1 /* 2 * File: mca.c 3 * Purpose: Generic MCA handling layer 4 * 5 * Updated for latest kernel 6 * Copyright (C) 2003 Hewlett-Packard Co 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * 9 * Copyright (C) 2002 Dell Inc. 10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com) 11 * 12 * Copyright (C) 2002 Intel 13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com) 14 * 15 * Copyright (C) 2001 Intel 16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com) 17 * 18 * Copyright (C) 2000 Intel 19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com) 20 * 21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc. 22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com) 23 * 24 * 03/04/15 D. Mosberger Added INIT backtrace support. 25 * 02/03/25 M. Domsch GUID cleanups 26 * 27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU 28 * error flag, set SAL default return values, changed 29 * error record structure to linked list, added init call 30 * to sal_get_state_info_size(). 31 * 32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected 33 * platform errors, completed code for logging of 34 * corrected & uncorrected machine check errors, and 35 * updated for conformance with Nov. 2000 revision of the 36 * SAL 3.0 spec. 37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, 38 * added min save state dump, added INIT handler. 39 * 40 * 2003-12-08 Keith Owens <kaos@sgi.com> 41 * smp_call_function() must not be called from interrupt context (can 42 * deadlock on tasklist_lock). Use keventd to call smp_call_function(). 43 * 44 * 2004-02-01 Keith Owens <kaos@sgi.com> 45 * Avoid deadlock when using printk() for MCA and INIT records. 46 * Delete all record printing code, moved to salinfo_decode in user space. 47 * Mark variables and functions static where possible. 48 * Delete dead variables and functions. 49 * Reorder to remove the need for forward declarations and to consolidate 50 * related code. 51 * 52 * 2005-08-12 Keith Owens <kaos@sgi.com> 53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state. 54 * 55 * 2005-10-07 Keith Owens <kaos@sgi.com> 56 * Add notify_die() hooks. 57 */ 58 #include <linux/config.h> 59 #include <linux/types.h> 60 #include <linux/init.h> 61 #include <linux/sched.h> 62 #include <linux/interrupt.h> 63 #include <linux/irq.h> 64 #include <linux/smp_lock.h> 65 #include <linux/bootmem.h> 66 #include <linux/acpi.h> 67 #include <linux/timer.h> 68 #include <linux/module.h> 69 #include <linux/kernel.h> 70 #include <linux/smp.h> 71 #include <linux/workqueue.h> 72 73 #include <asm/delay.h> 74 #include <asm/kdebug.h> 75 #include <asm/machvec.h> 76 #include <asm/meminit.h> 77 #include <asm/page.h> 78 #include <asm/ptrace.h> 79 #include <asm/system.h> 80 #include <asm/sal.h> 81 #include <asm/mca.h> 82 83 #include <asm/irq.h> 84 #include <asm/hw_irq.h> 85 86 #include "entry.h" 87 88 #if defined(IA64_MCA_DEBUG_INFO) 89 # define IA64_MCA_DEBUG(fmt...) printk(fmt) 90 #else 91 # define IA64_MCA_DEBUG(fmt...) 92 #endif 93 94 /* Used by mca_asm.S */ 95 u32 ia64_mca_serialize; 96 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ 97 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ 98 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */ 99 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */ 100 101 unsigned long __per_cpu_mca[NR_CPUS]; 102 103 /* In mca_asm.S */ 104 extern void ia64_os_init_dispatch_monarch (void); 105 extern void ia64_os_init_dispatch_slave (void); 106 107 static int monarch_cpu = -1; 108 109 static ia64_mc_info_t ia64_mc_info; 110 111 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ 112 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */ 113 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */ 114 #define CPE_HISTORY_LENGTH 5 115 #define CMC_HISTORY_LENGTH 5 116 117 static struct timer_list cpe_poll_timer; 118 static struct timer_list cmc_poll_timer; 119 /* 120 * This variable tells whether we are currently in polling mode. 121 * Start with this in the wrong state so we won't play w/ timers 122 * before the system is ready. 123 */ 124 static int cmc_polling_enabled = 1; 125 126 /* 127 * Clearing this variable prevents CPE polling from getting activated 128 * in mca_late_init. Use it if your system doesn't provide a CPEI, 129 * but encounters problems retrieving CPE logs. This should only be 130 * necessary for debugging. 131 */ 132 static int cpe_poll_enabled = 1; 133 134 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); 135 136 static int mca_init; 137 138 139 static void inline 140 ia64_mca_spin(const char *func) 141 { 142 printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func); 143 while (1) 144 cpu_relax(); 145 } 146 /* 147 * IA64_MCA log support 148 */ 149 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */ 150 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */ 151 152 typedef struct ia64_state_log_s 153 { 154 spinlock_t isl_lock; 155 int isl_index; 156 unsigned long isl_count; 157 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ 158 } ia64_state_log_t; 159 160 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; 161 162 #define IA64_LOG_ALLOCATE(it, size) \ 163 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \ 164 (ia64_err_rec_t *)alloc_bootmem(size); \ 165 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \ 166 (ia64_err_rec_t *)alloc_bootmem(size);} 167 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) 168 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) 169 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) 170 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index 171 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index 172 #define IA64_LOG_INDEX_INC(it) \ 173 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ 174 ia64_state_log[it].isl_count++;} 175 #define IA64_LOG_INDEX_DEC(it) \ 176 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index 177 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) 178 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) 179 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count 180 181 /* 182 * ia64_log_init 183 * Reset the OS ia64 log buffer 184 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 185 * Outputs : None 186 */ 187 static void 188 ia64_log_init(int sal_info_type) 189 { 190 u64 max_size = 0; 191 192 IA64_LOG_NEXT_INDEX(sal_info_type) = 0; 193 IA64_LOG_LOCK_INIT(sal_info_type); 194 195 // SAL will tell us the maximum size of any error record of this type 196 max_size = ia64_sal_get_state_info_size(sal_info_type); 197 if (!max_size) 198 /* alloc_bootmem() doesn't like zero-sized allocations! */ 199 return; 200 201 // set up OS data structures to hold error info 202 IA64_LOG_ALLOCATE(sal_info_type, max_size); 203 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size); 204 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size); 205 } 206 207 /* 208 * ia64_log_get 209 * 210 * Get the current MCA log from SAL and copy it into the OS log buffer. 