgalloc.h> 36 #include <asm/processor.h> 37 #include <asm/sal.h> 38 #include <asm/tlbflush.h> 39 #include <asm/uaccess.h> 40 #include <asm/unwind.h> 41 #include <asm/user.h> 42 43 #include "entry.h" 44 45 #ifdef CONFIG_PERFMON 46 # include <asm/perfmon.h> 47 #endif 48 49 #include "sigframe.h" 50 51 void (*ia64_mark_idle)(int); 52 static cpumask_t cpu_idle_map; 53 54 unsigned long boot_option_idle_override = 0; 55 EXPORT_SYMBOL(boot_option_idle_override); 56 57 void 58 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 59 { 60 unsigned long ip, sp, bsp; 61 char buf[128]; /* don't make it so big that it overflows the stack! */ 62 63 printk("\nCall Trace:\n"); 64 do { 65 unw_get_ip(info, &ip); 66 if (ip == 0) 67 break; 68 69 unw_get_sp(info, &sp); 70 unw_get_bsp(info, &bsp); 71 snprintf(buf, sizeof(buf), 72 " [<%016lx>] %%s\n" 73 " sp=%016lx bsp=%016lx\n", 74 ip, sp, bsp); 75 print_symbol(buf, ip); 76 } while (unw_unwind(info) >= 0); 77 } 78 79 void 80 show_stack (struct task_struct *task, unsigned long *sp) 81 { 82 if (!task) 83 unw_init_running(ia64_do_show_stack, NULL); 84 else { 85 struct unw_frame_info info; 86 87 unw_init_from_blocked_task(&info, task); 88 ia64_do_show_stack(&info, NULL); 89 } 90 } 91 92 void 93 dump_stack (void) 94 { 95 show_stack(NULL, NULL); 96 } 97 98 EXPORT_SYMBOL(dump_stack); 99 100 void 101 show_regs (struct pt_regs *regs) 102 { 103 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 104 105 print_modules(); 106 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm); 107 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n", 108 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted()); 109 print_symbol("ip is at %s\n", ip); 110 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 111 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 112 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 113 regs->ar_rnat, regs->ar_bspstore, regs->pr); 114 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 115 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 116 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 117 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 118 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 119 regs->f6.u.bits[1], regs->f6.u.bits[0], 120 regs->f7.u.bits[1], regs->f7.u.bits[0]); 121 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 122 regs->f8.u.bits[1], regs->f8.u.bits[0], 123 regs->f9.u.bits[1], regs->f9.u.bits[0]); 124 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 125 regs->f10.u.bits[1], regs->f10.u.bits[0], 126 regs->f11.u.bits[1], regs->f11.u.bits[0]); 127 128 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 129 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 130 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 131 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 132 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 133 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 134 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 135 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 136 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 137 138 if (user_mode(regs)) { 139 /* print the stacked registers */ 140 unsigned long val, *bsp, ndirty; 141 int i, sof, is_nat = 0; 142 143 sof = regs->cr_ifs & 0x7f; /* size of frame */ 144 ndirty = (regs->loadrs >> 19); 145 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 146 for (i = 0; i < sof; ++i) { 147 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 148 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 149 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 150 } 151 } else 152 show_stack(NULL, NULL); 153 } 154 155 void 156 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall) 157 { 158 if (fsys_mode(current, &scr->pt)) { 159 /* defer signal-handling etc. until we return to privilege-level 0. */ 160 if (!ia64_psr(&scr->pt)->lp) 161 ia64_psr(&scr->pt)->lp = 1; 162 return; 163 } 164 165 #ifdef CONFIG_PERFMON 166 if (current->thread.pfm_needs_checking) 167 pfm_handle_work(); 168 #endif 169 170 /* deal with pending signal delivery */ 171 if (test_thread_flag(TIF_SIGPENDING)) 172 ia64_do_signal(oldset, scr, in_syscall); 173 } 174 175 static int pal_halt = 1; 176 static int __init nohalt_setup(char * str) 177 { 178 pal_halt = 0; 179 return 1; 180 } 181 __setup("nohalt", nohalt_setup); 182 183 /* 184 * We use this if we don't have any better idle routine.. 