1 /* 2 * File: mca.c 3 * Purpose: Generic MCA handling layer 4 * 5 * Updated for latest kernel 6 * Copyright (C) 2003 Hewlett-Packard Co 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * 9 * Copyright (C) 2002 Dell Inc. 10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com) 11 * 12 * Copyright (C) 2002 Intel 13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com) 14 * 15 * Copyright (C) 2001 Intel 16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com) 17 * 18 * Copyright (C) 2000 Intel 19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com) 20 * 21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc. 22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com) 23 * 24 * 03/04/15 D. Mosberger Added INIT backtrace support. 25 * 02/03/25 M. Domsch GUID cleanups 26 * 27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU 28 * error flag, set SAL default return values, changed 29 * error record structure to linked list, added init call 30 * to sal_get_state_info_size(). 31 * 32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected 33 * platform errors, completed code for logging of 34 * corrected & uncorrected machine check errors, and 35 * updated for conformance with Nov. 2000 revision of the 36 * SAL 3.0 spec. 37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, 38 * added min save state dump, added INIT handler. 39 * 40 * 2003-12-08 Keith Owens <kaos@sgi.com> 41 * smp_call_function() must not be called from interrupt context (can 42 * deadlock on tasklist_lock). Use keventd to call smp_call_function(). 43 * 44 * 2004-02-01 Keith Owens <kaos@sgi.com> 45 * Avoid deadlock when using printk() for MCA and INIT records. 46 * Delete all record printing code, moved to salinfo_decode in user space. 47 * Mark variables and functions static where possible. 48 * Delete dead variables and functions. 49 * Reorder to remove the need for forward declarations and to consolidate 50 * related code. 51 * 52 * 2005-08-12 Keith Owens <kaos@sgi.com> 53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state. 54 * 55 * 2005-10-07 Keith Owens <kaos@sgi.com> 56 * Add notify_die() hooks. 57 */ 58 #include <linux/config.h> 59 #include <linux/types.h> 60 #include <linux/init.h> 61 #include <linux/sched.h> 62 #include <linux/interrupt.h> 63 #include <linux/irq.h> 64 #include <linux/smp_lock.h> 65 #include <linux/bootmem.h> 66 #include <linux/acpi.h> 67 #include <linux/timer.h> 68 #include <linux/module.h> 69 #include <linux/kernel.h> 70 #include <linux/smp.h> 71 #include <linux/workqueue.h> 72 73 #include <asm/delay.h> 74 #include <asm/kdebug.h> 75 #include <asm/machvec.h> 76 #include <asm/meminit.h> 77 #include <asm/page.h> 78 #include <asm/ptrace.h> 79 #include <asm/system.h> 80 #include <asm/sal.h> 81 #include <asm/mca.h> 82 83 #include <asm/irq.h> 84 #include <asm/hw_irq.h> 85 86 #include "entry.h" 87 88 #if defined(IA64_MCA_DEBUG_INFO) 89 # define IA64_MCA_DEBUG(fmt...) printk(fmt) 90 #else 91 # define IA64_MCA_DEBUG(fmt...) 92 #endif 93 94 /* Used by mca_asm.S */ 95 u32 ia64_mca_serialize; 96 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ 97 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ 98 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */ 99 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */ 100 101 unsigned long __per_cpu_mca[NR_CPUS]; 102 103 /* In mca_asm.S */ 104 extern void ia64_os_init_dispatch_monarch (void); 105 extern void ia64_os_init_dispatch_slave (void); 106 107 static int monarch_cpu = -1; 108 109 static ia64_mc_info_t ia64_mc_info; 110 111 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ 112 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */ 113 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */ 114 #define CPE_HISTORY_LENGTH 5 115 #define CMC_HISTORY_LENGTH 5 116 117 static struct timer_list cpe_poll_timer; 118 static struct timer_list cmc_poll_timer; 119 /* 120 * This variable tells whether we are currently in polling mode. 121 * Start with this in the wrong state so we won't play w/ timers 122 * before the system is ready. 