211 * 212 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 213 * irq_safe whether you can use printk at this point 214 * Outputs : size (total record length) 215 * *buffer (ptr to error record) 216 * 217 */ 218 static u64 219 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) 220 { 221 sal_log_record_header_t *log_buffer; 222 u64 total_len = 0; 223 int s; 224 225 IA64_LOG_LOCK(sal_info_type); 226 227 /* Get the process state information */ 228 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); 229 230 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); 231 232 if (total_len) { 233 IA64_LOG_INDEX_INC(sal_info_type); 234 IA64_LOG_UNLOCK(sal_info_type); 235 if (irq_safe) { 236 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. " 237 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len); 238 } 239 *buffer = (u8 *) log_buffer; 240 return total_len; 241 } else { 242 IA64_LOG_UNLOCK(sal_info_type); 243 return 0; 244 } 245 } 246 247 /* 248 * ia64_mca_log_sal_error_record 249 * 250 * This function retrieves a specified error record type from SAL 251 * and wakes up any processes waiting for error records. 252 * 253 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE) 254 * FIXME: remove MCA and irq_safe. 255 */ 256 static void 257 ia64_mca_log_sal_error_record(int sal_info_type) 258 { 259 u8 *buffer; 260 sal_log_record_header_t *rh; 261 u64 size; 262 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; 263 #ifdef IA64_MCA_DEBUG_INFO 264 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; 265 #endif 266 267 size = ia64_log_get(sal_info_type, &buffer, irq_safe); 268 if (!size) 269 return; 270 271 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); 272 273 if (irq_safe) 274 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", 275 smp_processor_id(), 276 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); 277 278 /* Clear logs from corrected errors in case there's no user-level logger */ 279 rh = (sal_log_record_header_t *)buffer; 280 if (rh->severity == sal_log_severity_corrected) 281 ia64_sal_clear_state_info(sal_info_type); 282 } 283 284 /* 285 * platform dependent error handling 286 */ 287 #ifndef PLATFORM_MCA_HANDLERS 288 289 #ifdef CONFIG_ACPI 290 291 int cpe_vector = -1; 292 293 static irqreturn_t 294 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs) 295 { 296 static unsigned long cpe_history[CPE_HISTORY_LENGTH]; 297 static int index; 298 static DEFINE_SPINLOCK(cpe_history_lock); 299 300 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 301 __FUNCTION__, cpe_irq, smp_processor_id()); 302 303 /* SAL spec states this should run w/ interrupts enabled */ 304 local_irq_enable(); 305 306 /* Get the CPE error record and log it */ 307 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); 308 309 spin_lock(&cpe_history_lock); 310 if (!cpe_poll_enabled && cpe_vector >= 0) { 311 312 int i, count = 1; /* we know 1 happened now */ 313 unsigned long now = jiffies; 314 315 for (i = 0; i < CPE_HISTORY_LENGTH; i++) { 316 if (now - cpe_history[i] <= HZ) 317 count++; 318 } 319 320 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); 321 if (count >= CPE_HISTORY_LENGTH) { 322 323 cpe_poll_enabled = 1; 324 spin_unlock(&cpe_history_lock); 325 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); 326 327 /* 328 * Corrected errors will still be corrected, but 329 * make sure there's a log somewhere that indicates 330 * something is generating more than we can handle. 331 */ 332 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); 333 334 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); 335 336 /* lock already released, get out now */ 337 return IRQ_HANDLED; 338 } else { 339 cpe_history[index++] = now; 340 if (index == CPE_HISTORY_LENGTH) 341 index = 0; 342 } 343 } 344 spin_unlock(&cpe_history_lock); 345 return IRQ_HANDLED; 346 } 347 348 #endif /* CONFIG_ACPI */ 349 350 #ifdef CONFIG_ACPI 351 /* 352 * ia64_mca_register_cpev 353 * 354 * Register the corrected platform error vector with SAL. 355 * 356 * Inputs 357 * cpev Corrected Platform Error Vector number 358 * 359 * Outputs 360 * None 361 */ 362 static void 363 ia64_mca_register_cpev (int cpev) 364 { 365 /* Register the CPE interrupt vector with SAL */ 366 struct ia64_sal_retval isrv; 367 368 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); 369 if (isrv.status) { 370 printk(KERN_ERR "Failed to register Corrected Platform " 371 "Error interrupt vector with SAL (status %ld)\n", isrv.status); 372 return; 373 } 374 375 IA64_MCA_DEBUG("%s: corrected platform error " 376 "vector %#x registered\n", __FUNCTION__, cpev); 377 } 378 #endif /* CONFIG_ACPI */ 379 380 #endif /* PLATFORM_MCA_HANDLERS */ 381 382 /* 383 * ia64_mca_cmc_vector_setup 384 * 385 * Setup the corrected machine check vector register in the processor. 386 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.) 387 * This function is invoked on a per-processor basis. 388 * 389 * Inputs 390 * None 391 * 392 * Outputs 393 * None 394 */ 395 void 396 ia64_mca_cmc_vector_setup (void) 397 { 398 cmcv_reg_t cmcv; 399 400 cmcv.cmcv_regval = 0; 401 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */ 402 cmcv.cmcv_vector = IA64_CMC_VECTOR; 403 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 404 405 IA64_MCA_DEBUG("%s: CPU %d corrected " 406 "machine check vector %#x registered.\n", 407 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR); 408 409 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", 410 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); 411 } 412 413 /* 414 * ia64_mca_cmc_vector_disable 415 * 416 * Mask the corrected machine check vector register in the processor. 417 * This function is invoked on a per-processor basis. 418 * 419 * Inputs 420 * dummy(unused) 421 * 422 * Outputs 423 * None 424 */ 425 static void 426 ia64_mca_cmc_vector_disable (void *dummy) 427 { 428 cmcv_reg_t cmcv; 429 430 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 431 432 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ 433 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 434 435 IA64_MCA_DEBUG("%s: CPU %d corrected " 436 "machine check vector %#x disabled.\n", 437 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector); 438 } 439 440 /* 441 * ia64_mca_cmc_vector_enable 442 * 443 * Unmask the corrected machine check vector register in the processor. 444 * This function is invoked on a per-processor basis. 445 * 446 * Inputs 447 * dummy(unused) 448 * 449 * Outputs 450 * None 451 */ 452 static void 453 ia64_mca_cmc_vector_enable (void *dummy) 454 { 455 cmcv_reg_t cmcv; 456 457 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 458 459 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ 460 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 461 462 IA64_MCA_DEBUG("%s: CPU %d corrected " 463 "machine check vector %#x enabled.