xref: /openbmc/linux/arch/ia64/kernel/process.c (revision 0edabdfe89581669609eaac5f6a8d0ae6fe95e7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Architecture-specific setup.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
8  *
9  * 2005-10-07 Keith Owens <kaos@sgi.com>
10  *	      Add notify_die() hooks.
11  */
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/elf.h>
15 #include <linux/errno.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/sched/task.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/stddef.h>
28 #include <linux/thread_info.h>
29 #include <linux/unistd.h>
30 #include <linux/efi.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/kdebug.h>
34 #include <linux/utsname.h>
35 #include <linux/tracehook.h>
36 #include <linux/rcupdate.h>
37 
38 #include <asm/cpu.h>
39 #include <asm/delay.h>
40 #include <asm/elf.h>
41 #include <asm/irq.h>
42 #include <asm/kexec.h>
43 #include <asm/processor.h>
44 #include <asm/sal.h>
45 #include <asm/switch_to.h>
46 #include <asm/tlbflush.h>
47 #include <linux/uaccess.h>
48 #include <asm/unwind.h>
49 #include <asm/user.h>
50 #include <asm/xtp.h>
51 
52 #include "entry.h"
53 
54 #include "sigframe.h"
55 
56 void (*ia64_mark_idle)(int);
57 
58 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
59 EXPORT_SYMBOL(boot_option_idle_override);
60 void (*pm_power_off) (void);
61 EXPORT_SYMBOL(pm_power_off);
62 
63 static void
64 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
65 {
66 	unsigned long ip, sp, bsp;
67 	const char *loglvl = arg;
68 
69 	printk("%s\nCall Trace:\n", loglvl);
70 	do {
71 		unw_get_ip(info, &ip);
72 		if (ip == 0)
73 			break;
74 
75 		unw_get_sp(info, &sp);
76 		unw_get_bsp(info, &bsp);
77 		printk("%s [<%016lx>] %pS\n"
78 			 "                                sp=%016lx bsp=%016lx\n",
79 			 loglvl, ip, (void *)ip, sp, bsp);
80 	} while (unw_unwind(info) >= 0);
81 }
82 
83 void
84 show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
85 {
86 	if (!task)
87 		unw_init_running(ia64_do_show_stack, (void *)loglvl);
88 	else {
89 		struct unw_frame_info info;
90 
91 		unw_init_from_blocked_task(&info, task);
92 		ia64_do_show_stack(&info, (void *)loglvl);
93 	}
94 }
95 
96 void
97 show_regs (struct pt_regs *regs)
98 {
99 	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
100 
101 	print_modules();
102 	printk("\n");
103 	show_regs_print_info(KERN_DEFAULT);
104 	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
105 	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
106 	       init_utsname()->release);
107 	printk("ip is at %pS\n", (void *)ip);
108 	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
109 	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
110 	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
111 	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
112 	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
113 	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
114 	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
115 	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
116 	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
117 	       regs->f6.u.bits[1], regs->f6.u.bits[0],
118 	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
119 	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
120 	       regs->f8.u.bits[1], regs->f8.u.bits[0],
121 	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
122 	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
123 	       regs->f10.u.bits[1], regs->f10.u.bits[0],
124 	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
125 
126 	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
127 	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
128 	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
129 	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
130 	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
131 	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
132 	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
133 	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
134 	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
135 
136 	if (user_mode(regs)) {
137 		/* print the stacked registers */
138 		unsigned long val, *bsp, ndirty;
139 		int i, sof, is_nat = 0;
140 
141 		sof = regs->cr_ifs & 0x7f;	/* size of frame */
142 		ndirty = (regs->loadrs >> 19);
143 		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
144 		for (i = 0; i < sof; ++i) {
145 			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
146 			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
147 			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
148 		}
149 	} else
150 		show_stack(NULL, NULL, KERN_DEFAULT);
151 }
152 
153 /* local support for deprecated console_print */
154 void
155 console_print(const char *s)
156 {
157 	printk(KERN_EMERG "%s", s);
158 }
159 
160 void
161 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
162 {
163 	if (fsys_mode(current, &scr->pt)) {
164 		/*
165 		 * defer signal-handling etc. until we return to
166 		 * privilege-level 0.