185 */ 186 void 187 default_idle (void) 188 { 189 unsigned long pmu_active = ia64_getreg(_IA64_REG_PSR) & (IA64_PSR_PP | IA64_PSR_UP); 190 191 while (!need_resched()) 192 if (pal_halt && !pmu_active) 193 safe_halt(); 194 else 195 cpu_relax(); 196 } 197 198 #ifdef CONFIG_HOTPLUG_CPU 199 /* We don't actually take CPU down, just spin without interrupts. */ 200 static inline void play_dead(void) 201 { 202 extern void ia64_cpu_local_tick (void); 203 /* Ack it */ 204 __get_cpu_var(cpu_state) = CPU_DEAD; 205 206 /* We shouldn't have to disable interrupts while dead, but 207 * some interrupts just don't seem to go away, and this makes 208 * it "work" for testing purposes. */ 209 max_xtp(); 210 local_irq_disable(); 211 /* Death loop */ 212 while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE) 213 cpu_relax(); 214 215 /* 216 * Enable timer interrupts from now on 217 * Not required if we put processor in SAL_BOOT_RENDEZ mode. 218 */ 219 local_flush_tlb_all(); 220 cpu_set(smp_processor_id(), cpu_online_map); 221 wmb(); 222 ia64_cpu_local_tick (); 223 local_irq_enable(); 224 } 225 #else 226 static inline void play_dead(void) 227 { 228 BUG(); 229 } 230 #endif /* CONFIG_HOTPLUG_CPU */ 231 232 233 void cpu_idle_wait(void) 234 { 235 int cpu; 236 cpumask_t map; 237 238 for_each_online_cpu(cpu) 239 cpu_set(cpu, cpu_idle_map); 240 241 wmb(); 242 do { 243 ssleep(1); 244 cpus_and(map, cpu_idle_map, cpu_online_map); 245 } while (!cpus_empty(map)); 246 } 247 EXPORT_SYMBOL_GPL(cpu_idle_wait); 248 249 void __attribute__((noreturn)) 250 cpu_idle (void) 251 { 252 void (*mark_idle)(int) = ia64_mark_idle; 253 int cpu = smp_processor_id(); 254 255 /* endless idle loop with no priority at all */ 256 while (1) { 257 #ifdef CONFIG_SMP 258 if (!need_resched()) 259 min_xtp(); 260 #endif 261 while (!need_resched()) { 262 void (*idle)(void); 263 264 if (mark_idle) 265 (*mark_idle)(1); 266 267 if (cpu_isset(cpu, cpu_idle_map)) 268 cpu_clear(cpu, cpu_idle_map); 269 rmb(); 270 idle = pm_idle; 271 if (!idle) 272 idle = default_idle; 273 (*idle)(); 274 } 275 276 if (mark_idle) 277 (*mark_idle)(0); 278 279 #ifdef CONFIG_SMP 280 normal_xtp(); 281 #endif 282 schedule(); 283 check_pgt_cache(); 284 if (cpu_is_offline(smp_processor_id())) 285 play_dead(); 286 } 287 } 288 289 void 290 ia64_save_extra (struct task_struct *task) 291 { 292 #ifdef CONFIG_PERFMON 293 unsigned long info; 294 #endif 295 296 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 297 ia64_save_debug_regs(&task->thread.dbr[0]); 298 299 #ifdef CONFIG_PERFMON 300 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 301 pfm_save_regs(task); 302 303 info = __get_cpu_var(pfm_syst_info); 304 if (info & PFM_CPUINFO_SYST_WIDE) 305 pfm_syst_wide_update_task(task, info, 0); 306 #endif 307 308 #ifdef CONFIG_IA32_SUPPORT 309 if (IS_IA32_PROCESS(ia64_task_regs(task))) 310 ia32_save_state(task); 311 #endif 312 } 313 314 void 315 ia64_load_extra (struct task_struct *task) 316 { 317 #ifdef CONFIG_PERFMON 318 unsigned long info; 319 #endif 320 321 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 322 ia64_load_debug_regs(&task->thread.dbr[0]); 323 324 #ifdef CONFIG_PERFMON 325 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 326 pfm_load_regs(task); 327 328 info = __get_cpu_var(pfm_syst_info); 329 if (info & PFM_CPUINFO_SYST_WIDE) 330 pfm_syst_wide_update_task(task, info, 1); 331 #endif 332 333 #ifdef CONFIG_IA32_SUPPORT 334 if (IS_IA32_PROCESS(ia64_task_regs(task))) 335 ia32_load_state(task); 336 #endif 337 } 338 339 /* 340 * Copy the state of an ia-64 thread. 341 * 342 * We get here through the following call chain: 343 * 344 * from user-level: from kernel: 345 * 346 * <clone syscall> <some kernel call frames> 347 * sys_clone : 348 * do_fork do_fork 349 * copy_thread copy_thread 350 * 351 * This means that the stack layout is as follows: 352 * 353 * +---------------------+ (highest addr) 354 * | struct pt_regs | 355 * +---------------------+ 356 * | struct switch_stack | 357 * +---------------------+ 358 * | | 359 * | memory stack | 360 * | | <-- sp (lowest addr) 361 * +---------------------+ 362 * 363 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 364 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 365 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 366 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 367 * the stack is page aligned and the page size is at least 4KB, this is always the case, 368 * so there is nothing to worry about. 