\n", 464 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector); 465 } 466 467 /* 468 * ia64_mca_cmc_vector_disable_keventd 469 * 470 * Called via keventd (smp_call_function() is not safe in interrupt context) to 471 * disable the cmc interrupt vector. 472 */ 473 static void 474 ia64_mca_cmc_vector_disable_keventd(void *unused) 475 { 476 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0); 477 } 478 479 /* 480 * ia64_mca_cmc_vector_enable_keventd 481 * 482 * Called via keventd (smp_call_function() is not safe in interrupt context) to 483 * enable the cmc interrupt vector. 484 */ 485 static void 486 ia64_mca_cmc_vector_enable_keventd(void *unused) 487 { 488 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0); 489 } 490 491 /* 492 * ia64_mca_wakeup 493 * 494 * Send an inter-cpu interrupt to wake-up a particular cpu 495 * and mark that cpu to be out of rendez. 496 * 497 * Inputs : cpuid 498 * Outputs : None 499 */ 500 static void 501 ia64_mca_wakeup(int cpu) 502 { 503 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); 504 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 505 506 } 507 508 /* 509 * ia64_mca_wakeup_all 510 * 511 * Wakeup all the cpus which have rendez'ed previously. 512 * 513 * Inputs : None 514 * Outputs : None 515 */ 516 static void 517 ia64_mca_wakeup_all(void) 518 { 519 int cpu; 520 521 /* Clear the Rendez checkin flag for all cpus */ 522 for_each_online_cpu(cpu) { 523 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) 524 ia64_mca_wakeup(cpu); 525 } 526 527 } 528 529 /* 530 * ia64_mca_rendez_interrupt_handler 531 * 532 * This is handler used to put slave processors into spinloop 533 * while the monarch processor does the mca handling and later 534 * wake each slave up once the monarch is done. 535 * 536 * Inputs : None 537 * Outputs : None 538 */ 539 static irqreturn_t 540 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs) 541 { 542 unsigned long flags; 543 int cpu = smp_processor_id(); 544 545 /* Mask all interrupts */ 546 local_irq_save(flags); 547 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, 0, 0, 0) 548 == NOTIFY_STOP) 549 ia64_mca_spin(__FUNCTION__); 550 551 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; 552 /* Register with the SAL monarch that the slave has 553 * reached SAL 554 */ 555 ia64_sal_mc_rendez(); 556 557 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, 0, 0, 0) 558 == NOTIFY_STOP) 559 ia64_mca_spin(__FUNCTION__); 560 561 /* Wait for the monarch cpu to exit. */ 562 while (monarch_cpu != -1) 563 cpu_relax(); /* spin until monarch leaves */ 564 565 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, 0, 0, 0) 566 == NOTIFY_STOP) 567 ia64_mca_spin(__FUNCTION__); 568 569 /* Enable all interrupts */ 570 local_irq_restore(flags); 571 return IRQ_HANDLED; 572 } 573 574 /* 575 * ia64_mca_wakeup_int_handler 576 * 577 * The interrupt handler for processing the inter-cpu interrupt to the 578 * slave cpu which was spinning in the rendez loop. 579 * Since this spinning is done by turning off the interrupts and 580 * polling on the wakeup-interrupt bit in the IRR, there is 581 * nothing useful to be done in the handler. 582 * 583 * Inputs : wakeup_irq (Wakeup-interrupt bit) 584 * arg (Interrupt handler specific argument) 585 * ptregs (Exception frame at the time of the interrupt) 586 * Outputs : None 587 * 588 */ 589 static irqreturn_t 590 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs) 591 { 592 return IRQ_HANDLED; 593 } 594 595 /* Function pointer for extra MCA recovery */ 596 int (*ia64_mca_ucmc_extension) 597 (void*,struct ia64_sal_os_state*) 598 = NULL; 599 600 int 601 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) 602 { 603 if (ia64_mca_ucmc_extension) 604 return 1; 605 606 ia64_mca_ucmc_extension = fn; 607 return 0; 608 } 609 610 void 611 ia64_unreg_MCA_extension(void) 612 { 613 if (ia64_mca_ucmc_extension) 614 ia64_mca_ucmc_extension = NULL; 615 } 616 617 EXPORT_SYMBOL(ia64_reg_MCA_extension); 618 EXPORT_SYMBOL(ia64_unreg_MCA_extension); 619 620 621 static inline void 622 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat) 623 { 624 u64 fslot, tslot, nat; 625 *tr = *fr; 626 fslot = ((unsigned long)fr >> 3) & 63; 627 tslot = ((unsigned long)tr >> 3) & 63; 628 *tnat &= ~(1UL << tslot); 629 nat = (fnat >> fslot) & 1; 630 *tnat |= (nat << tslot); 631 } 632 633 /* Change the comm field on the MCA/INT task to include the pid that 634 * was interrupted, it makes for easier debugging. If that pid was 0 635 * (swapper or nested MCA/INIT) then use the start of the previous comm 636 * field suffixed with its cpu. 637 */ 638 639 static void 640 ia64_mca_modify_comm(const task_t *previous_current) 641 { 642 char *p, comm[sizeof(current->comm)]; 643 if (previous_current->pid) 644 snprintf(comm, sizeof(comm), "%s %d", 645 current->comm, previous_current->pid); 646 else { 647 int l; 648 if ((p = strchr(previous_current->comm, ' '))) 649 l = p - previous_current->comm; 650 else 651 l = strlen(previous_current->comm); 652 snprintf(comm, sizeof(comm), "%s %*s %d", 653 current->comm, l, previous_current->comm, 654 task_thread_info(previous_current)->cpu); 655 } 656 memcpy(current->comm, comm, sizeof(current->comm)); 657 } 658 659 /* On entry to this routine, we are running on the per cpu stack, see 660 * mca_asm.h. The original stack has not been touched by this event. Some of 661 * the original stack's registers will be in the RBS on this stack. This stack 662 * also contains a partial pt_regs and switch_stack, the rest of the data is in 663 * PAL minstate. 664 * 665 * The first thing to do is modify the original stack to look like a blocked 666 * task so we can run backtrace on the original task. Also mark the per cpu 667 * stack as current to ensure that we use the correct task state, it also means 668 * that we can do backtrace on the MCA/INIT handler code itself. 669 */ 670 671 static task_t * 672 ia64_mca_modify_original_stack(struct pt_regs *regs, 673 const struct switch_stack *sw, 674 struct ia64_sal_os_state *sos, 675 const char *type) 676 { 677 char *p; 678 ia64_va va; 679 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */ 680 const pal_min_state_area_t *ms = sos->pal_min_state; 681 task_t *previous_current; 682 struct pt_regs *old_regs; 683 struct switch_stack *old_sw; 684 unsigned size = sizeof(struct pt_regs) + 685 sizeof(struct switch_stack) + 16; 686 u64 *old_bspstore, *old_bsp; 687 u64 *new_bspstore, *new_bsp; 688 u64 old_unat, old_rnat, new_rnat, nat; 689 u64 slots, loadrs = regs->loadrs; 690 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; 691 u64 ar_bspstore = regs->ar_bspstore; 692 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); 693 const u64 *bank; 694 const char *msg; 695 int cpu = smp_processor_id(); 696 697 previous_current = curr_task(cpu); 698 set_curr_task(cpu, current); 699 if ((p = strchr(current->comm, ' '))) 700 *p = '\0'; 701 702 /* Best effort attempt to cope with MCA/INIT delivered while in 