167 		 */
168 		if (!ia64_psr(&scr->pt)->lp)
169 			ia64_psr(&scr->pt)->lp = 1;
170 		return;
171 	}
172 
173 	/* deal with pending signal delivery */
174 	if (test_thread_flag(TIF_SIGPENDING) ||
175 	    test_thread_flag(TIF_NOTIFY_SIGNAL)) {
176 		local_irq_enable();	/* force interrupt enable */
177 		ia64_do_signal(scr, in_syscall);
178 	}
179 
180 	if (test_thread_flag(TIF_NOTIFY_RESUME)) {
181 		local_irq_enable();	/* force interrupt enable */
182 		tracehook_notify_resume(&scr->pt);
183 	}
184 
185 	/* copy user rbs to kernel rbs */
186 	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
187 		local_irq_enable();	/* force interrupt enable */
188 		ia64_sync_krbs();
189 	}
190 
191 	local_irq_disable();	/* force interrupt disable */
192 }
193 
194 static int __init nohalt_setup(char * str)
195 {
196 	cpu_idle_poll_ctrl(true);
197 	return 1;
198 }
199 __setup("nohalt", nohalt_setup);
200 
201 #ifdef CONFIG_HOTPLUG_CPU
202 /* We don't actually take CPU down, just spin without interrupts. */
203 static inline void play_dead(void)
204 {
205 	unsigned int this_cpu = smp_processor_id();
206 
207 	/* Ack it */
208 	__this_cpu_write(cpu_state, CPU_DEAD);
209 
210 	max_xtp();
211 	local_irq_disable();
212 	idle_task_exit();
213 	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
214 	/*
215 	 * The above is a point of no-return, the processor is
216 	 * expected to be in SAL loop now.
217 	 */
218 	BUG();
219 }
220 #else
221 static inline void play_dead(void)
222 {
223 	BUG();
224 }
225 #endif /* CONFIG_HOTPLUG_CPU */
226 
227 void arch_cpu_idle_dead(void)
228 {
229 	play_dead();
230 }
231 
232 void arch_cpu_idle(void)
233 {
234 	void (*mark_idle)(int) = ia64_mark_idle;
235 
236 #ifdef CONFIG_SMP
237 	min_xtp();
238 #endif
239 	rmb();
240 	if (mark_idle)
241 		(*mark_idle)(1);
242 
243 	raw_safe_halt();
244 
245 	if (mark_idle)
246 		(*mark_idle)(0);
247 #ifdef CONFIG_SMP
248 	normal_xtp();
249 #endif
250 }
251 
252 void
253 ia64_save_extra (struct task_struct *task)
254 {
255 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
256 		ia64_save_debug_regs(&task->thread.dbr[0]);
257 }
258 
259 void
260 ia64_load_extra (struct task_struct *task)
261 {
262 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
263 		ia64_load_debug_regs(&task->thread.dbr[0]);
264 }
265 
266 /*
267  * Copy the state of an ia-64 thread.
268  *
269  * We get here through the following  call chain:
270  *
271  *	from user-level:	from kernel:
272  *
273  *	<clone syscall>	        <some kernel call frames>
274  *	sys_clone		   :
275  *	kernel_clone		kernel_clone
276  *	copy_thread		copy_thread
277  *
278  * This means that the stack layout is as follows:
279  *
280  *	+---------------------+ (highest addr)
281  *	|   struct pt_regs    |
282  *	+---------------------+
283  *	| struct switch_stack |
284  *	+---------------------+
285  *	|                     |
286  *	|    memory stack     |
287  *	|                     | <-- sp (lowest addr)
288  *	+---------------------+
289  *
290  * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
291  * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
292  * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
293  * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
294  * the stack is page aligned and the page size is at least 4KB, this is always the case,
295  * so there is nothing to worry about.
296  */
297 int
298 copy_thread(unsigned long clone_flags, unsigned long user_stack_base,
299 	    unsigned long user_stack_size, struct task_struct *p, unsigned long tls)
300 {
301 	extern char ia64_ret_from_clone;
302 	struct switch_stack *child_stack, *stack;
303 	unsigned long rbs, child_rbs, rbs_size;
304 	struct pt_regs *child_ptregs;
305 	struct pt_regs *regs = current_pt_regs();
306 	int retval = 0;
307 
308 	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
309 	child_stack = (struct switch_stack *) child_ptregs - 1;
310 
311 	rbs = (unsigned long) current + IA64_RBS_OFFSET;
312 	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
313 
314 	/* copy parts of thread_struct: */
315 	p->thread.ksp = (unsigned long) child_stack - 16;
316 
317 	/*
318 	 * NOTE: The calling convention considers all floating point
319 	 * registers in the high partition (fph) to be scratch.  Since
320 	 * the only way to get to this point is through a system call,
321 	 * we know that the values in fph are all dead.  Hence, there
322 	 * is no need to inherit the fph state from the parent to the
323 	 * child and all we have to do is to make sure that
324 	 * IA64_THREAD_FPH_VALID is cleared in the child.
