xref: /openbmc/linux/arch/ia64/kernel/mca.c (revision e9ac054daaecf8a11f2113b60f2b6ce381c4f131)
1 /*
2  * File:	mca.c
3  * Purpose:	Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch	GUID cleanups
26  *
27  * 02/01/04 J. Hall	Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *			error flag, set SAL default return values, changed
29  *			error record structure to linked list, added init call
30  *			to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  *
52  * 2005-08-12 Keith Owens <kaos@sgi.com>
53  *	      Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54  *
55  * 2005-10-07 Keith Owens <kaos@sgi.com>
56  *	      Add notify_die() hooks.
57  */
58 #include <linux/config.h>
59 #include <linux/types.h>
60 #include <linux/init.h>
61 #include <linux/sched.h>
62 #include <linux/interrupt.h>
63 #include <linux/irq.h>
64 #include <linux/smp_lock.h>
65 #include <linux/bootmem.h>
66 #include <linux/acpi.h>
67 #include <linux/timer.h>
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/smp.h>
71 #include <linux/workqueue.h>
72 
73 #include <asm/delay.h>
74 #include <asm/kdebug.h>
75 #include <asm/machvec.h>
76 #include <asm/meminit.h>
77 #include <asm/page.h>
78 #include <asm/ptrace.h>
79 #include <asm/system.h>
80 #include <asm/sal.h>
81 #include <asm/mca.h>
82 
83 #include <asm/irq.h>
84 #include <asm/hw_irq.h>
85 
86 #include "entry.h"
87 
88 #if defined(IA64_MCA_DEBUG_INFO)
89 # define IA64_MCA_DEBUG(fmt...)	printk(fmt)
90 #else
91 # define IA64_MCA_DEBUG(fmt...)
92 #endif
93 
94 /* Used by mca_asm.S */
95 u32				ia64_mca_serialize;
96 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
97 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
98 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */
99 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
100 
101 unsigned long __per_cpu_mca[NR_CPUS];
102 
103 /* In mca_asm.S */
104 extern void			ia64_os_init_dispatch_monarch (void);
105 extern void			ia64_os_init_dispatch_slave (void);
106 
107 static int monarch_cpu = -1;
108 
109 static ia64_mc_info_t		ia64_mc_info;
110 
111 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
112 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
113 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
114 #define CPE_HISTORY_LENGTH    5
115 #define CMC_HISTORY_LENGTH    5
116 
117 static struct timer_list cpe_poll_timer;
118 static struct timer_list cmc_poll_timer;
119 /*
120  * This variable tells whether we are currently in polling mode.
121  * Start with this in the wrong state so we won't play w/ timers
122  * before the system is ready.
123  */
124 static int cmc_polling_enabled = 1;
125 
126 /*
127  * Clearing this variable prevents CPE polling from getting activated
128  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
129  * but encounters problems retrieving CPE logs.  This should only be
130  * necessary for debugging.
131  */
132 static int cpe_poll_enabled = 1;
133 
134 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
135 
136 static int mca_init;
137 
138 
139 static void inline
140 ia64_mca_spin(const char *func)
141 {
142 	printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
143 	while (1)
144 		cpu_relax();
145 }
146 /*
147  * IA64_MCA log support
148  */
149 #define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */
150 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
151 
152 typedef struct ia64_state_log_s
153 {
154 	spinlock_t	isl_lock;
155 	int		isl_index;
156 	unsigned long	isl_count;
157 	ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
158 } ia64_state_log_t;
159 
160 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
161 
162 #define IA64_LOG_ALLOCATE(it, size) \
163 	{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
164 		(ia64_err_rec_t *)alloc_bootmem(size); \
165 	ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
166 		(ia64_err_rec_t *)alloc_bootmem(size);}
167 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
168 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
169 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
170 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
171 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
172 #define IA64_LOG_INDEX_INC(it) \
173     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
174     ia64_state_log[it].isl_count++;}
175 #define IA64_LOG_INDEX_DEC(it) \
176     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
177 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
178 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
179 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
180 
181 /*
182  * ia64_log_init
183  *	Reset the OS ia64 log buffer
184  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
185  * Outputs	:	None
186  */
187 static void
188 ia64_log_init(int sal_info_type)
189 {
190 	u64	max_size = 0;
191 
192 	IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
193 	IA64_LOG_LOCK_INIT(sal_info_type);
194 
195 	// SAL will tell us the maximum size of any error record of this type
196 	max_size = ia64_sal_get_state_info_size(sal_info_type);
197 	if (!max_size)
198 		/* alloc_bootmem() doesn't like zero-sized allocations! */
199 		return;
200 
201 	// set up OS data structures to hold error info
202 	IA64_LOG_ALLOCATE(sal_info_type, max_size);
203 	memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
204 	memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
205 }
206 
207 /*
208  * ia64_log_get
209  *
210  *	Get the current MCA log from SAL and copy it into the OS log buffer.
211  *
212  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
213  *              irq_safe    whether you can use printk at this point
214  *  Outputs :   size        (total record length)
215  *              *buffer     (ptr to error record)
216  *
217  */
218 static u64
219 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
220 {
221 	sal_log_record_header_t     *log_buffer;
222 	u64                         total_len = 0;
223 	int                         s;
224 
225 	IA64_LOG_LOCK(sal_info_type);
226 
227 	/* Get the process state information */
228 	log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
229 
230 	total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
231 
232 	if (total_len) {
233 		IA64_LOG_INDEX_INC(sal_info_type);
234 		IA64_LOG_UNLOCK(sal_info_type);
235 		if (irq_safe) {
236 			IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
237 				       "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
238 		}
239 		*buffer = (u8 *) log_buffer;
240 		return total_len;
241 	} else {
242 		IA64_LOG_UNLOCK(sal_info_type);
243 		return 0;
244 	}
245 }
246 
247 /*
248  *  ia64_mca_log_sal_error_record
249  *
250  *  This function retrieves a specified error record type from SAL
251  *  and wakes up any processes waiting for error records.
252  *
253  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
254  *              FIXME: remove MCA and irq_safe.