703 * physical mode. 704 */ 705 regs->cr_ipsr = ms->pmsa_ipsr; 706 if (ia64_psr(regs)->dt == 0) { 707 va.l = r12; 708 if (va.f.reg == 0) { 709 va.f.reg = 7; 710 r12 = va.l; 711 } 712 va.l = r13; 713 if (va.f.reg == 0) { 714 va.f.reg = 7; 715 r13 = va.l; 716 } 717 } 718 if (ia64_psr(regs)->rt == 0) { 719 va.l = ar_bspstore; 720 if (va.f.reg == 0) { 721 va.f.reg = 7; 722 ar_bspstore = va.l; 723 } 724 va.l = ar_bsp; 725 if (va.f.reg == 0) { 726 va.f.reg = 7; 727 ar_bsp = va.l; 728 } 729 } 730 731 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers 732 * have been copied to the old stack, the old stack may fail the 733 * validation tests below. So ia64_old_stack() must restore the dirty 734 * registers from the new stack. The old and new bspstore probably 735 * have different alignments, so loadrs calculated on the old bsp 736 * cannot be used to restore from the new bsp. Calculate a suitable 737 * loadrs for the new stack and save it in the new pt_regs, where 738 * ia64_old_stack() can get it. 739 */ 740 old_bspstore = (u64 *)ar_bspstore; 741 old_bsp = (u64 *)ar_bsp; 742 slots = ia64_rse_num_regs(old_bspstore, old_bsp); 743 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET); 744 new_bsp = ia64_rse_skip_regs(new_bspstore, slots); 745 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; 746 747 /* Verify the previous stack state before we change it */ 748 if (user_mode(regs)) { 749 msg = "occurred in user space"; 750 /* previous_current is guaranteed to be valid when the task was 751 * in user space, so ... 752 */ 753 ia64_mca_modify_comm(previous_current); 754 goto no_mod; 755 } 756 if (r13 != sos->prev_IA64_KR_CURRENT) { 757 msg = "inconsistent previous current and r13"; 758 goto no_mod; 759 } 760 if ((r12 - r13) >= KERNEL_STACK_SIZE) { 761 msg = "inconsistent r12 and r13"; 762 goto no_mod; 763 } 764 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { 765 msg = "inconsistent ar.bspstore and r13"; 766 goto no_mod; 767 } 768 va.p = old_bspstore; 769 if (va.f.reg < 5) { 770 msg = "old_bspstore is in the wrong region"; 771 goto no_mod; 772 } 773 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { 774 msg = "inconsistent ar.bsp and r13"; 775 goto no_mod; 776 } 777 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; 778 if (ar_bspstore + size > r12) { 779 msg = "no room for blocked state"; 780 goto no_mod; 781 } 782 783 ia64_mca_modify_comm(previous_current); 784 785 /* Make the original task look blocked. First stack a struct pt_regs, 786 * describing the state at the time of interrupt. mca_asm.S built a 787 * partial pt_regs, copy it and fill in the blanks using minstate. 788 */ 789 p = (char *)r12 - sizeof(*regs); 790 old_regs = (struct pt_regs *)p; 791 memcpy(old_regs, regs, sizeof(*regs)); 792 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use 793 * pmsa_{xip,xpsr,xfs} 794 */ 795 if (ia64_psr(regs)->ic) { 796 old_regs->cr_iip = ms->pmsa_iip; 797 old_regs->cr_ipsr = ms->pmsa_ipsr; 798 old_regs->cr_ifs = ms->pmsa_ifs; 799 } else { 800 old_regs->cr_iip = ms->pmsa_xip; 801 old_regs->cr_ipsr = ms->pmsa_xpsr; 802 old_regs->cr_ifs = ms->pmsa_xfs; 803 } 804 old_regs->pr = ms->pmsa_pr; 805 old_regs->b0 = ms->pmsa_br0; 806 old_regs->loadrs = loadrs; 807 old_regs->ar_rsc = ms->pmsa_rsc; 808 old_unat = old_regs->ar_unat; 809 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat); 810 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat); 811 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat); 812 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat); 813 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat); 814 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat); 815 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat); 816 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat); 817 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat); 818 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat); 819 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat); 820 if (ia64_psr(old_regs)->bn) 821 bank = ms->pmsa_bank1_gr; 822 else 823 bank = ms->pmsa_bank0_gr; 824 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat); 825 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat); 826 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat); 827 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat); 828 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat); 829 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat); 830 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat); 831 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat); 832 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat); 833 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat); 834 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat); 835 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat); 836 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat); 837 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat); 838 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat); 839 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat); 840 841 /* Next stack a struct switch_stack. mca_asm.S built a partial 842 * switch_stack, copy it and fill in the blanks using pt_regs and 843 * minstate. 844 * 845 * In the synthesized switch_stack, b0 points to ia64_leave_kernel, 846 * ar.pfs is set to 0. 847 * 848 * unwind.c::unw_unwind() does special processing for interrupt frames. 849 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate 850 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not 851 * that this is documented, of course. Set PRED_NON_SYSCALL in the 852 * switch_stack on the original stack so it will unwind correctly when 853 * unwind.c reads pt_regs. 854 * 855 * thread.ksp is updated to point to the synthesized switch_stack. 856 */ 857 p -= sizeof(struct switch_stack); 858 old_sw = (struct switch_stack *)p; 859 memcpy(old_sw, sw, sizeof(*sw)); 860 old_sw->caller_unat = old_unat; 861 old_sw->ar_fpsr = old_regs->ar_fpsr; 862 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); 863 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); 864 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); 865 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); 866 old_sw->b0 = (u64)ia64_leave_kernel; 867 old_sw->b1 = ms->pmsa_br1; 868 old_sw->ar_pfs = 0; 869 old_sw->ar_unat = old_unat; 870 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); 871 previous_current->thread.ksp = (u64)p - 16; 872 873 /* Finally copy the original stack's registers back to its RBS. 874 * Registers from ar.bspstore through ar.bsp at the time of the event 875 * are in the current RBS, copy them back to the original stack. The 876 * copy must be done register by register because the original bspstore 877 * and the current one have different alignments, so the saved RNAT 878 * data occurs at different places. 