325 	 *
326 	 * XXX We could push this optimization a bit further by
327 	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
328 	 * However, it's not clear this is worth doing.  Also, it
329 	 * would be a slight deviation from the normal Linux system
330 	 * call behavior where scratch registers are preserved across
331 	 * system calls (unless used by the system call itself).
332 	 */
333 #	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
334 					 | IA64_THREAD_PM_VALID)
335 #	define THREAD_FLAGS_TO_SET	0
336 	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
337 			   | THREAD_FLAGS_TO_SET);
338 
339 	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
340 
341 	if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
342 		if (unlikely(!user_stack_base)) {
343 			/* fork_idle() called us */
344 			return 0;
345 		}
346 		memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
347 		child_stack->r4 = user_stack_base;	/* payload */
348 		child_stack->r5 = user_stack_size;	/* argument */
349 		/*
350 		 * Preserve PSR bits, except for bits 32-34 and 37-45,
351 		 * which we can't read.
352 		 */
353 		child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
354 		/* mark as valid, empty frame */
355 		child_ptregs->cr_ifs = 1UL << 63;
356 		child_stack->ar_fpsr = child_ptregs->ar_fpsr
357 			= ia64_getreg(_IA64_REG_AR_FPSR);
358 		child_stack->pr = (1 << PRED_KERNEL_STACK);
359 		child_stack->ar_bspstore = child_rbs;
360 		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
361 
362 		/* stop some PSR bits from being inherited.
363 		 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
364 		 * therefore we must specify them explicitly here and not include them in
365 		 * IA64_PSR_BITS_TO_CLEAR.
366 		 */
367 		child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
368 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
369 
370 		return 0;
371 	}
372 	stack = ((struct switch_stack *) regs) - 1;
373 	/* copy parent's switch_stack & pt_regs to child: */
374 	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
375 
376 	/* copy the parent's register backing store to the child: */
377 	rbs_size = stack->ar_bspstore - rbs;
378 	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
379 	if (clone_flags & CLONE_SETTLS)
380 		child_ptregs->r13 = tls;
381 	if (user_stack_base) {
382 		child_ptregs->r12 = user_stack_base + user_stack_size - 16;
383 		child_ptregs->ar_bspstore = user_stack_base;
384 		child_ptregs->ar_rnat = 0;
385 		child_ptregs->loadrs = 0;
386 	}
387 	child_stack->ar_bspstore = child_rbs + rbs_size;
388 	child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
389 
390 	/* stop some PSR bits from being inherited.
391 	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
392 	 * therefore we must specify them explicitly here and not include them in
393 	 * IA64_PSR_BITS_TO_CLEAR.
394 	 */
395 	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
396 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
397 	return retval;
398 }
399 
400 asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
401 			   unsigned long stack_size, unsigned long parent_tidptr,
402 			   unsigned long child_tidptr, unsigned long tls)
403 {
404 	struct kernel_clone_args args = {
405 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
406 		.pidfd		= (int __user *)parent_tidptr,
407 		.child_tid	= (int __user *)child_tidptr,
408 		.parent_tid	= (int __user *)parent_tidptr,
409 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
410 		.stack		= stack_start,
411 		.stack_size	= stack_size,
412 		.tls		= tls,
413 	};
414 
415 	return kernel_clone(&args);
416 }
417 
418 static void
419 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
420 {
421 	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
422 	unsigned long ip;
423 	elf_greg_t *dst = arg;
424 	struct pt_regs *pt;
425 	char nat;
426 	int i;
427 
428 	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
429 
430 	if (unw_unwind_to_user(info) < 0)
431 		return;
432 
433 	unw_get_sp(info, &sp);
434 	pt = (struct pt_regs *) (sp + 16);
435 
436 	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
437 
438 	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
439 		return;
440 
441 	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
442 		  &ar_rnat);
443 
444 	/*
445 	 * coredump format:
446 	 *	r0-r31