255  */
256 static void
257 ia64_mca_log_sal_error_record(int sal_info_type)
258 {
259 	u8 *buffer;
260 	sal_log_record_header_t *rh;
261 	u64 size;
262 	int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
263 #ifdef IA64_MCA_DEBUG_INFO
264 	static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
265 #endif
266 
267 	size = ia64_log_get(sal_info_type, &buffer, irq_safe);
268 	if (!size)
269 		return;
270 
271 	salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
272 
273 	if (irq_safe)
274 		IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
275 			smp_processor_id(),
276 			sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
277 
278 	/* Clear logs from corrected errors in case there's no user-level logger */
279 	rh = (sal_log_record_header_t *)buffer;
280 	if (rh->severity == sal_log_severity_corrected)
281 		ia64_sal_clear_state_info(sal_info_type);
282 }
283 
284 /*
285  * platform dependent error handling
286  */
287 #ifndef PLATFORM_MCA_HANDLERS
288 
289 #ifdef CONFIG_ACPI
290 
291 int cpe_vector = -1;
292 
293 static irqreturn_t
294 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
295 {
296 	static unsigned long	cpe_history[CPE_HISTORY_LENGTH];
297 	static int		index;
298 	static DEFINE_SPINLOCK(cpe_history_lock);
299 
300 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
301 		       __FUNCTION__, cpe_irq, smp_processor_id());
302 
303 	/* SAL spec states this should run w/ interrupts enabled */
304 	local_irq_enable();
305 
306 	/* Get the CPE error record and log it */
307 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
308 
309 	spin_lock(&cpe_history_lock);
310 	if (!cpe_poll_enabled && cpe_vector >= 0) {
311 
312 		int i, count = 1; /* we know 1 happened now */
313 		unsigned long now = jiffies;
314 
315 		for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
316 			if (now - cpe_history[i] <= HZ)
317 				count++;
318 		}
319 
320 		IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
321 		if (count >= CPE_HISTORY_LENGTH) {
322 
323 			cpe_poll_enabled = 1;
324 			spin_unlock(&cpe_history_lock);
325 			disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
326 
327 			/*
328 			 * Corrected errors will still be corrected, but
329 			 * make sure there's a log somewhere that indicates
330 			 * something is generating more than we can handle.
331 			 */
332 			printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
333 
334 			mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
335 
336 			/* lock already released, get out now */
337 			return IRQ_HANDLED;
338 		} else {
339 			cpe_history[index++] = now;
340 			if (index == CPE_HISTORY_LENGTH)
341 				index = 0;
342 		}
343 	}
344 	spin_unlock(&cpe_history_lock);
345 	return IRQ_HANDLED;
346 }
347 
348 #endif /* CONFIG_ACPI */
349 
350 #ifdef CONFIG_ACPI
351 /*
352  * ia64_mca_register_cpev
353  *
354  *  Register the corrected platform error vector with SAL.
355  *
356  *  Inputs
357  *      cpev        Corrected Platform Error Vector number
358  *
359  *  Outputs
360  *      None
361  */
362 static void
363 ia64_mca_register_cpev (int cpev)
364 {
365 	/* Register the CPE interrupt vector with SAL */
366 	struct ia64_sal_retval isrv;
367 
368 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
369 	if (isrv.status) {
370 		printk(KERN_ERR "Failed to register Corrected Platform "
371 		       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
372 		return;
373 	}
374 
375 	IA64_MCA_DEBUG("%s: corrected platform error "
376 		       "vector %#x registered\n", __FUNCTION__, cpev);
377 }
378 #endif /* CONFIG_ACPI */
379 
380 #endif /* PLATFORM_MCA_HANDLERS */
381 
382 /*
383  * ia64_mca_cmc_vector_setup
384  *
385  *  Setup the corrected machine check vector register in the processor.
386  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
387  *  This function is invoked on a per-processor basis.
388  *
389  * Inputs
390  *      None
391  *
392  * Outputs
393  *	None
394  */
395 void
396 ia64_mca_cmc_vector_setup (void)
397 {
398 	cmcv_reg_t	cmcv;
399 
400 	cmcv.cmcv_regval	= 0;
401 	cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */
402 	cmcv.cmcv_vector	= IA64_CMC_VECTOR;
403 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
404 
405 	IA64_MCA_DEBUG("%s: CPU %d corrected "
406 		       "machine check vector %#x registered.\n",
407 		       __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
408 
409 	IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
410 		       __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
411 }
412 
413 /*
414  * ia64_mca_cmc_vector_disable
415  *
416  *  Mask the corrected machine check vector register in the processor.
417  *  This function is invoked on a per-processor basis.
418  *
419  * Inputs
420  *      dummy(unused)
421  *
422  * Outputs
423  *	None
424  */
425 static void
426 ia64_mca_cmc_vector_disable (void *dummy)
427 {
428 	cmcv_reg_t	cmcv;
429 
430 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
431 
432 	cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
433 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
434 
435 	IA64_MCA_DEBUG("%s: CPU %d corrected "
436 		       "machine check vector %#x disabled.\n",
437 		       __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
438 }
439 
440 /*
441  * ia64_mca_cmc_vector_enable
442  *
443  *  Unmask the corrected machine check vector register in the processor.
444  *  This function is invoked on a per-processor basis.
445  *
446  * Inputs
447  *      dummy(unused)
448  *
449  * Outputs
450  *	None
451  */
452 static void
453 ia64_mca_cmc_vector_enable (void *dummy)
454 {
455 	cmcv_reg_t	cmcv;
456 
457 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
458 
459 	cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
460 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
461 
462 	IA64_MCA_DEBUG("%s: CPU %d corrected "
463 		       "machine check vector %#x enabled.\n",
464 		       __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
465 }
466 
467 /*
468  * ia64_mca_cmc_vector_disable_keventd
469  *
470  * Called via keventd (smp_call_function() is not safe in interrupt context) to
471  * disable the cmc interrupt vector.
472  */
473 static void
474 ia64_mca_cmc_vector_disable_keventd(void *unused)
475 {
476 	on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
477 }
478 
479 /*
480  * ia64_mca_cmc_vector_enable_keventd
481  *
482  * Called via keventd (smp_call_function() is not safe in interrupt context) to
483  * enable the cmc interrupt vector.
484  */
485 static void
486 ia64_mca_cmc_vector_enable_keventd(void *unused)
487 {
488 	on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
489 }
490 
491 /*
492  * ia64_mca_wakeup
493  *
494  *	Send an inter-cpu interrupt to wake-up a particular cpu
495  *	and mark that cpu to be out of rendez.
496  *
497  *  Inputs  :   cpuid
498  *  Outputs :   None
499  */
500 static void
501 ia64_mca_wakeup(int cpu)
502 {
503 	platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
504 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
505 
506 }
507 
508 /*
509  * ia64_mca_wakeup_all
510  *
511  *	Wakeup all the cpus which have rendez'ed previously.
512  *
513  *  Inputs  :   None
514  *  Outputs :   None
515  */
516 static void
517 ia64_mca_wakeup_all(void)
518 {
519 	int cpu;
520 
521 	/* Clear the Rendez checkin flag for all cpus */
522 	for_each_online_cpu(cpu) {
523 		if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
524 			ia64_mca_wakeup(cpu);
525 	}
526 
527 }
528 
529 /*
530  * ia64_mca_rendez_interrupt_handler
531  *
532  *	This is handler used to put slave processors into spinloop
533  *	while the monarch processor does the mca handling and later
534  *	wake each slave up once the monarch is done.