879 * 880 * mca_asm does cover, so the old_bsp already includes all registers at 881 * the time of MCA/INIT. It also does flushrs, so all registers before 882 * this function have been written to backing store on the MCA/INIT 883 * stack. 884 */ 885 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); 886 old_rnat = regs->ar_rnat; 887 while (slots--) { 888 if (ia64_rse_is_rnat_slot(new_bspstore)) { 889 new_rnat = ia64_get_rnat(new_bspstore++); 890 } 891 if (ia64_rse_is_rnat_slot(old_bspstore)) { 892 *old_bspstore++ = old_rnat; 893 old_rnat = 0; 894 } 895 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; 896 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); 897 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); 898 *old_bspstore++ = *new_bspstore++; 899 } 900 old_sw->ar_bspstore = (unsigned long)old_bspstore; 901 old_sw->ar_rnat = old_rnat; 902 903 sos->prev_task = previous_current; 904 return previous_current; 905 906 no_mod: 907 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", 908 smp_processor_id(), type, msg); 909 return previous_current; 910 } 911 912 /* The monarch/slave interaction is based on monarch_cpu and requires that all 913 * slaves have entered rendezvous before the monarch leaves. If any cpu has 914 * not entered rendezvous yet then wait a bit. The assumption is that any 915 * slave that has not rendezvoused after a reasonable time is never going to do 916 * so. In this context, slave includes cpus that respond to the MCA rendezvous 917 * interrupt, as well as cpus that receive the INIT slave event. 918 */ 919 920 static void 921 ia64_wait_for_slaves(int monarch) 922 { 923 int c, wait = 0, missing = 0; 924 for_each_online_cpu(c) { 925 if (c == monarch) 926 continue; 927 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { 928 udelay(1000); /* short wait first */ 929 wait = 1; 930 break; 931 } 932 } 933 if (!wait) 934 goto all_in; 935 for_each_online_cpu(c) { 936 if (c == monarch) 937 continue; 938 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { 939 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */ 940 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) 941 missing = 1; 942 break; 943 } 944 } 945 if (!missing) 946 goto all_in; 947 printk(KERN_INFO "OS MCA slave did not rendezvous on cpu"); 948 for_each_online_cpu(c) { 949 if (c == monarch) 950 continue; 951 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) 952 printk(" %d", c); 953 } 954 printk("\n"); 955 return; 956 957 all_in: 958 printk(KERN_INFO "All OS MCA slaves have reached rendezvous\n"); 959 return; 960 } 961 962 /* 963 * ia64_mca_handler 964 * 965 * This is uncorrectable machine check handler called from OS_MCA 966 * dispatch code which is in turn called from SAL_CHECK(). 967 * This is the place where the core of OS MCA handling is done. 968 * Right now the logs are extracted and displayed in a well-defined 969 * format. This handler code is supposed to be run only on the 970 * monarch processor. Once the monarch is done with MCA handling 971 * further MCA logging is enabled by clearing logs. 972 * Monarch also has the duty of sending wakeup-IPIs to pull the 973 * slave processors out of rendezvous spinloop. 974 */ 975 void 976 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, 977 struct ia64_sal_os_state *sos) 978 { 979 pal_processor_state_info_t *psp = (pal_processor_state_info_t *) 980 &sos->proc_state_param; 981 int recover, cpu = smp_processor_id(); 982 task_t *previous_current; 983 984 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */ 985 console_loglevel = 15; /* make sure printks make it to console */ 986 printk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d monarch=%ld\n", 987 sos->proc_state_param, cpu, sos->monarch); 988 989 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); 990 monarch_cpu = cpu; 991 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, 0, 0, 0) 992 == NOTIFY_STOP) 993 ia64_mca_spin(__FUNCTION__); 994 ia64_wait_for_slaves(cpu); 995 996 /* Wakeup all the processors which are spinning in the rendezvous loop. 997 * They will leave SAL, then spin in the OS with interrupts disabled 998 * until this monarch cpu leaves the MCA handler. That gets control 999 * back to the OS so we can backtrace the other cpus, backtrace when 1000 * spinning in SAL does not work. 1001 */ 1002 ia64_mca_wakeup_all(); 1003 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, 0, 0, 0) 1004 == NOTIFY_STOP) 1005 ia64_mca_spin(__FUNCTION__); 1006 1007 /* Get the MCA error record and log it */ 1008 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); 1009 1010 /* TLB error is only exist in this SAL error record */ 1011 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc)) 1012 /* other error recovery */ 1013 || (ia64_mca_ucmc_extension 1014 && ia64_mca_ucmc_extension( 1015 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), 1016 sos)); 1017 1018 if (recover) { 1019 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); 1020 rh->severity = sal_log_severity_corrected; 1021 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); 1022 sos->os_status = IA64_MCA_CORRECTED; 1023 } 1024 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, 0, 0, recover) 1025 == NOTIFY_STOP) 1026 ia64_mca_spin(__FUNCTION__); 1027 1028 set_curr_task(cpu, previous_current); 1029 monarch_cpu = -1; 1030 } 1031 1032 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL); 1033 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL); 1034 1035 /* 1036 * ia64_mca_cmc_int_handler 1037 * 1038 * This is corrected machine check interrupt handler. 1039 * Right now the logs are extracted and displayed in a well-defined 1040 * format. 1041 * 1042 * Inputs 1043 * interrupt number 1044 * client data arg ptr 1045 * saved registers ptr 1046 * 1047 * Outputs 1048 * None 1049 */ 1050 static irqreturn_t 1051 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs) 1052 { 1053 static unsigned long cmc_history[CMC_HISTORY_LENGTH]; 1054 static int index; 1055 static DEFINE_SPINLOCK(cmc_history_lock); 1056 1057 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 1058 __FUNCTION__, cmc_irq, smp_processor_id()); 1059 1060 /* SAL spec states this should run w/ interrupts enabled */ 1061 local_irq_enable(); 1062 1063 /* Get the CMC error record and log it */ 1064 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); 1065 1066 spin_lock(&cmc_history_lock); 1067 if (!cmc_polling_enabled) { 1068 int i, count = 1; /* we know 1 happened now */ 1069 unsigned long now = jiffies; 1070 1071 for (i = 0; i < CMC_HISTORY_LENGTH; i++) { 1072 if (now - cmc_history[i] <= HZ) 1073 count++; 1074 } 1075 1076 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); 1077 if (count >= CMC_HISTORY_LENGTH) { 1078 1079 cmc_polling_enabled = 1; 1080 spin_unlock(&cmc_history_lock); 1081 /* If we're being hit with CMC interrupts, we won't 1082 * ever execute the schedule_work() below. Need to 1083 * disable CMC interrupts on this processor now. 1084 */ 1085 ia64_mca_cmc_vector_disable(NULL); 1086 schedule_work(&cmc_disable_work); 1087 1088 /* 1089 * Corrected errors will still be corrected, but 1090 * make sure there's a log somewhere that indicates 1091 * something is generating more than we can handle. 