123 */ 124 static int cmc_polling_enabled = 1; 125 126 /* 127 * Clearing this variable prevents CPE polling from getting activated 128 * in mca_late_init. Use it if your system doesn't provide a CPEI, 129 * but encounters problems retrieving CPE logs. This should only be 130 * necessary for debugging. 131 */ 132 static int cpe_poll_enabled = 1; 133 134 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); 135 136 static int mca_init; 137 138 139 static void inline 140 ia64_mca_spin(const char *func) 141 { 142 printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func); 143 while (1) 144 cpu_relax(); 145 } 146 /* 147 * IA64_MCA log support 148 */ 149 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */ 150 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */ 151 152 typedef struct ia64_state_log_s 153 { 154 spinlock_t isl_lock; 155 int isl_index; 156 unsigned long isl_count; 157 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ 158 } ia64_state_log_t; 159 160 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; 161 162 #define IA64_LOG_ALLOCATE(it, size) \ 163 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \ 164 (ia64_err_rec_t *)alloc_bootmem(size); \ 165 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \ 166 (ia64_err_rec_t *)alloc_bootmem(size);} 167 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) 168 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) 169 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) 170 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index 171 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index 172 #define IA64_LOG_INDEX_INC(it) \ 173 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ 174 ia64_state_log[it].isl_count++;} 175 #define IA64_LOG_INDEX_DEC(it) \ 176 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index 177 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) 178 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) 179 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count 180 181 /* 182 * ia64_log_init 183 * Reset the OS ia64 log buffer 184 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 185 * Outputs : None 186 */ 187 static void 188 ia64_log_init(int sal_info_type) 189 { 190 u64 max_size = 0; 191 192 IA64_LOG_NEXT_INDEX(sal_info_type) = 0; 193 IA64_LOG_LOCK_INIT(sal_info_type); 194 195 // SAL will tell us the maximum size of any error record of this type 196 max_size = ia64_sal_get_state_info_size(sal_info_type); 197 if (!max_size) 198 /* alloc_bootmem() doesn't like zero-sized allocations! */ 199 return; 200 201 // set up OS data structures to hold error info 202 IA64_LOG_ALLOCATE(sal_info_type, max_size); 203 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size); 204 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size); 205 } 206 207 /* 208 * ia64_log_get 209 * 210 * Get the current MCA log from SAL and copy it into the OS log buffer. 211 * 212 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 213 * irq_safe whether you can use printk at this point 214 * Outputs : size (total record length) 215 * *buffer (ptr to error record) 216 * 217 */ 218 static u64 219 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) 220 { 221 sal_log_record_header_t *log_buffer; 222 u64 total_len = 0; 223 int s; 224 225 IA64_LOG_LOCK(sal_info_type); 226 227 /* Get the process state information */ 228 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); 229 230 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); 231 232 if (total_len) { 233 IA64_LOG_INDEX_INC(sal_info_type); 234 IA64_LOG_UNLOCK(sal_info_type); 235 if (irq_safe) { 236 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. " 237 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len); 238 } 239 *buffer = (u8 *) log_buffer; 240 return total_len; 241 } else { 242 IA64_LOG_UNLOCK(sal_info_type); 243 return 0; 244 } 245 } 246 247 /* 248 * ia64_mca_log_sal_error_record 249 * 250 * This function retrieves a specified error record type from SAL 251 * and wakes up any processes waiting for error records. 