535  *
536  *  Inputs  :   None
537  *  Outputs :   None
538  */
539 static irqreturn_t
540 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
541 {
542 	unsigned long flags;
543 	int cpu = smp_processor_id();
544 
545 	/* Mask all interrupts */
546 	local_irq_save(flags);
547 	if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, 0, 0, 0)
548 			== NOTIFY_STOP)
549 		ia64_mca_spin(__FUNCTION__);
550 
551 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
552 	/* Register with the SAL monarch that the slave has
553 	 * reached SAL
554 	 */
555 	ia64_sal_mc_rendez();
556 
557 	if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, 0, 0, 0)
558 			== NOTIFY_STOP)
559 		ia64_mca_spin(__FUNCTION__);
560 
561 	/* Wait for the monarch cpu to exit. */
562 	while (monarch_cpu != -1)
563 	       cpu_relax();	/* spin until monarch leaves */
564 
565 	if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, 0, 0, 0)
566 			== NOTIFY_STOP)
567 		ia64_mca_spin(__FUNCTION__);
568 
569 	/* Enable all interrupts */
570 	local_irq_restore(flags);
571 	return IRQ_HANDLED;
572 }
573 
574 /*
575  * ia64_mca_wakeup_int_handler
576  *
577  *	The interrupt handler for processing the inter-cpu interrupt to the
578  *	slave cpu which was spinning in the rendez loop.
579  *	Since this spinning is done by turning off the interrupts and
580  *	polling on the wakeup-interrupt bit in the IRR, there is
581  *	nothing useful to be done in the handler.
582  *
583  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
584  *	arg		(Interrupt handler specific argument)
585  *	ptregs		(Exception frame at the time of the interrupt)
586  *  Outputs :   None
587  *
588  */
589 static irqreturn_t
590 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
591 {
592 	return IRQ_HANDLED;
593 }
594 
595 /* Function pointer for extra MCA recovery */
596 int (*ia64_mca_ucmc_extension)
597 	(void*,struct ia64_sal_os_state*)
598 	= NULL;
599 
600 int
601 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
602 {
603 	if (ia64_mca_ucmc_extension)
604 		return 1;
605 
606 	ia64_mca_ucmc_extension = fn;
607 	return 0;
608 }
609 
610 void
611 ia64_unreg_MCA_extension(void)
612 {
613 	if (ia64_mca_ucmc_extension)
614 		ia64_mca_ucmc_extension = NULL;
615 }
616 
617 EXPORT_SYMBOL(ia64_reg_MCA_extension);
618 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
619 
620 
621 static inline void
622 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
623 {
624 	u64 fslot, tslot, nat;
625 	*tr = *fr;
626 	fslot = ((unsigned long)fr >> 3) & 63;
627 	tslot = ((unsigned long)tr >> 3) & 63;
628 	*tnat &= ~(1UL << tslot);
629 	nat = (fnat >> fslot) & 1;
630 	*tnat |= (nat << tslot);
631 }
632 
633 /* Change the comm field on the MCA/INT task to include the pid that
634  * was interrupted, it makes for easier debugging.  If that pid was 0
635  * (swapper or nested MCA/INIT) then use the start of the previous comm
636  * field suffixed with its cpu.
637  */
638 
639 static void
640 ia64_mca_modify_comm(const task_t *previous_current)
641 {
642 	char *p, comm[sizeof(current->comm)];
643 	if (previous_current->pid)
644 		snprintf(comm, sizeof(comm), "%s %d",
645 			current->comm, previous_current->pid);
646 	else {
647 		int l;
648 		if ((p = strchr(previous_current->comm, ' ')))
649 			l = p - previous_current->comm;
650 		else
651 			l = strlen(previous_current->comm);
652 		snprintf(comm, sizeof(comm), "%s %*s %d",
653 			current->comm, l, previous_current->comm,
654 			task_thread_info(previous_current)->cpu);
655 	}
656 	memcpy(current->comm, comm, sizeof(current->comm));
657 }
658 
659 /* On entry to this routine, we are running on the per cpu stack, see
660  * mca_asm.h.  The original stack has not been touched by this event.  Some of
661  * the original stack's registers will be in the RBS on this stack.  This stack
662  * also contains a partial pt_regs and switch_stack, the rest of the data is in
663  * PAL minstate.
664  *
665  * The first thing to do is modify the original stack to look like a blocked
666  * task so we can run backtrace on the original task.  Also mark the per cpu
667  * stack as current to ensure that we use the correct task state, it also means
668  * that we can do backtrace on the MCA/INIT handler code itself.
669  */
670 
671 static task_t *
672 ia64_mca_modify_original_stack(struct pt_regs *regs,
673 		const struct switch_stack *sw,
674 		struct ia64_sal_os_state *sos,
675 		const char *type)
676 {
677 	char *p;
678 	ia64_va va;
679 	extern char ia64_leave_kernel[];	/* Need asm address, not function descriptor */
680 	const pal_min_state_area_t *ms = sos->pal_min_state;
681 	task_t *previous_current;
682 	struct pt_regs *old_regs;
683 	struct switch_stack *old_sw;
684 	unsigned size = sizeof(struct pt_regs) +
685 			sizeof(struct switch_stack) + 16;
686 	u64 *old_bspstore, *old_bsp;
687 	u64 *new_bspstore, *new_bsp;
688 	u64 old_unat, old_rnat, new_rnat, nat;
689 	u64 slots, loadrs = regs->loadrs;
690 	u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
691 	u64 ar_bspstore = regs->ar_bspstore;
692 	u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
693 	const u64 *bank;
694 	const char *msg;
695 	int cpu = smp_processor_id();
696 
697 	previous_current = curr_task(cpu);
698 	set_curr_task(cpu, current);
699 	if ((p = strchr(current->comm, ' ')))
700 		*p = '\0';
701 
702 	/* Best effort attempt to cope with MCA/INIT delivered while in
703 	 * physical mode.
704 	 */
705 	regs->cr_ipsr = ms->pmsa_ipsr;
706 	if (ia64_psr(regs)->dt == 0) {
707 		va.l = r12;
708 		if (va.f.reg == 0) {
709 			va.f.reg = 7;
710 			r12 = va.l;
711 		}
712 		va.l = r13;
713 		if (va.f.reg == 0) {
714 			va.f.reg = 7;
715 			r13 = va.l;
716 		}
717 	}
718 	if (ia64_psr(regs)->rt == 0) {
719 		va.l = ar_bspstore;
720 		if (va.f.reg == 0) {
721 			va.f.reg = 7;
722 			ar_bspstore = va.l;
723 		}
724 		va.l = ar_bsp;
725 		if (va.f.reg == 0) {
726 			va.f.reg = 7;
727 			ar_bsp = va.l;
728 		}
729 	}
730 
731 	/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
732 	 * have been copied to the old stack, the old stack may fail the
733 	 * validation tests below.  So ia64_old_stack() must restore the dirty
734 	 * registers from the new stack.  The old and new bspstore probably
735 	 * have different alignments, so loadrs calculated on the old bsp
736 	 * cannot be used to restore from the new bsp.  Calculate a suitable
737 	 * loadrs for the new stack and save it in the new pt_regs, where
738 	 * ia64_old_stack() can get it.