1092 */ 1093 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); 1094 1095 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1096 1097 /* lock already released, get out now */ 1098 return IRQ_HANDLED; 1099 } else { 1100 cmc_history[index++] = now; 1101 if (index == CMC_HISTORY_LENGTH) 1102 index = 0; 1103 } 1104 } 1105 spin_unlock(&cmc_history_lock); 1106 return IRQ_HANDLED; 1107 } 1108 1109 /* 1110 * ia64_mca_cmc_int_caller 1111 * 1112 * Triggered by sw interrupt from CMC polling routine. Calls 1113 * real interrupt handler and either triggers a sw interrupt 1114 * on the next cpu or does cleanup at the end. 1115 * 1116 * Inputs 1117 * interrupt number 1118 * client data arg ptr 1119 * saved registers ptr 1120 * Outputs 1121 * handled 1122 */ 1123 static irqreturn_t 1124 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs) 1125 { 1126 static int start_count = -1; 1127 unsigned int cpuid; 1128 1129 cpuid = smp_processor_id(); 1130 1131 /* If first cpu, update count */ 1132 if (start_count == -1) 1133 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); 1134 1135 ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs); 1136 1137 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++); 1138 1139 if (cpuid < NR_CPUS) { 1140 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); 1141 } else { 1142 /* If no log record, switch out of polling mode */ 1143 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { 1144 1145 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); 1146 schedule_work(&cmc_enable_work); 1147 cmc_polling_enabled = 0; 1148 1149 } else { 1150 1151 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1152 } 1153 1154 start_count = -1; 1155 } 1156 1157 return IRQ_HANDLED; 1158 } 1159 1160 /* 1161 * ia64_mca_cmc_poll 1162 * 1163 * Poll for Corrected Machine Checks (CMCs) 1164 * 1165 * Inputs : dummy(unused) 1166 * Outputs : None 1167 * 1168 */ 1169 static void 1170 ia64_mca_cmc_poll (unsigned long dummy) 1171 { 1172 /* Trigger a CMC interrupt cascade */ 1173 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); 1174 } 1175 1176 /* 1177 * ia64_mca_cpe_int_caller 1178 * 1179 * Triggered by sw interrupt from CPE polling routine. Calls 1180 * real interrupt handler and either triggers a sw interrupt 1181 * on the next cpu or does cleanup at the end. 1182 * 1183 * Inputs 1184 * interrupt number 1185 * client data arg ptr 1186 * saved registers ptr 1187 * Outputs 1188 * handled 1189 */ 1190 #ifdef CONFIG_ACPI 1191 1192 static irqreturn_t 1193 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs) 1194 { 1195 static int start_count = -1; 1196 static int poll_time = MIN_CPE_POLL_INTERVAL; 1197 unsigned int cpuid; 1198 1199 cpuid = smp_processor_id(); 1200 1201 /* If first cpu, update count */ 1202 if (start_count == -1) 1203 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); 1204 1205 ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs); 1206 1207 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++); 1208 1209 if (cpuid < NR_CPUS) { 1210 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); 1211 } else { 1212 /* 1213 * If a log was recorded, increase our polling frequency, 1214 * otherwise, backoff or return to interrupt mode. 1215 */ 1216 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { 1217 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); 1218 } else if (cpe_vector < 0) { 1219 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); 1220 } else { 1221 poll_time = MIN_CPE_POLL_INTERVAL; 1222 1223 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); 1224 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); 1225 cpe_poll_enabled = 0; 1226 } 1227 1228 if (cpe_poll_enabled) 1229 mod_timer(&cpe_poll_timer, jiffies + poll_time); 1230 start_count = -1; 1231 } 1232 1233 return IRQ_HANDLED; 1234 } 1235 1236 /* 1237 * ia64_mca_cpe_poll 1238 * 1239 * Poll for Corrected Platform Errors (CPEs), trigger interrupt 1240 * on first cpu, from there it will trickle through all the cpus. 1241 * 1242 * Inputs : dummy(unused) 1243 * Outputs : None 1244 * 1245 */ 1246 static void 1247 ia64_mca_cpe_poll (unsigned long dummy) 1248 { 1249 /* Trigger a CPE interrupt cascade */ 1250 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); 1251 } 1252 1253 #endif /* CONFIG_ACPI */ 1254 1255 static int 1256 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data) 1257 { 1258 int c; 1259 struct task_struct *g, *t; 1260 if (val != DIE_INIT_MONARCH_PROCESS) 1261 return NOTIFY_DONE; 1262 printk(KERN_ERR "Processes interrupted by INIT -"); 1263 for_each_online_cpu(c) { 1264 struct ia64_sal_os_state *s; 1265 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); 1266 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); 1267 g = s->prev_task; 1268 if (g) { 1269 if (g->pid) 1270 printk(" %d", g->pid); 1271 else 1272 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); 1273 } 1274 } 1275 printk("\n\n"); 1276 if (read_trylock(&tasklist_lock)) { 1277 do_each_thread (g, t) { 1278 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); 1279 show_stack(t, NULL); 1280 } while_each_thread (g, t); 1281 read_unlock(&tasklist_lock); 1282 } 1283 return NOTIFY_DONE; 1284 } 1285 1286 /* 1287 * C portion of the OS INIT handler 1288 * 1289 * Called from ia64_os_init_dispatch 1290 * 1291 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for 1292 * this event. This code is used for both monarch and slave INIT events, see 1293 * sos->monarch. 1294 * 1295 * All INIT events switch to the INIT stack and change the previous process to 1296 * blocked status. If one of the INIT events is the monarch then we are 1297 * probably processing the nmi button/command. Use the monarch cpu to dump all 1298 * the processes. The slave INIT events all spin until the monarch cpu 1299 * returns. We can also get INIT slave events for MCA, in which case the MCA 1300 * process is the monarch. 1301 */ 1302 1303 void 1304 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, 1305 struct ia64_sal_os_state *sos) 1306 { 1307 static atomic_t slaves; 1308 static atomic_t monarchs; 1309 task_t *previous_current; 1310 int cpu = smp_processor_id(); 1311 1312 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */ 1313 console_loglevel = 15; /* make sure printks make it to console */ 1314 1315 printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", 1316 sos->proc_state_param, cpu, sos->monarch); 1317 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); 1318 1319 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); 1320 sos->os_status = IA64_INIT_RESUME; 1321 1322 /* FIXME: Workaround for broken proms that drive all INIT events as 1323 * slaves. The last slave that enters is promoted to be a monarch. 