369 */ 370 int 371 copy_thread (int nr, unsigned long clone_flags, 372 unsigned long user_stack_base, unsigned long user_stack_size, 373 struct task_struct *p, struct pt_regs *regs) 374 { 375 extern char ia64_ret_from_clone, ia32_ret_from_clone; 376 struct switch_stack *child_stack, *stack; 377 unsigned long rbs, child_rbs, rbs_size; 378 struct pt_regs *child_ptregs; 379 int retval = 0; 380 381 #ifdef CONFIG_SMP 382 /* 383 * For SMP idle threads, fork_by_hand() calls do_fork with 384 * NULL regs. 385 */ 386 if (!regs) 387 return 0; 388 #endif 389 390 stack = ((struct switch_stack *) regs) - 1; 391 392 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 393 child_stack = (struct switch_stack *) child_ptregs - 1; 394 395 /* copy parent's switch_stack & pt_regs to child: */ 396 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 397 398 rbs = (unsigned long) current + IA64_RBS_OFFSET; 399 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 400 rbs_size = stack->ar_bspstore - rbs; 401 402 /* copy the parent's register backing store to the child: */ 403 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 404 405 if (likely(user_mode(child_ptregs))) { 406 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs)) 407 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 408 if (user_stack_base) { 409 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 410 child_ptregs->ar_bspstore = user_stack_base; 411 child_ptregs->ar_rnat = 0; 412 child_ptregs->loadrs = 0; 413 } 414 } else { 415 /* 416 * Note: we simply preserve the relative position of 417 * the stack pointer here. There is no need to 418 * allocate a scratch area here, since that will have 419 * been taken care of by the caller of sys_clone() 420 * already. 421 */ 422 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */ 423 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */ 424 } 425 child_stack->ar_bspstore = child_rbs + rbs_size; 426 if (IS_IA32_PROCESS(regs)) 427 child_stack->b0 = (unsigned long) &ia32_ret_from_clone; 428 else 429 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 430 431 /* copy parts of thread_struct: */ 432 p->thread.ksp = (unsigned long) child_stack - 16; 433 434 /* stop some PSR bits from being inherited. 435 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 436 * therefore we must specify them explicitly here and not include them in 437 * IA64_PSR_BITS_TO_CLEAR. 438 */ 439 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 440 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 441 442 /* 443 * NOTE: The calling convention considers all floating point 444 * registers in the high partition (fph) to be scratch. Since 445 * the only way to get to this point is through a system call, 446 * we know that the values in fph are all dead. Hence, there 447 * is no need to inherit the fph state from the parent to the 448 * child and all we have to do is to make sure that 449 * IA64_THREAD_FPH_VALID is cleared in the child. 450 * 451 * XXX We could push this optimization a bit further by 452 * clearing IA64_THREAD_FPH_VALID on ANY system call. 453 * However, it's not clear this is worth doing. Also, it 454 * would be a slight deviation from the normal Linux system 455 * call behavior where scratch registers are preserved across 456 * system calls (unless used by the system call itself). 457 */ 458 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 459 | IA64_THREAD_PM_VALID) 460 # define THREAD_FLAGS_TO_SET 0 461 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 462 | THREAD_FLAGS_TO_SET); 463 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 464 #ifdef CONFIG_IA32_SUPPORT 465 /* 466 * If we're cloning an IA32 task then save the IA32 extra 467 * state from the current task to the new task 468 */ 469 if (IS_IA32_PROCESS(ia64_task_regs(current))) { 470 ia32_save_state(p); 471 if (clone_flags & CLONE_SETTLS) 472 retval = ia32_clone_tls(p, child_ptregs); 473 474 /* Copy partially mapped page list */ 475 if (!retval) 476 retval = ia32_copy_partial_page_list(p, clone_flags); 