447 	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
448 	 *	predicate registers (p0-p63)
449 	 *	b0-b7
450 	 *	ip cfm user-mask
451 	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
452 	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
453 	 */
454 
455 	/* r0 is zero */
456 	for (i = 1, mask = (1UL << i); i < 32; ++i) {
457 		unw_get_gr(info, i, &dst[i], &nat);
458 		if (nat)
459 			nat_bits |= mask;
460 		mask <<= 1;
461 	}
462 	dst[32] = nat_bits;
463 	unw_get_pr(info, &dst[33]);
464 
465 	for (i = 0; i < 8; ++i)
466 		unw_get_br(info, i, &dst[34 + i]);
467 
468 	unw_get_rp(info, &ip);
469 	dst[42] = ip + ia64_psr(pt)->ri;
470 	dst[43] = cfm;
471 	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
472 
473 	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
474 	/*
475 	 * For bsp and bspstore, unw_get_ar() would return the kernel
476 	 * addresses, but we need the user-level addresses instead:
477 	 */
478 	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
479 	dst[47] = pt->ar_bspstore;
480 	dst[48] = ar_rnat;
481 	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
482 	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
483 	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
484 	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
485 	unw_get_ar(info, UNW_AR_LC, &dst[53]);
486 	unw_get_ar(info, UNW_AR_EC, &dst[54]);
487 	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
488 	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
489 }
490 
491 static void
492 do_copy_regs (struct unw_frame_info *info, void *arg)
493 {
494 	do_copy_task_regs(current, info, arg);
495 }
496 
497 void
498 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
499 {
500 	unw_init_running(do_copy_regs, dst);
501 }
502 
503 /*
504  * Flush thread state.  This is called when a thread does an execve().
505  */
506 void
507 flush_thread (void)
508 {
509 	/* drop floating-point and debug-register state if it exists: */
510 	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
511 	ia64_drop_fpu(current);
512 }
513 
514 /*
515  * Clean up state associated with a thread.  This is called when
516  * the thread calls exit().
517  */
518 void
519 exit_thread (struct task_struct *tsk)
520 {
521 
522 	ia64_drop_fpu(tsk);
523 }
524 
525 unsigned long
526 get_wchan (struct task_struct *p)
527 {
528 	struct unw_frame_info info;
529 	unsigned long ip;
530 	int count = 0;
531 
532 	if (!p || p == current || p->state == TASK_RUNNING)
533 		return 0;
534 
535 	/*
536 	 * Note: p may not be a blocked task (it could be current or
537 	 * another process running on some other CPU.  Rather than
538 	 * trying to determine if p is really blocked, we just assume
539 	 * it's blocked and rely on the unwind routines to fail
540 	 * gracefully if the process wasn't really blocked after all.
541 	 * --davidm 99/12/15
542 	 */
543 	unw_init_from_blocked_task(&info, p);
544 	do {
545 		if (p->state == TASK_RUNNING)
546 			return 0;
547 		if (unw_unwind(&info) < 0)
548 			return 0;
549 		unw_get_ip(&info, &ip);
550 		if (!in_sched_functions(ip))
551 			return ip;
552 	} while (count++ < 16);
553 	return 0;
554 }
555 
556 void
557 cpu_halt (void)
558 {
559 	pal_power_mgmt_info_u_t power_info[8];
560 	unsigned long min_power;
561 	int i, min_power_state;
562 
563 	if (ia64_pal_halt_info(power_info) != 0)
564 		return;
565 
566 	min_power_state = 0;
567 	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
568 	for (i = 1; i < 8; ++i)
569 		if (power_info[i].pal_power_mgmt_info_s.im
570 		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
571 			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
572 			min_power_state = i;
573 		}
574 
575 	while (1)
576 		ia64_pal_halt(min_power_state);
577 }
578 
579 void machine_shutdown(void)
580 {
581 	smp_shutdown_nonboot_cpus(reboot_cpu);
582 
583 #ifdef CONFIG_KEXEC
584 	kexec_disable_iosapic();
585 #endif
586 }
587 
588 void
589 machine_restart (char *restart_cmd)
590 {
591 	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
592 	efi_reboot(REBOOT_WARM, NULL);
593 }
594 
595 void
596 machine_halt (void)
597 {
598 	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
599 	cpu_halt();
600 }
601 
602 void
603 machine_power_off (void)
604 {
605 	if (pm_power_off)
606 		pm_power_off();
607 	machine_halt();
608 }
609 
610 EXPORT_SYMBOL(ia64_delay_loop);
611