1324 * Remove this code in September 2006, that gives platforms a year to 1325 * fix their proms and get their customers updated. 1326 */ 1327 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { 1328 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", 1329 __FUNCTION__, cpu); 1330 atomic_dec(&slaves); 1331 sos->monarch = 1; 1332 } 1333 1334 /* FIXME: Workaround for broken proms that drive all INIT events as 1335 * monarchs. Second and subsequent monarchs are demoted to slaves. 1336 * Remove this code in September 2006, that gives platforms a year to 1337 * fix their proms and get their customers updated. 1338 */ 1339 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { 1340 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", 1341 __FUNCTION__, cpu); 1342 atomic_dec(&monarchs); 1343 sos->monarch = 0; 1344 } 1345 1346 if (!sos->monarch) { 1347 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; 1348 while (monarch_cpu == -1) 1349 cpu_relax(); /* spin until monarch enters */ 1350 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, 0, 0, 0) 1351 == NOTIFY_STOP) 1352 ia64_mca_spin(__FUNCTION__); 1353 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, 0, 0, 0) 1354 == NOTIFY_STOP) 1355 ia64_mca_spin(__FUNCTION__); 1356 while (monarch_cpu != -1) 1357 cpu_relax(); /* spin until monarch leaves */ 1358 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, 0, 0, 0) 1359 == NOTIFY_STOP) 1360 ia64_mca_spin(__FUNCTION__); 1361 printk("Slave on cpu %d returning to normal service.\n", cpu); 1362 set_curr_task(cpu, previous_current); 1363 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1364 atomic_dec(&slaves); 1365 return; 1366 } 1367 1368 monarch_cpu = cpu; 1369 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, 0, 0, 0) 1370 == NOTIFY_STOP) 1371 ia64_mca_spin(__FUNCTION__); 1372 1373 /* 1374 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be 1375 * generated via the BMC's command-line interface, but since the console is on the 1376 * same serial line, the user will need some time to switch out of the BMC before 1377 * the dump begins. 1378 */ 1379 printk("Delaying for 5 seconds...\n"); 1380 udelay(5*1000000); 1381 ia64_wait_for_slaves(cpu); 1382 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through 1383 * to default_monarch_init_process() above and just print all the 1384 * tasks. 1385 */ 1386 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, 0, 0, 0) 1387 == NOTIFY_STOP) 1388 ia64_mca_spin(__FUNCTION__); 1389 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, 0, 0, 0) 1390 == NOTIFY_STOP) 1391 ia64_mca_spin(__FUNCTION__); 1392 printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu); 1393 atomic_dec(&monarchs); 1394 set_curr_task(cpu, previous_current); 1395 monarch_cpu = -1; 1396 return; 1397 } 1398 1399 static int __init 1400 ia64_mca_disable_cpe_polling(char *str) 1401 { 1402 cpe_poll_enabled = 0; 1403 return 1; 1404 } 1405 1406 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); 1407 1408 static struct irqaction cmci_irqaction = { 1409 .handler = ia64_mca_cmc_int_handler, 1410 .flags = SA_INTERRUPT, 1411 .name = "cmc_hndlr" 1412 }; 1413 1414 static struct irqaction cmcp_irqaction = { 1415 .handler = ia64_mca_cmc_int_caller, 1416 .flags = SA_INTERRUPT, 1417 .name = "cmc_poll" 1418 }; 1419 1420 static struct irqaction mca_rdzv_irqaction = { 1421 .handler = ia64_mca_rendez_int_handler, 1422 .flags = SA_INTERRUPT, 1423 .name = "mca_rdzv" 1424 }; 1425 1426 static struct irqaction mca_wkup_irqaction = { 1427 .handler = ia64_mca_wakeup_int_handler, 1428 .flags = SA_INTERRUPT, 1429 .name = "mca_wkup" 1430 }; 1431 1432 #ifdef CONFIG_ACPI 1433 static struct irqaction mca_cpe_irqaction = { 1434 .handler = ia64_mca_cpe_int_handler, 1435 .flags = SA_INTERRUPT, 1436 .name = "cpe_hndlr" 1437 }; 1438 1439 static struct irqaction mca_cpep_irqaction = { 1440 .handler = ia64_mca_cpe_int_caller, 1441 .flags = SA_INTERRUPT, 1442 .name = "cpe_poll" 1443 }; 1444 #endif /* CONFIG_ACPI */ 1445 1446 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on 1447 * these stacks can never sleep, they cannot return from the kernel to user 1448 * space, they do not appear in a normal ps listing. So there is no need to 1449 * format most of the fields. 1450 */ 1451 1452 static void 1453 format_mca_init_stack(void *mca_data, unsigned long offset, 1454 const char *type, int cpu) 1455 { 1456 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); 1457 struct thread_info *ti; 1458 memset(p, 0, KERNEL_STACK_SIZE); 1459 ti = task_thread_info(p); 1460 ti->flags = _TIF_MCA_INIT; 1461 ti->preempt_count = 1; 1462 ti->task = p; 1463 ti->cpu = cpu; 1464 p->thread_info = ti; 1465 p->state = TASK_UNINTERRUPTIBLE; 1466 __set_bit(cpu, &p->cpus_allowed); 1467 INIT_LIST_HEAD(&p->tasks); 1468 p->parent = p->real_parent = p->group_leader = p; 1469 INIT_LIST_HEAD(&p->children); 1470 INIT_LIST_HEAD(&p->sibling); 1471 strncpy(p->comm, type, sizeof(p->comm)-1); 1472 } 1473 1474 /* Do per-CPU MCA-related initialization. */ 1475 1476 void __devinit 1477 ia64_mca_cpu_init(void *cpu_data) 1478 { 1479 void *pal_vaddr; 1480 1481 if (smp_processor_id() == 0) { 1482 void *mca_data; 1483 int cpu; 1484 1485 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu) 1486 * NR_CPUS + KERNEL_STACK_SIZE); 1487 mca_data = (void *)(((unsigned long)mca_data + 1488 KERNEL_STACK_SIZE - 1) & 1489 (-KERNEL_STACK_SIZE)); 1490 for (cpu = 0; cpu < NR_CPUS; cpu++) { 1491 format_mca_init_stack(mca_data, 1492 offsetof(struct ia64_mca_cpu, mca_stack), 1493 "MCA", cpu); 1494 format_mca_init_stack(mca_data, 1495 offsetof(struct ia64_mca_cpu, init_stack), 1496 "INIT", cpu); 1497 __per_cpu_mca[cpu] = __pa(mca_data); 1498 mca_data += sizeof(struct ia64_mca_cpu); 1499 } 1500 } 1501 1502 /* 1503 * The MCA info structure was allocated earlier and its 1504 * physical address saved in __per_cpu_mca[cpu]. Copy that 1505 * address * to ia64_mca_data so we can access it as a per-CPU 1506 * variable. 1507 */ 1508 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()]; 1509 1510 /* 1511 * Stash away a copy of the PTE needed to map the per-CPU page. 1512 * We may need it during MCA recovery. 1513 */ 1514 __get_cpu_var(ia64_mca_per_cpu_pte) = 1515 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)); 1516 1517 /* 1518 * Also, stash away a copy of the PAL address and the PTE 1519 * needed to map it. 1520 */ 1521 pal_vaddr = efi_get_pal_addr(); 1522 if (!pal_vaddr) 1523 return; 1524 __get_cpu_var(ia64_mca_pal_base) = 1525 GRANULEROUNDDOWN((unsigned long) pal_vaddr); 1526 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr), 1527 PAGE_KERNEL)); 1528 } 1529 1530 /* 1531 * ia64_mca_init 1532 * 1533 * Do all the system level mca specific initialization. 1534 * 1535 * 1. Register spinloop and wakeup request interrupt vectors 1536 * 1537 * 2. Register OS_MCA handler entry point 1538 * 1539 * 3. Register OS_INIT handler entry point 1540 * 1541 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. 