252 * 253 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE) 254 * FIXME: remove MCA and irq_safe. 255 */ 256 static void 257 ia64_mca_log_sal_error_record(int sal_info_type) 258 { 259 u8 *buffer; 260 sal_log_record_header_t *rh; 261 u64 size; 262 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; 263 #ifdef IA64_MCA_DEBUG_INFO 264 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; 265 #endif 266 267 size = ia64_log_get(sal_info_type, &buffer, irq_safe); 268 if (!size) 269 return; 270 271 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); 272 273 if (irq_safe) 274 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", 275 smp_processor_id(), 276 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); 277 278 /* Clear logs from corrected errors in case there's no user-level logger */ 279 rh = (sal_log_record_header_t *)buffer; 280 if (rh->severity == sal_log_severity_corrected) 281 ia64_sal_clear_state_info(sal_info_type); 282 } 283 284 /* 285 * platform dependent error handling 286 */ 287 #ifndef PLATFORM_MCA_HANDLERS 288 289 #ifdef CONFIG_ACPI 290 291 int cpe_vector = -1; 292 293 static irqreturn_t 294 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs) 295 { 296 static unsigned long cpe_history[CPE_HISTORY_LENGTH]; 297 static int index; 298 static DEFINE_SPINLOCK(cpe_history_lock); 299 300 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 301 __FUNCTION__, cpe_irq, smp_processor_id()); 302 303 /* SAL spec states this should run w/ interrupts enabled */ 304 local_irq_enable(); 305 306 /* Get the CPE error record and log it */ 307 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); 308 309 spin_lock(&cpe_history_lock); 310 if (!cpe_poll_enabled && cpe_vector >= 0) { 311 312 int i, count = 1; /* we know 1 happened now */ 313 unsigned long now = jiffies; 314 315 for (i = 0; i < CPE_HISTORY_LENGTH; i++) { 316 if (now - cpe_history[i] <= HZ) 317 count++; 318 } 319 320 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); 321 if (count >= CPE_HISTORY_LENGTH) { 322 323 cpe_poll_enabled = 1; 324 spin_unlock(&cpe_history_lock); 325 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); 326 327 /* 328 * Corrected errors will still be corrected, but 329 * make sure there's a log somewhere that indicates 330 * something is generating more than we can handle. 331 */ 332 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); 333 334 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); 335 336 /* lock already released, get out now */ 337 return IRQ_HANDLED; 338 } else { 339 cpe_history[index++] = now; 340 if (index == CPE_HISTORY_LENGTH) 341 index = 0; 342 } 343 } 344 spin_unlock(&cpe_history_lock); 345 return IRQ_HANDLED; 346 } 347 348 #endif /* CONFIG_ACPI */ 349 350 #ifdef CONFIG_ACPI 351 /* 352 * ia64_mca_register_cpev 353 * 354 * Register the corrected platform error vector with SAL. 355 * 356 * Inputs 357 * cpev Corrected Platform Error Vector number 358 * 359 * Outputs 360 * None 361 */ 362 static void 363 ia64_mca_register_cpev (int cpev) 364 { 365 /* Register the CPE interrupt vector with SAL */ 366 struct ia64_sal_retval isrv; 367 368 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); 369 if (isrv.status) { 370 printk(KERN_ERR "Failed to register Corrected Platform " 371 "Error interrupt vector with SAL (status %ld)\n", isrv.status); 372 return; 373 } 374 375 IA64_MCA_DEBUG("%s: corrected platform error " 376 "vector %#x registered\n", __FUNCTION__, cpev); 377 } 378 #endif /* CONFIG_ACPI */ 379 380 #endif /* PLATFORM_MCA_HANDLERS */ 381 382 /* 383 * ia64_mca_cmc_vector_setup 384 * 385 * Setup the corrected machine check vector register in the processor. 386 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.) 387 * This function is invoked on a per-processor basis. 388 * 389 * Inputs 390 * None 391 * 392 * Outputs 393 * None 394 */ 395 void 396 ia64_mca_cmc_vector_setup (void) 397 { 398 cmcv_reg_t cmcv; 399 400 cmcv.cmcv_regval = 0; 401 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */ 402 cmcv.cmcv_vector = IA64_CMC_VECTOR; 403 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 404 405 IA64_MCA_DEBUG("%s: CPU %d corrected " 406 "machine check vector %#x registered.\n", 407 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR); 408 409 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", 410 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); 411 } 412 413 /* 414 * ia64_mca_cmc_vector_disable 415 * 416 * Mask the corrected machine check vector register in the processor. 