739 	 */
740 	old_bspstore = (u64 *)ar_bspstore;
741 	old_bsp = (u64 *)ar_bsp;
742 	slots = ia64_rse_num_regs(old_bspstore, old_bsp);
743 	new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
744 	new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
745 	regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
746 
747 	/* Verify the previous stack state before we change it */
748 	if (user_mode(regs)) {
749 		msg = "occurred in user space";
750 		/* previous_current is guaranteed to be valid when the task was
751 		 * in user space, so ...
752 		 */
753 		ia64_mca_modify_comm(previous_current);
754 		goto no_mod;
755 	}
756 	if (r13 != sos->prev_IA64_KR_CURRENT) {
757 		msg = "inconsistent previous current and r13";
758 		goto no_mod;
759 	}
760 	if ((r12 - r13) >= KERNEL_STACK_SIZE) {
761 		msg = "inconsistent r12 and r13";
762 		goto no_mod;
763 	}
764 	if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
765 		msg = "inconsistent ar.bspstore and r13";
766 		goto no_mod;
767 	}
768 	va.p = old_bspstore;
769 	if (va.f.reg < 5) {
770 		msg = "old_bspstore is in the wrong region";
771 		goto no_mod;
772 	}
773 	if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
774 		msg = "inconsistent ar.bsp and r13";
775 		goto no_mod;
776 	}
777 	size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
778 	if (ar_bspstore + size > r12) {
779 		msg = "no room for blocked state";
780 		goto no_mod;
781 	}
782 
783 	ia64_mca_modify_comm(previous_current);
784 
785 	/* Make the original task look blocked.  First stack a struct pt_regs,
786 	 * describing the state at the time of interrupt.  mca_asm.S built a
787 	 * partial pt_regs, copy it and fill in the blanks using minstate.
788 	 */
789 	p = (char *)r12 - sizeof(*regs);
790 	old_regs = (struct pt_regs *)p;
791 	memcpy(old_regs, regs, sizeof(*regs));
792 	/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
793 	 * pmsa_{xip,xpsr,xfs}
794 	 */
795 	if (ia64_psr(regs)->ic) {
796 		old_regs->cr_iip = ms->pmsa_iip;
797 		old_regs->cr_ipsr = ms->pmsa_ipsr;
798 		old_regs->cr_ifs = ms->pmsa_ifs;
799 	} else {
800 		old_regs->cr_iip = ms->pmsa_xip;
801 		old_regs->cr_ipsr = ms->pmsa_xpsr;
802 		old_regs->cr_ifs = ms->pmsa_xfs;
803 	}
804 	old_regs->pr = ms->pmsa_pr;
805 	old_regs->b0 = ms->pmsa_br0;
806 	old_regs->loadrs = loadrs;
807 	old_regs->ar_rsc = ms->pmsa_rsc;
808 	old_unat = old_regs->ar_unat;
809 	copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
810 	copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
811 	copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
812 	copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
813 	copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
814 	copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
815 	copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
816 	copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
817 	copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
818 	copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
819 	copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
820 	if (ia64_psr(old_regs)->bn)
821 		bank = ms->pmsa_bank1_gr;
822 	else
823 		bank = ms->pmsa_bank0_gr;
824 	copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
825 	copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
826 	copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
827 	copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
828 	copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
829 	copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
830 	copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
831 	copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
832 	copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
833 	copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
834 	copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
835 	copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
836 	copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
837 	copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
838 	copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
839 	copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
840 
841 	/* Next stack a struct switch_stack.  mca_asm.S built a partial
842 	 * switch_stack, copy it and fill in the blanks using pt_regs and
843 	 * minstate.
844 	 *
845 	 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
846 	 * ar.pfs is set to 0.
847 	 *
848 	 * unwind.c::unw_unwind() does special processing for interrupt frames.
849 	 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
850 	 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
851 	 * that this is documented, of course.  Set PRED_NON_SYSCALL in the
852 	 * switch_stack on the original stack so it will unwind correctly when
853 	 * unwind.c reads pt_regs.
854 	 *
855 	 * thread.ksp is updated to point to the synthesized switch_stack.
856 	 */
857 	p -= sizeof(struct switch_stack);
858 	old_sw = (struct switch_stack *)p;
859 	memcpy(old_sw, sw, sizeof(*sw));
860 	old_sw->caller_unat = old_unat;
861 	old_sw->ar_fpsr = old_regs->ar_fpsr;
862 	copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
863 	copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
864 	copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
865 	copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
866 	old_sw->b0 = (u64)ia64_leave_kernel;
867 	old_sw->b1 = ms->pmsa_br1;
868 	old_sw->ar_pfs = 0;
869 	old_sw->ar_unat = old_unat;
870 	old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
871 	previous_current->thread.ksp = (u64)p - 16;
872 
873 	/* Finally copy the original stack's registers back to its RBS.
874 	 * Registers from ar.bspstore through ar.bsp at the time of the event
875 	 * are in the current RBS, copy them back to the original stack.  The
876 	 * copy must be done register by register because the original bspstore
877 	 * and the current one have different alignments, so the saved RNAT
878 	 * data occurs at different places.
879 	 *
880 	 * mca_asm does cover, so the old_bsp already includes all registers at
881 	 * the time of MCA/INIT.  It also does flushrs, so all registers before
882 	 * this function have been written to backing store on the MCA/INIT
883 	 * stack.
884 	 */
885 	new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
886 	old_rnat = regs->ar_rnat;
887 	while (slots--) {
888 		if (ia64_rse_is_rnat_slot(new_bspstore)) {
889 			new_rnat = ia64_get_rnat(new_bspstore++);
890 		}
891 		if (ia64_rse_is_rnat_slot(old_bspstore)) {
892 			*old_bspstore++ = old_rnat;
893 			old_rnat = 0;
894 		}
895 		nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
896 		old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
897 		old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
898 		*old_bspstore++ = *new_bspstore++;
899 	}
900 	old_sw->ar_bspstore = (unsigned long)old_bspstore;
901 	old_sw->ar_rnat = old_rnat;
902 
903 	sos->prev_task = previous_current;
904 	return previous_current;
905 
906 no_mod:
907 	printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
908 			smp_processor_id(), type, msg);
909 	return previous_current;
910 }
911 
912 /* The monarch/slave interaction is based on monarch_cpu and requires that all
913  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
914  * not entered rendezvous yet then wait a bit.  The assumption is that any
915  * slave that has not rendezvoused after a reasonable time is never going to do
916  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
917  * interrupt, as well as cpus that receive the INIT slave event.