1542 * 1543 * Note that this initialization is done very early before some kernel 1544 * services are available. 1545 * 1546 * Inputs : None 1547 * 1548 * Outputs : None 1549 */ 1550 void __init 1551 ia64_mca_init(void) 1552 { 1553 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; 1554 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; 1555 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; 1556 int i; 1557 s64 rc; 1558 struct ia64_sal_retval isrv; 1559 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */ 1560 static struct notifier_block default_init_monarch_nb = { 1561 .notifier_call = default_monarch_init_process, 1562 .priority = 0/* we need to notified last */ 1563 }; 1564 1565 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__); 1566 1567 /* Clear the Rendez checkin flag for all cpus */ 1568 for(i = 0 ; i < NR_CPUS; i++) 1569 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1570 1571 /* 1572 * Register the rendezvous spinloop and wakeup mechanism with SAL 1573 */ 1574 1575 /* Register the rendezvous interrupt vector with SAL */ 1576 while (1) { 1577 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, 1578 SAL_MC_PARAM_MECHANISM_INT, 1579 IA64_MCA_RENDEZ_VECTOR, 1580 timeout, 1581 SAL_MC_PARAM_RZ_ALWAYS); 1582 rc = isrv.status; 1583 if (rc == 0) 1584 break; 1585 if (rc == -2) { 1586 printk(KERN_INFO "Increasing MCA rendezvous timeout from " 1587 "%ld to %ld milliseconds\n", timeout, isrv.v0); 1588 timeout = isrv.v0; 1589 continue; 1590 } 1591 printk(KERN_ERR "Failed to register rendezvous interrupt " 1592 "with SAL (status %ld)\n", rc); 1593 return; 1594 } 1595 1596 /* Register the wakeup interrupt vector with SAL */ 1597 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, 1598 SAL_MC_PARAM_MECHANISM_INT, 1599 IA64_MCA_WAKEUP_VECTOR, 1600 0, 0); 1601 rc = isrv.status; 1602 if (rc) { 1603 printk(KERN_ERR "Failed to register wakeup interrupt with SAL " 1604 "(status %ld)\n", rc); 1605 return; 1606 } 1607 1608 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__); 1609 1610 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp); 1611 /* 1612 * XXX - disable SAL checksum by setting size to 0; should be 1613 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); 1614 */ 1615 ia64_mc_info.imi_mca_handler_size = 0; 1616 1617 /* Register the os mca handler with SAL */ 1618 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, 1619 ia64_mc_info.imi_mca_handler, 1620 ia64_tpa(mca_hldlr_ptr->gp), 1621 ia64_mc_info.imi_mca_handler_size, 1622 0, 0, 0))) 1623 { 1624 printk(KERN_ERR "Failed to register OS MCA handler with SAL " 1625 "(status %ld)\n", rc); 1626 return; 1627 } 1628 1629 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__, 1630 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); 1631 1632 /* 1633 * XXX - disable SAL checksum by setting size to 0, should be 1634 * size of the actual init handler in mca_asm.S. 1635 */ 1636 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp); 1637 ia64_mc_info.imi_monarch_init_handler_size = 0; 1638 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp); 1639 ia64_mc_info.imi_slave_init_handler_size = 0; 1640 1641 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__, 1642 ia64_mc_info.imi_monarch_init_handler); 1643 1644 /* Register the os init handler with SAL */ 1645 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, 1646 ia64_mc_info.imi_monarch_init_handler, 1647 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 1648 ia64_mc_info.imi_monarch_init_handler_size, 1649 ia64_mc_info.imi_slave_init_handler, 1650 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 1651 ia64_mc_info.imi_slave_init_handler_size))) 1652 { 1653 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " 1654 "(status %ld)\n", rc); 1655 return; 1656 } 1657 if (register_die_notifier(&default_init_monarch_nb)) { 1658 printk(KERN_ERR "Failed to register default monarch INIT process\n"); 1659 return; 1660 } 1661 1662 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__); 1663 1664 /* 1665 * Configure the CMCI/P vector and handler. Interrupts for CMC are 1666 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). 1667 */ 1668 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction); 1669 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction); 1670 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */ 1671 1672 /* Setup the MCA rendezvous interrupt vector */ 1673 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction); 1674 1675 /* Setup the MCA wakeup interrupt vector */ 1676 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction); 1677 1678 #ifdef CONFIG_ACPI 1679 /* Setup the CPEI/P handler */ 1680 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction); 1681 #endif 1682 1683 /* Initialize the areas set aside by the OS to buffer the 1684 * platform/processor error states for MCA/INIT/CMC 1685 * handling. 1686 */ 1687 ia64_log_init(SAL_INFO_TYPE_MCA); 1688 ia64_log_init(SAL_INFO_TYPE_INIT); 1689 ia64_log_init(SAL_INFO_TYPE_CMC); 1690 ia64_log_init(SAL_INFO_TYPE_CPE); 1691 1692 mca_init = 1; 1693 printk(KERN_INFO "MCA related initialization done\n"); 1694 } 1695 1696 /* 1697 * ia64_mca_late_init 1698 * 1699 * Opportunity to setup things that require initialization later 1700 * than ia64_mca_init. Setup a timer to poll for CPEs if the 1701 * platform doesn't support an interrupt driven mechanism. 1702 * 1703 * Inputs : None 1704 * Outputs : Status 1705 */ 1706 static int __init 1707 ia64_mca_late_init(void) 1708 { 1709 if (!mca_init) 1710 return 0; 1711 1712 /* Setup the CMCI/P vector and handler */ 1713 init_timer(&cmc_poll_timer); 1714 cmc_poll_timer.function = ia64_mca_cmc_poll; 1715 1716 /* Unmask/enable the vector */ 1717 cmc_polling_enabled = 0; 1718 schedule_work(&cmc_enable_work); 1719 1720 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__); 1721 1722 #ifdef CONFIG_ACPI 1723 /* Setup the CPEI/P vector and handler */ 1724 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); 1725 init_timer(&cpe_poll_timer); 1726 cpe_poll_timer.function = ia64_mca_cpe_poll; 1727 1728 { 1729 irq_desc_t *desc; 1730 unsigned int irq; 1731 1732 if (cpe_vector >= 0) { 1733 /* If platform supports CPEI, enable the irq. */ 1734 cpe_poll_enabled = 0; 1735 for (irq = 0; irq < NR_IRQS; ++irq) 1736 if (irq_to_vector(irq) == cpe_vector) { 1737 desc = irq_descp(irq); 1738 desc->status |= IRQ_PER_CPU; 1739 setup_irq(irq, &mca_cpe_irqaction); 1740 } 1741 ia64_mca_register_cpev(cpe_vector); 1742 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__); 1743 } else { 1744 /* If platform doesn't support CPEI, get the timer going. */ 1745 if (cpe_poll_enabled) { 1746 ia64_mca_cpe_poll(0UL); 1747 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__); 1748 } 1749 } 1750 } 1751 #endif 1752 1753 return 0; 1754 } 1755 1756 device_initcall(ia64_mca_late_init); 1757