417 * This function is invoked on a per-processor basis. 418 * 419 * Inputs 420 * dummy(unused) 421 * 422 * Outputs 423 * None 424 */ 425 static void 426 ia64_mca_cmc_vector_disable (void *dummy) 427 { 428 cmcv_reg_t cmcv; 429 430 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 431 432 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ 433 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 434 435 IA64_MCA_DEBUG("%s: CPU %d corrected " 436 "machine check vector %#x disabled.\n", 437 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector); 438 } 439 440 /* 441 * ia64_mca_cmc_vector_enable 442 * 443 * Unmask the corrected machine check vector register in the processor. 444 * This function is invoked on a per-processor basis. 445 * 446 * Inputs 447 * dummy(unused) 448 * 449 * Outputs 450 * None 451 */ 452 static void 453 ia64_mca_cmc_vector_enable (void *dummy) 454 { 455 cmcv_reg_t cmcv; 456 457 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 458 459 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ 460 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 461 462 IA64_MCA_DEBUG("%s: CPU %d corrected " 463 "machine check vector %#x enabled.\n", 464 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector); 465 } 466 467 /* 468 * ia64_mca_cmc_vector_disable_keventd 469 * 470 * Called via keventd (smp_call_function() is not safe in interrupt context) to 471 * disable the cmc interrupt vector. 472 */ 473 static void 474 ia64_mca_cmc_vector_disable_keventd(void *unused) 475 { 476 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0); 477 } 478 479 /* 480 * ia64_mca_cmc_vector_enable_keventd 481 * 482 * Called via keventd (smp_call_function() is not safe in interrupt context) to 483 * enable the cmc interrupt vector. 484 */ 485 static void 486 ia64_mca_cmc_vector_enable_keventd(void *unused) 487 { 488 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0); 489 } 490 491 /* 492 * ia64_mca_wakeup 493 * 494 * Send an inter-cpu interrupt to wake-up a particular cpu 495 * and mark that cpu to be out of rendez. 496 * 497 * Inputs : cpuid 498 * Outputs : None 499 */ 500 static void 501 ia64_mca_wakeup(int cpu) 502 { 503 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); 504 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 505 506 } 507 508 /* 509 * ia64_mca_wakeup_all 510 * 511 * Wakeup all the cpus which have rendez'ed previously. 512 * 513 * Inputs : None 514 * Outputs : None 515 */ 516 static void 517 ia64_mca_wakeup_all(void) 518 { 519 int cpu; 520 521 /* Clear the Rendez checkin flag for all cpus */ 522 for_each_online_cpu(cpu) { 523 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) 524 ia64_mca_wakeup(cpu); 525 } 526 527 } 528 529 /* 530 * ia64_mca_rendez_interrupt_handler 531 * 532 * This is handler used to put slave processors into spinloop 533 * while the monarch processor does the mca handling and later 534 * wake each slave up once the monarch is done. 535 * 536 * Inputs : None 537 * Outputs : None 538 */ 539 static irqreturn_t 540 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs) 541 { 542 unsigned long flags; 543 int cpu = smp_processor_id(); 544 545 /* Mask all interrupts */ 546 local_irq_save(flags); 547 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, 0, 0, 0) 548 == NOTIFY_STOP) 549 ia64_mca_spin(__FUNCTION__); 550 551 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; 552 /* Register with the SAL monarch that the slave has 553 * reached SAL 554 */ 555 ia64_sal_mc_rendez(); 556 557 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, 0, 0, 0) 558 == NOTIFY_STOP) 559 ia64_mca_spin(__FUNCTION__); 560 561 /* Wait for the monarch cpu to exit. */ 562 while (monarch_cpu != -1) 563 cpu_relax(); /* spin until monarch leaves */ 564 565 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, 0, 0, 0) 566 == NOTIFY_STOP) 567 ia64_mca_spin(__FUNCTION__); 568 569 /* Enable all interrupts */ 570 local_irq_restore(flags); 571 return IRQ_HANDLED; 572 } 573 574 /* 575 * ia64_mca_wakeup_int_handler 576 * 577 * The interrupt handler for processing the inter-cpu interrupt to the 578 * slave cpu which was spinning in the rendez loop. 579 * Since this spinning is done by turning off the interrupts and 580 * polling on the wakeup-interrupt bit in the IRR, there is 581 * nothing useful to be done in the handler. 