918  */
919 
920 static void
921 ia64_wait_for_slaves(int monarch)
922 {
923 	int c, wait = 0, missing = 0;
924 	for_each_online_cpu(c) {
925 		if (c == monarch)
926 			continue;
927 		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
928 			udelay(1000);		/* short wait first */
929 			wait = 1;
930 			break;
931 		}
932 	}
933 	if (!wait)
934 		goto all_in;
935 	for_each_online_cpu(c) {
936 		if (c == monarch)
937 			continue;
938 		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
939 			udelay(5*1000000);	/* wait 5 seconds for slaves (arbitrary) */
940 			if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
941 				missing = 1;
942 			break;
943 		}
944 	}
945 	if (!missing)
946 		goto all_in;
947 	printk(KERN_INFO "OS MCA slave did not rendezvous on cpu");
948 	for_each_online_cpu(c) {
949 		if (c == monarch)
950 			continue;
951 		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
952 			printk(" %d", c);
953 	}
954 	printk("\n");
955 	return;
956 
957 all_in:
958 	printk(KERN_INFO "All OS MCA slaves have reached rendezvous\n");
959 	return;
960 }
961 
962 /*
963  * ia64_mca_handler
964  *
965  *	This is uncorrectable machine check handler called from OS_MCA
966  *	dispatch code which is in turn called from SAL_CHECK().
967  *	This is the place where the core of OS MCA handling is done.
968  *	Right now the logs are extracted and displayed in a well-defined
969  *	format. This handler code is supposed to be run only on the
970  *	monarch processor. Once the monarch is done with MCA handling
971  *	further MCA logging is enabled by clearing logs.
972  *	Monarch also has the duty of sending wakeup-IPIs to pull the
973  *	slave processors out of rendezvous spinloop.
974  */
975 void
976 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
977 		 struct ia64_sal_os_state *sos)
978 {
979 	pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
980 		&sos->proc_state_param;
981 	int recover, cpu = smp_processor_id();
982 	task_t *previous_current;
983 
984 	oops_in_progress = 1;	/* FIXME: make printk NMI/MCA/INIT safe */
985 	console_loglevel = 15;	/* make sure printks make it to console */
986 	printk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d monarch=%ld\n",
987 		sos->proc_state_param, cpu, sos->monarch);
988 
989 	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
990 	monarch_cpu = cpu;
991 	if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, 0, 0, 0)
992 			== NOTIFY_STOP)
993 		ia64_mca_spin(__FUNCTION__);
994 	ia64_wait_for_slaves(cpu);
995 
996 	/* Wakeup all the processors which are spinning in the rendezvous loop.
997 	 * They will leave SAL, then spin in the OS with interrupts disabled
998 	 * until this monarch cpu leaves the MCA handler.  That gets control
999 	 * back to the OS so we can backtrace the other cpus, backtrace when
1000 	 * spinning in SAL does not work.
1001 	 */
1002 	ia64_mca_wakeup_all();
1003 	if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, 0, 0, 0)
1004 			== NOTIFY_STOP)
1005 		ia64_mca_spin(__FUNCTION__);
1006 
1007 	/* Get the MCA error record and log it */
1008 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1009 
1010 	/* TLB error is only exist in this SAL error record */
1011 	recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1012 	/* other error recovery */
1013 	   || (ia64_mca_ucmc_extension
1014 		&& ia64_mca_ucmc_extension(
1015 			IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1016 			sos));
1017 
1018 	if (recover) {
1019 		sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1020 		rh->severity = sal_log_severity_corrected;
1021 		ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1022 		sos->os_status = IA64_MCA_CORRECTED;
1023 	}
1024 	if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, 0, 0, recover)
1025 			== NOTIFY_STOP)
1026 		ia64_mca_spin(__FUNCTION__);
1027 
1028 	set_curr_task(cpu, previous_current);
1029 	monarch_cpu = -1;
1030 }
1031 
1032 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1033 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1034 
1035 /*
1036  * ia64_mca_cmc_int_handler
1037  *
1038  *  This is corrected machine check interrupt handler.
1039  *	Right now the logs are extracted and displayed in a well-defined
1040  *	format.
1041  *
1042  * Inputs
1043  *      interrupt number
1044  *      client data arg ptr
1045  *      saved registers ptr
1046  *
1047  * Outputs
1048  *	None
1049  */
1050 static irqreturn_t
1051 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1052 {
1053 	static unsigned long	cmc_history[CMC_HISTORY_LENGTH];
1054 	static int		index;
1055 	static DEFINE_SPINLOCK(cmc_history_lock);
1056 
1057 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1058 		       __FUNCTION__, cmc_irq, smp_processor_id());
1059 
1060 	/* SAL spec states this should run w/ interrupts enabled */
1061 	local_irq_enable();
1062 
1063 	/* Get the CMC error record and log it */
1064 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1065 
1066 	spin_lock(&cmc_history_lock);
1067 	if (!cmc_polling_enabled) {
1068 		int i, count = 1; /* we know 1 happened now */
1069 		unsigned long now = jiffies;
1070 
1071 		for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1072 			if (now - cmc_history[i] <= HZ)
1073 				count++;
1074 		}
1075 
1076 		IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1077 		if (count >= CMC_HISTORY_LENGTH) {
1078 
1079 			cmc_polling_enabled = 1;
1080 			spin_unlock(&cmc_history_lock);
1081 			/* If we're being hit with CMC interrupts, we won't
1082 			 * ever execute the schedule_work() below.  Need to
1083 			 * disable CMC interrupts on this processor now.
1084 			 */
1085 			ia64_mca_cmc_vector_disable(NULL);
1086 			schedule_work(&cmc_disable_work);
1087 
1088 			/*
1089 			 * Corrected errors will still be corrected, but
1090 			 * make sure there's a log somewhere that indicates
1091 			 * something is generating more than we can handle.
1092 			 */
1093 			printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1094 
1095 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1096 
1097 			/* lock already released, get out now */
1098 			return IRQ_HANDLED;
1099 		} else {
1100 			cmc_history[index++] = now;
1101 			if (index == CMC_HISTORY_LENGTH)
1102 				index = 0;
1103 		}
1104 	}
1105 	spin_unlock(&cmc_history_lock);
1106 	return IRQ_HANDLED;
1107 }
1108 
1109 /*
1110  *  ia64_mca_cmc_int_caller
1111  *
1112  * 	Triggered by sw interrupt from CMC polling routine.  Calls
1113  * 	real interrupt handler and either triggers a sw interrupt
1114  * 	on the next cpu or does cleanup at the end.