477 } 478 #endif 479 480 #ifdef CONFIG_PERFMON 481 if (current->thread.pfm_context) 482 pfm_inherit(p, child_ptregs); 483 #endif 484 return retval; 485 } 486 487 static void 488 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 489 { 490 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm; 491 elf_greg_t *dst = arg; 492 struct pt_regs *pt; 493 char nat; 494 int i; 495 496 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 497 498 if (unw_unwind_to_user(info) < 0) 499 return; 500 501 unw_get_sp(info, &sp); 502 pt = (struct pt_regs *) (sp + 16); 503 504 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 505 506 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 507 return; 508 509 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 510 &ar_rnat); 511 512 /* 513 * coredump format: 514 * r0-r31 515 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 516 * predicate registers (p0-p63) 517 * b0-b7 518 * ip cfm user-mask 519 * ar.rsc ar.bsp ar.bspstore ar.rnat 520 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 521 */ 522 523 /* r0 is zero */ 524 for (i = 1, mask = (1UL << i); i < 32; ++i) { 525 unw_get_gr(info, i, &dst[i], &nat); 526 if (nat) 527 nat_bits |= mask; 528 mask <<= 1; 529 } 530 dst[32] = nat_bits; 531 unw_get_pr(info, &dst[33]); 532 533 for (i = 0; i < 8; ++i) 534 unw_get_br(info, i, &dst[34 + i]); 535 536 unw_get_rp(info, &ip); 537 dst[42] = ip + ia64_psr(pt)->ri; 538 dst[43] = cfm; 539 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 540 541 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 542 /* 543 * For bsp and bspstore, unw_get_ar() would return the kernel 544 * addresses, but we need the user-level addresses instead: 545 */ 546 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 547 dst[47] = pt->ar_bspstore; 548 dst[48] = ar_rnat; 549 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 550 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 551 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 552 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 553 unw_get_ar(info, UNW_AR_LC, &dst[53]); 554 unw_get_ar(info, UNW_AR_EC, &dst[54]); 555 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 556 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 557 } 558 559 void 560 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 561 { 562 elf_fpreg_t *dst = arg; 563 int i; 564 565 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 566 567 if (unw_unwind_to_user(info) < 0) 568 return; 569 570 /* f0 is 0.0, f1 is 1.0 */ 571 572 for (i = 2; i < 32; ++i) 573 unw_get_fr(info, i, dst + i); 574 575 ia64_flush_fph(task); 576 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 577 memcpy(dst + 32, task->thread.fph, 96*16); 578 } 579 580 void 581 do_copy_regs (struct unw_frame_info *info, void *arg) 582 { 583 do_copy_task_regs(current, info, arg); 584 } 585 586 void 587 do_dump_fpu (struct unw_frame_info *info, void *arg) 588 { 589 do_dump_task_fpu(current, info, arg); 590 } 591 592 int 593 dump_task_regs(struct task_struct *task, elf_gregset_t *regs) 594 { 595 struct unw_frame_info tcore_info; 596 597 if (current == task) { 598 unw_init_running(do_copy_regs, regs); 599 } else { 600 memset(&tcore_info, 0, sizeof(tcore_info)); 601 unw_init_from_blocked_task(&tcore_info, task); 602 do_copy_task_regs(task, &tcore_info, regs); 603 } 604 return 1; 605 } 606 607 void 608 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 609 { 610 unw_init_running(do_copy_regs, dst); 611 } 612 613 int 614 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst) 615 { 616 struct unw_frame_info tcore_info; 617 618 if (current == task) { 619 unw_init_running(do_dump_fpu, dst); 620 } else { 621 memset(&tcore_info, 0, sizeof(tcore_info)); 622 unw_init_from_blocked_task(&tcore_info, task); 623 do_dump_task_fpu(task, &tcore_info, dst); 624 } 625 return 1; 626 } 627 628 int 629 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 630 { 631 unw_init_running(do_dump_fpu, dst); 632 return 1; /* f0-f31 are always valid so we always return 1 */ 633 } 634 635 long 636 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp, 637 struct pt_regs *regs) 638 { 639 char *fname; 640 int error; 641 642 fname = getname(filename); 643 error = PTR_ERR(fname); 644 if (IS_ERR(fname)) 645 goto out; 