582 * 583 * Inputs : wakeup_irq (Wakeup-interrupt bit) 584 * arg (Interrupt handler specific argument) 585 * ptregs (Exception frame at the time of the interrupt) 586 * Outputs : None 587 * 588 */ 589 static irqreturn_t 590 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs) 591 { 592 return IRQ_HANDLED; 593 } 594 595 /* Function pointer for extra MCA recovery */ 596 int (*ia64_mca_ucmc_extension) 597 (void*,struct ia64_sal_os_state*) 598 = NULL; 599 600 int 601 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) 602 { 603 if (ia64_mca_ucmc_extension) 604 return 1; 605 606 ia64_mca_ucmc_extension = fn; 607 return 0; 608 } 609 610 void 611 ia64_unreg_MCA_extension(void) 612 { 613 if (ia64_mca_ucmc_extension) 614 ia64_mca_ucmc_extension = NULL; 615 } 616 617 EXPORT_SYMBOL(ia64_reg_MCA_extension); 618 EXPORT_SYMBOL(ia64_unreg_MCA_extension); 619 620 621 static inline void 622 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat) 623 { 624 u64 fslot, tslot, nat; 625 *tr = *fr; 626 fslot = ((unsigned long)fr >> 3) & 63; 627 tslot = ((unsigned long)tr >> 3) & 63; 628 *tnat &= ~(1UL << tslot); 629 nat = (fnat >> fslot) & 1; 630 *tnat |= (nat << tslot); 631 } 632 633 /* On entry to this routine, we are running on the per cpu stack, see 634 * mca_asm.h. The original stack has not been touched by this event. Some of 635 * the original stack's registers will be in the RBS on this stack. This stack 636 * also contains a partial pt_regs and switch_stack, the rest of the data is in 637 * PAL minstate. 638 * 639 * The first thing to do is modify the original stack to look like a blocked 640 * task so we can run backtrace on the original task. Also mark the per cpu 641 * stack as current to ensure that we use the correct task state, it also means 642 * that we can do backtrace on the MCA/INIT handler code itself. 643 */ 644 645 static task_t * 646 ia64_mca_modify_original_stack(struct pt_regs *regs, 647 const struct switch_stack *sw, 648 struct ia64_sal_os_state *sos, 649 const char *type) 650 { 651 char *p, comm[sizeof(current->comm)]; 652 ia64_va va; 653 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */ 654 const pal_min_state_area_t *ms = sos->pal_min_state; 655 task_t *previous_current; 656 struct pt_regs *old_regs; 657 struct switch_stack *old_sw; 658 unsigned size = sizeof(struct pt_regs) + 659 sizeof(struct switch_stack) + 16; 660 u64 *old_bspstore, *old_bsp; 661 u64 *new_bspstore, *new_bsp; 662 u64 old_unat, old_rnat, new_rnat, nat; 663 u64 slots, loadrs = regs->loadrs; 664 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; 665 u64 ar_bspstore = regs->ar_bspstore; 666 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); 667 const u64 *bank; 668 const char *msg; 669 int cpu = smp_processor_id(); 670 671 previous_current = curr_task(cpu); 672 set_curr_task(cpu, current); 673 if ((p = strchr(current->comm, ' '))) 674 *p = '\0'; 675 676 /* Best effort attempt to cope with MCA/INIT delivered while in 677 * physical mode. 678 */ 679 regs->cr_ipsr = ms->pmsa_ipsr; 680 if (ia64_psr(regs)->dt == 0) { 681 va.l = r12; 682 if (va.f.reg == 0) { 683 va.f.reg = 7; 684 r12 = va.l; 685 } 686 va.l = r13; 687 if (va.f.reg == 0) { 688 va.f.reg = 7; 689 r13 = va.l; 690 } 691 } 692 if (ia64_psr(regs)->rt == 0) { 693 va.l = ar_bspstore; 694 if (va.f.reg == 0) { 695 va.f.reg = 7; 696 ar_bspstore = va.l; 697 } 698 va.l = ar_bsp; 699 if (va.f.reg == 0) { 700 va.f.reg = 7; 701 ar_bsp = va.l; 702 } 703 } 704 705 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers 706 * have been copied to the old stack, the old stack may fail the 707 * validation tests below. So ia64_old_stack() must restore the dirty 708 * registers from the new stack. The old and new bspstore probably 709 * have different alignments, so loadrs calculated on the old bsp 710 * cannot be used to restore from the new bsp. Calculate