1115  *
1116  * Inputs
1117  *	interrupt number
1118  *	client data arg ptr
1119  *	saved registers ptr
1120  * Outputs
1121  * 	handled
1122  */
1123 static irqreturn_t
1124 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1125 {
1126 	static int start_count = -1;
1127 	unsigned int cpuid;
1128 
1129 	cpuid = smp_processor_id();
1130 
1131 	/* If first cpu, update count */
1132 	if (start_count == -1)
1133 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1134 
1135 	ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1136 
1137 	for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1138 
1139 	if (cpuid < NR_CPUS) {
1140 		platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1141 	} else {
1142 		/* If no log record, switch out of polling mode */
1143 		if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1144 
1145 			printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1146 			schedule_work(&cmc_enable_work);
1147 			cmc_polling_enabled = 0;
1148 
1149 		} else {
1150 
1151 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1152 		}
1153 
1154 		start_count = -1;
1155 	}
1156 
1157 	return IRQ_HANDLED;
1158 }
1159 
1160 /*
1161  *  ia64_mca_cmc_poll
1162  *
1163  *	Poll for Corrected Machine Checks (CMCs)
1164  *
1165  * Inputs   :   dummy(unused)
1166  * Outputs  :   None
1167  *
1168  */
1169 static void
1170 ia64_mca_cmc_poll (unsigned long dummy)
1171 {
1172 	/* Trigger a CMC interrupt cascade  */
1173 	platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1174 }
1175 
1176 /*
1177  *  ia64_mca_cpe_int_caller
1178  *
1179  * 	Triggered by sw interrupt from CPE polling routine.  Calls
1180  * 	real interrupt handler and either triggers a sw interrupt
1181  * 	on the next cpu or does cleanup at the end.
1182  *
1183  * Inputs
1184  *	interrupt number
1185  *	client data arg ptr
1186  *	saved registers ptr
1187  * Outputs
1188  * 	handled
1189  */
1190 #ifdef CONFIG_ACPI
1191 
1192 static irqreturn_t
1193 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1194 {
1195 	static int start_count = -1;
1196 	static int poll_time = MIN_CPE_POLL_INTERVAL;
1197 	unsigned int cpuid;
1198 
1199 	cpuid = smp_processor_id();
1200 
1201 	/* If first cpu, update count */
1202 	if (start_count == -1)
1203 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1204 
1205 	ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1206 
1207 	for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1208 
1209 	if (cpuid < NR_CPUS) {
1210 		platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1211 	} else {
1212 		/*
1213 		 * If a log was recorded, increase our polling frequency,
1214 		 * otherwise, backoff or return to interrupt mode.
1215 		 */
1216 		if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1217 			poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1218 		} else if (cpe_vector < 0) {
1219 			poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1220 		} else {
1221 			poll_time = MIN_CPE_POLL_INTERVAL;
1222 
1223 			printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1224 			enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1225 			cpe_poll_enabled = 0;
1226 		}
1227 
1228 		if (cpe_poll_enabled)
1229 			mod_timer(&cpe_poll_timer, jiffies + poll_time);
1230 		start_count = -1;
1231 	}
1232 
1233 	return IRQ_HANDLED;
1234 }
1235 
1236 /*
1237  *  ia64_mca_cpe_poll
1238  *
1239  *	Poll for Corrected Platform Errors (CPEs), trigger interrupt
1240  *	on first cpu, from there it will trickle through all the cpus.
1241  *
1242  * Inputs   :   dummy(unused)
1243  * Outputs  :   None
1244  *
1245  */
1246 static void
1247 ia64_mca_cpe_poll (unsigned long dummy)
1248 {
1249 	/* Trigger a CPE interrupt cascade  */
1250 	platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1251 }
1252 
1253 #endif /* CONFIG_ACPI */
1254 
1255 static int
1256 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1257 {
1258 	int c;
1259 	struct task_struct *g, *t;
1260 	if (val != DIE_INIT_MONARCH_PROCESS)
1261 		return NOTIFY_DONE;
1262 	printk(KERN_ERR "Processes interrupted by INIT -");
1263 	for_each_online_cpu(c) {
1264 		struct ia64_sal_os_state *s;
1265 		t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1266 		s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1267 		g = s->prev_task;
1268 		if (g) {
1269 			if (g->pid)
1270 				printk(" %d", g->pid);
1271 			else
1272 				printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1273 		}
1274 	}
1275 	printk("\n\n");
1276 	if (read_trylock(&tasklist_lock)) {
1277 		do_each_thread (g, t) {
1278 			printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1279 			show_stack(t, NULL);
1280 		} while_each_thread (g, t);
1281 		read_unlock(&tasklist_lock);
1282 	}
1283 	return NOTIFY_DONE;
1284 }
1285 
1286 /*
1287  * C portion of the OS INIT handler
1288  *
1289  * Called from ia64_os_init_dispatch
1290  *
1291  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1292  * this event.  This code is used for both monarch and slave INIT events, see
1293  * sos->monarch.
1294  *
1295  * All INIT events switch to the INIT stack and change the previous process to
1296  * blocked status.  If one of the INIT events is the monarch then we are
1297  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1298  * the processes.  The slave INIT events all spin until the monarch cpu
1299  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1300  * process is the monarch.
1301  */
1302 
1303 void
1304 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1305 		  struct ia64_sal_os_state *sos)
1306 {
1307 	static atomic_t slaves;
1308 	static atomic_t monarchs;
1309 	task_t *previous_current;
1310 	int cpu = smp_processor_id();
1311 
1312 	oops_in_progress = 1;	/* FIXME: make printk NMI/MCA/INIT safe */
1313 	console_loglevel = 15;	/* make sure printks make it to console */
1314 
1315 	printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1316 		sos->proc_state_param, cpu, sos->monarch);
1317 	salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1318 
1319 	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1320 	sos->os_status = IA64_INIT_RESUME;
1321 
1322 	/* FIXME: Workaround for broken proms that drive all INIT events as
1323 	 * slaves.  The last slave that enters is promoted to be a monarch.
1324 	 * Remove this code in September 2006, that gives platforms a year to
1325 	 * fix their proms and get their customers updated.
1326 	 */
1327 	if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1328 		printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1329 		       __FUNCTION__, cpu);
1330 		atomic_dec(&slaves);
1331 		sos->monarch = 1;
1332 	}
1333 
1334 	/* FIXME: Workaround for broken proms that drive all INIT events as
1335 	 * monarchs.  Second and subsequent monarchs are demoted to slaves.
1336 	 * Remove this code in September 2006, that gives platforms a year to
1337 	 * fix their proms and get their customers updated.
1338 	 */
1339 	if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1340 		printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1341 			       __FUNCTION__, cpu);
1342 		atomic_dec(&monarchs);
1343 		sos->monarch = 0;
1344 	}
1345 
1346 	if (!sos->monarch) {
1347 		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1348 		while (monarch_cpu == -1)
1349 		       cpu_relax();	/* spin until monarch enters */
1350 		if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, 0, 0, 0)
1351 				== NOTIFY_STOP)
1352 			ia64_mca_spin(__FUNCTION__);
1353 		if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, 0, 0, 0)
1354 				== NOTIFY_STOP)
1355 			ia64_mca_spin(__FUNCTION__);
1356 		while (monarch_cpu != -1)
1357 		       cpu_relax();	/* spin until monarch leaves */
1358 		if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, 0, 0, 0)
1359 				== NOTIFY_STOP)
1360 			ia64_mca_spin(__FUNCTION__);
1361 		printk("Slave on cpu %d returning to normal service.\n", cpu);
1362 		set_curr_task(cpu, previous_current);
1363 		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1364 		atomic_dec(&slaves);
1365 		return;
1366 	}
1367 
1368 	monarch_cpu = cpu;
1369 	if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, 0, 0, 0)
1370 			== NOTIFY_STOP)
1371 		ia64_mca_spin(__FUNCTION__);
1372 
1373 	/*
1374 	 * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1375 	 * generated via the BMC's command-line interface, but since the console is on the
1376 	 * same serial line, the user will need some time to switch out of the BMC before
1377 	 * the dump begins.