646 error = do_execve(fname, argv, envp, regs); 647 putname(fname); 648 out: 649 return error; 650 } 651 652 pid_t 653 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) 654 { 655 extern void start_kernel_thread (void); 656 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread; 657 struct { 658 struct switch_stack sw; 659 struct pt_regs pt; 660 } regs; 661 662 memset(®s, 0, sizeof(regs)); 663 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */ 664 regs.pt.r1 = helper_fptr[1]; /* set GP */ 665 regs.pt.r9 = (unsigned long) fn; /* 1st argument */ 666 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */ 667 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */ 668 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 669 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */ 670 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR); 671 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET; 672 regs.sw.pr = (1 << PRED_KERNEL_STACK); 673 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL); 674 } 675 EXPORT_SYMBOL(kernel_thread); 676 677 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */ 678 int 679 kernel_thread_helper (int (*fn)(void *), void *arg) 680 { 681 #ifdef CONFIG_IA32_SUPPORT 682 if (IS_IA32_PROCESS(ia64_task_regs(current))) { 683 /* A kernel thread is always a 64-bit process. */ 684 current->thread.map_base = DEFAULT_MAP_BASE; 685 current->thread.task_size = DEFAULT_TASK_SIZE; 686 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); 687 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); 688 } 689 #endif 690 return (*fn)(arg); 691 } 692 693 /* 694 * Flush thread state. This is called when a thread does an execve(). 695 */ 696 void 697 flush_thread (void) 698 { 699 /* drop floating-point and debug-register state if it exists: */ 700 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 701 ia64_drop_fpu(current); 702 if (IS_IA32_PROCESS(ia64_task_regs(current))) 703 ia32_drop_partial_page_list(current); 704 } 705 706 /* 707 * Clean up state associated with current thread. This is called when 708 * the thread calls exit(). 709 */ 710 void 711 exit_thread (void) 712 { 713 ia64_drop_fpu(current); 714 #ifdef CONFIG_PERFMON 715 /* if needed, stop monitoring and flush state to perfmon context */ 716 if (current->thread.pfm_context) 717 pfm_exit_thread(current); 718 719 /* free debug register resources */ 720 if (current->thread.flags & IA64_THREAD_DBG_VALID) 721 pfm_release_debug_registers(current); 722 #endif 723 if (IS_IA32_PROCESS(ia64_task_regs(current))) 724 ia32_drop_partial_page_list(current); 725 } 726 727 unsigned long 728 get_wchan (struct task_struct *p) 729 { 730 struct unw_frame_info info; 731 unsigned long ip; 732 int count = 0; 733 734 /* 735 * Note: p may not be a blocked task (it could be current or 736 * another process running on some other CPU. Rather than 737 * trying to determine if p is really blocked, we just assume 738 * it's blocked and rely on the unwind routines to fail 739 * gracefully if the process wasn't really blocked after all. 740 * --davidm 99/12/15 741 */ 742 unw_init_from_blocked_task(&info, p); 743 do { 744 if (unw_unwind(&info) < 0) 745 return 0; 746 unw_get_ip(&info, &ip); 747 if (!in_sched_functions(ip)) 748 return ip; 749 } while (count++ < 16); 750 return 0; 751 } 752 753 void 754 cpu_halt (void) 755 { 756 pal_power_mgmt_info_u_t power_info[8]; 757 unsigned long min_power; 758 int i, min_power_state; 759 760 if (ia64_pal_halt_info(power_info) != 0) 761 return; 762 763 min_power_state = 0; 764 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 765 for (i = 1; i < 8; ++i) 766 if (power_info[i].pal_power_mgmt_info_s.im 767 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 768 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 769 min_power_state = i; 770 } 771 772 while (1) 773 ia64_pal_halt(min_power_state); 774 } 775 776 void 777 machine_restart (char *restart_cmd) 778 { 779 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL); 780 } 781 782 EXPORT_SYMBOL(machine_restart); 783 784 void 785 machine_halt (void) 786 { 787 cpu_halt(); 788 } 789 790 EXPORT_SYMBOL(machine_halt); 791 792 void 793 machine_power_off (void) 794 { 795 if (pm_power_off) 796 pm_power_off(); 797 machine_halt(); 798 } 799 800 EXPORT_SYMBOL(machine_power_off); 801