1378 	 */
1379 	printk("Delaying for 5 seconds...\n");
1380 	udelay(5*1000000);
1381 	ia64_wait_for_slaves(cpu);
1382 	/* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1383 	 * to default_monarch_init_process() above and just print all the
1384 	 * tasks.
1385 	 */
1386 	if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, 0, 0, 0)
1387 			== NOTIFY_STOP)
1388 		ia64_mca_spin(__FUNCTION__);
1389 	if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, 0, 0, 0)
1390 			== NOTIFY_STOP)
1391 		ia64_mca_spin(__FUNCTION__);
1392 	printk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1393 	atomic_dec(&monarchs);
1394 	set_curr_task(cpu, previous_current);
1395 	monarch_cpu = -1;
1396 	return;
1397 }
1398 
1399 static int __init
1400 ia64_mca_disable_cpe_polling(char *str)
1401 {
1402 	cpe_poll_enabled = 0;
1403 	return 1;
1404 }
1405 
1406 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1407 
1408 static struct irqaction cmci_irqaction = {
1409 	.handler =	ia64_mca_cmc_int_handler,
1410 	.flags =	SA_INTERRUPT,
1411 	.name =		"cmc_hndlr"
1412 };
1413 
1414 static struct irqaction cmcp_irqaction = {
1415 	.handler =	ia64_mca_cmc_int_caller,
1416 	.flags =	SA_INTERRUPT,
1417 	.name =		"cmc_poll"
1418 };
1419 
1420 static struct irqaction mca_rdzv_irqaction = {
1421 	.handler =	ia64_mca_rendez_int_handler,
1422 	.flags =	SA_INTERRUPT,
1423 	.name =		"mca_rdzv"
1424 };
1425 
1426 static struct irqaction mca_wkup_irqaction = {
1427 	.handler =	ia64_mca_wakeup_int_handler,
1428 	.flags =	SA_INTERRUPT,
1429 	.name =		"mca_wkup"
1430 };
1431 
1432 #ifdef CONFIG_ACPI
1433 static struct irqaction mca_cpe_irqaction = {
1434 	.handler =	ia64_mca_cpe_int_handler,
1435 	.flags =	SA_INTERRUPT,
1436 	.name =		"cpe_hndlr"
1437 };
1438 
1439 static struct irqaction mca_cpep_irqaction = {
1440 	.handler =	ia64_mca_cpe_int_caller,
1441 	.flags =	SA_INTERRUPT,
1442 	.name =		"cpe_poll"
1443 };
1444 #endif /* CONFIG_ACPI */
1445 
1446 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1447  * these stacks can never sleep, they cannot return from the kernel to user
1448  * space, they do not appear in a normal ps listing.  So there is no need to
1449  * format most of the fields.
1450  */
1451 
1452 static void
1453 format_mca_init_stack(void *mca_data, unsigned long offset,
1454 		const char *type, int cpu)
1455 {
1456 	struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1457 	struct thread_info *ti;
1458 	memset(p, 0, KERNEL_STACK_SIZE);
1459 	ti = task_thread_info(p);
1460 	ti->flags = _TIF_MCA_INIT;
1461 	ti->preempt_count = 1;
1462 	ti->task = p;
1463 	ti->cpu = cpu;
1464 	p->thread_info = ti;
1465 	p->state = TASK_UNINTERRUPTIBLE;
1466 	__set_bit(cpu, &p->cpus_allowed);
1467 	INIT_LIST_HEAD(&p->tasks);
1468 	p->parent = p->real_parent = p->group_leader = p;
1469 	INIT_LIST_HEAD(&p->children);
1470 	INIT_LIST_HEAD(&p->sibling);
1471 	strncpy(p->comm, type, sizeof(p->comm)-1);
1472 }
1473 
1474 /* Do per-CPU MCA-related initialization.  */
1475 
1476 void __devinit
1477 ia64_mca_cpu_init(void *cpu_data)
1478 {
1479 	void *pal_vaddr;
1480 
1481 	if (smp_processor_id() == 0) {
1482 		void *mca_data;
1483 		int cpu;
1484 
1485 		mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1486 					 * NR_CPUS + KERNEL_STACK_SIZE);
1487 		mca_data = (void *)(((unsigned long)mca_data +
1488 					KERNEL_STACK_SIZE - 1) &
1489 				(-KERNEL_STACK_SIZE));
1490 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
1491 			format_mca_init_stack(mca_data,
1492 					offsetof(struct ia64_mca_cpu, mca_stack),
1493 					"MCA", cpu);
1494 			format_mca_init_stack(mca_data,
1495 					offsetof(struct ia64_mca_cpu, init_stack),
1496 					"INIT", cpu);
1497 			__per_cpu_mca[cpu] = __pa(mca_data);
1498 			mca_data += sizeof(struct ia64_mca_cpu);
1499 		}
1500 	}
1501 
1502 	/*
1503 	 * The MCA info structure was allocated earlier and its
1504 	 * physical address saved in __per_cpu_mca[cpu].  Copy that
1505 	 * address * to ia64_mca_data so we can access it as a per-CPU
1506 	 * variable.
1507 	 */
1508 	__get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1509 
1510 	/*
1511 	 * Stash away a copy of the PTE needed to map the per-CPU page.
1512 	 * We may need it during MCA recovery.
1513 	 */
1514 	__get_cpu_var(ia64_mca_per_cpu_pte) =
1515 		pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1516 
1517 	/*
1518 	 * Also, stash away a copy of the PAL address and the PTE
1519 	 * needed to map it.
1520 	 */
1521 	pal_vaddr = efi_get_pal_addr();
1522 	if (!pal_vaddr)
1523 		return;
1524 	__get_cpu_var(ia64_mca_pal_base) =
1525 		GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1526 	__get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1527 							      PAGE_KERNEL));
1528 }
1529 
1530 /*
1531  * ia64_mca_init
1532  *
1533  *  Do all the system level mca specific initialization.
1534  *
1535  *	1. Register spinloop and wakeup request interrupt vectors
1536  *
1537  *	2. Register OS_MCA handler entry point
1538  *
1539  *	3. Register OS_INIT handler entry point
1540  *
1541  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1542  *
1543  *  Note that this initialization is done very early before some kernel
1544  *  services are available.
1545  *
1546  *  Inputs  :   None
1547  *
1548  *  Outputs :   None
1549  */
1550 void __init
1551 ia64_mca_init(void)
1552 {
1553 	ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1554 	ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1555 	ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1556 	int i;
1557 	s64 rc;
1558 	struct ia64_sal_retval isrv;
1559 	u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;	/* platform specific */
1560 	static struct notifier_block default_init_monarch_nb = {
1561 		.notifier_call = default_monarch_init_process,
1562 		.priority = 0/* we need to notified last */
1563 	};
1564 
1565 	IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1566 
1567 	/* Clear the Rendez checkin flag for all cpus */
1568 	for(i = 0 ; i < NR_CPUS; i++)
1569 		ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1570 
1571 	/*
1572 	 * Register the rendezvous spinloop and wakeup mechanism with SAL
1573 	 */
1574 
1575 	/* Register the rendezvous interrupt vector with SAL */
1576 	while (1) {
1577 		isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1578 					      SAL_MC_PARAM_MECHANISM_INT,
1579 					      IA64_MCA_RENDEZ_VECTOR,
1580 					      timeout,
1581 					      SAL_MC_PARAM_RZ_ALWAYS);
1582 		rc = isrv.status;
1583 		if (rc == 0)
1584 			break;
1585 		if (rc == -2) {
1586 			printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1587 				"%ld to %ld milliseconds\n", timeout, isrv.v0);
1588 			timeout = isrv.v0;
1589 			continue;
1590 		}
1591 		printk(KERN_ERR "Failed to register rendezvous interrupt "
1592 		       "with SAL (status %ld)\n", rc);
1593 		return;
1594 	}
1595 
1596 	/* Register the wakeup interrupt vector with SAL */
1597 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1598 				      SAL_MC_PARAM_MECHANISM_INT,
1599 				      IA64_MCA_WAKEUP_VECTOR,
1600 				      0, 0);
1601 	rc = isrv.status;
1602 	if (rc) {
1603 		printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1604 		       "(status %ld)\n", rc);
1605 		return;
1606 	}
1607 
1608 	IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1609 
1610 	ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1611 	/*
1612 	 * XXX - disable SAL checksum by setting size to 0; should be
1613 	 *	ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1614 	 */
1615 	ia64_mc_info.imi_mca_handler_size	= 0;
1616 
1617 	/* Register the os mca handler with SAL */
1618 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1619 				       ia64_mc_info.imi_mca_handler,
1620 				       ia64_tpa(mca_hldlr_ptr->gp),
1621 				       ia64_mc_info.imi_mca_handler_size,
1622 				       0, 0, 0)))
1623 	{
1624 		printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1625 		       "(status %ld)\n", rc);
1626 		return;
1627 	}
1628 
1629 	IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1630 		       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1631 
1632 	/*
1633 	 * XXX - disable SAL checksum by setting size to 0, should be
1634 	 * size of the actual init handler in mca_asm.S.
1635 	 */
1636 	ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(init_hldlr_ptr_monarch->fp);
1637 	ia64_mc_info.imi_monarch_init_handler_size	= 0;
1638 	ia64_mc_info.imi_slave_init_handler		= ia64_tpa(init_hldlr_ptr_slave->fp);
1639 	ia64_mc_info.imi_slave_init_handler_size	= 0;
1640 
1641 	IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1642 		       ia64_mc_info.imi_monarch_init_handler);
1643 
1644 	/* Register the os init handler with SAL */
1645 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1646 				       ia64_mc_info.imi_monarch_init_handler,
1647 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1648 				       ia64_mc_info.imi_monarch_init_handler_size,
1649 				       ia64_mc_info.imi_slave_init_handler,
1650 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1651 				       ia64_mc_info.imi_slave_init_handler_size)))
1652 	{
1653 		printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1654 		       "(status %ld)\n", rc);
1655 		return;
1656 	}
1657 	if (register_die_notifier(&default_init_monarch_nb)) {
1658 		printk(KERN_ERR "Failed to register default monarch INIT process\n");
1659 		return;
1660 	}
1661 
1662 	IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1663 
1664 	/*
1665 	 *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1666 	 *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1667 	 */
1668 	register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1669 	register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1670 	ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1671 
1672 	/* Setup the MCA rendezvous interrupt vector */
1673 	register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1674 
1675 	/* Setup the MCA wakeup interrupt vector */
1676 	register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1677 
1678 #ifdef CONFIG_ACPI
1679 	/* Setup the CPEI/P handler */
1680 	register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1681 #endif
1682 
1683 	/* Initialize the areas set aside by the OS to buffer the
1684 	 * platform/processor error states for MCA/INIT/CMC
1685 	 * handling.
1686 	 */
1687 	ia64_log_init(SAL_INFO_TYPE_MCA);
1688 	ia64_log_init(SAL_INFO_TYPE_INIT);
1689 	ia64_log_init(SAL_INFO_TYPE_CMC);
1690 	ia64_log_init(SAL_INFO_TYPE_CPE);
1691 
1692 	mca_init = 1;
1693 	printk(KERN_INFO "MCA related initialization done\n");
1694 }
1695 
1696 /*
1697  * ia64_mca_late_init
1698  *
1699  *	Opportunity to setup things that require initialization later
1700  *	than ia64_mca_init.  Setup a timer to poll for CPEs if the
1701  *	platform doesn't support an interrupt driven mechanism.
1702  *
1703  *  Inputs  :   None
1704  *  Outputs :   Status
1705  */
1706 static int __init
1707 ia64_mca_late_init(void)
1708 {
1709 	if (!mca_init)
1710 		return 0;
1711 
1712 	/* Setup the CMCI/P vector and handler */
1713 	init_timer(&cmc_poll_timer);
1714 	cmc_poll_timer.function = ia64_mca_cmc_poll;
1715 
1716 	/* Unmask/enable the vector */
1717 	cmc_polling_enabled = 0;
1718 	schedule_work(&cmc_enable_work);
1719 
1720 	IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1721 
1722 #ifdef CONFIG_ACPI
1723 	/* Setup the CPEI/P vector and handler */
1724 	cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1725 	init_timer(&cpe_poll_timer);
1726 	cpe_poll_timer.function = ia64_mca_cpe_poll;
1727 
1728 	{
1729 		irq_desc_t *desc;
1730 		unsigned int irq;
1731 
1732 		if (cpe_vector >= 0) {
1733 			/* If platform supports CPEI, enable the irq. */
1734 			cpe_poll_enabled = 0;
1735 			for (irq = 0; irq < NR_IRQS; ++irq)
1736 				if (irq_to_vector(irq) == cpe_vector) {
1737 					desc = irq_descp(irq);
1738 					desc->status |= IRQ_PER_CPU;
1739 					setup_irq(irq, &mca_cpe_irqaction);
1740 				}
1741 			ia64_mca_register_cpev(cpe_vector);
1742 			IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1743 		} else {
1744 			/* If platform doesn't support CPEI, get the timer going. */
1745 			if (cpe_poll_enabled) {
1746 				ia64_mca_cpe_poll(0UL);
1747 				IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1748 			}
1749 		}
1750 	}
1751 #endif
1752 
1753 	return 0;
1754 }
1755 
1756 device_initcall(ia64_mca_late_init);
1757