a suitable 711 * loadrs for the new stack and save it in the new pt_regs, where 712 * ia64_old_stack() can get it. 713 */ 714 old_bspstore = (u64 *)ar_bspstore; 715 old_bsp = (u64 *)ar_bsp; 716 slots = ia64_rse_num_regs(old_bspstore, old_bsp); 717 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET); 718 new_bsp = ia64_rse_skip_regs(new_bspstore, slots); 719 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; 720 721 /* Verify the previous stack state before we change it */ 722 if (user_mode(regs)) { 723 msg = "occurred in user space"; 724 goto no_mod; 725 } 726 if (r13 != sos->prev_IA64_KR_CURRENT) { 727 msg = "inconsistent previous current and r13"; 728 goto no_mod; 729 } 730 if ((r12 - r13) >= KERNEL_STACK_SIZE) { 731 msg = "inconsistent r12 and r13"; 732 goto no_mod; 733 } 734 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { 735 msg = "inconsistent ar.bspstore and r13"; 736 goto no_mod; 737 } 738 va.p = old_bspstore; 739 if (va.f.reg < 5) { 740 msg = "old_bspstore is in the wrong region"; 741 goto no_mod; 742 } 743 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { 744 msg = "inconsistent ar.bsp and r13"; 745 goto no_mod; 746 } 747 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; 748 if (ar_bspstore + size > r12) { 749 msg = "no room for blocked state"; 750 goto no_mod; 751 } 752 753 /* Change the comm field on the MCA/INT task to include the pid that 754 * was interrupted, it makes for easier debugging. If that pid was 0 755 * (swapper or nested MCA/INIT) then use the start of the previous comm 756 * field suffixed with its cpu. 757 */ 758 if (previous_current->pid) 759 snprintf(comm, sizeof(comm), "%s %d", 760 current->comm, previous_current->pid); 761 else { 762 int l; 763 if ((p = strchr(previous_current->comm, ' '))) 764 l = p - previous_current->comm; 765 else 766 l = strlen(previous_current->comm); 767 snprintf(comm, sizeof(comm), "%s %*s %d", 768 current->comm, l, previous_current->comm, 769 task_thread_info(previous_current)->cpu); 770 } 771 memcpy(current->comm, comm, sizeof(current->comm)); 772 773 /* Make the original task look blocked. First stack a struct pt_regs, 774 * describing the state at the time of interrupt. mca_asm.S built a 775 * partial pt_regs, copy it and fill in the blanks using minstate. 776 */ 777 p = (char *)r12 - sizeof(*regs); 778 old_regs = (struct pt_regs *)p; 779 memcpy(old_regs, regs, sizeof(*regs)); 780 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use 781 * pmsa_{xip,xpsr,xfs} 782 */ 783 if (ia64_psr(regs)->ic) { 784 old_regs->cr_iip = ms->pmsa_iip; 785 old_regs->cr_ipsr = ms->pmsa_ipsr; 786 old_regs->cr_ifs = ms->pmsa_ifs; 787 } else { 788 old_regs->cr_iip = ms->pmsa_xip; 789 old_regs->cr_ipsr = ms->pmsa_xpsr; 790 old_regs->cr_ifs = ms->pmsa_xfs; 791 } 792 old_regs->pr = ms->pmsa_pr; 793 old_regs->b0 = ms->pmsa_br0; 794 old_regs->loadrs = loadrs; 795 old_regs->ar_rsc = ms->pmsa_rsc; 796 old_unat = old_regs->ar_unat; 797 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat); 798 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat); 799 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat); 800 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat); 801 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat); 802 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat); 803 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat); 804 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat); 805 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat); 806 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat); 807 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat); 808 if (ia64_psr(old_regs)->bn) 809 bank = ms->pmsa_bank1_gr; 810 else 811 bank = ms->pmsa_bank0_gr; 812 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat); 813 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat); 814 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat); 815 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat); 816 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat); 817 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat); 818 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat); 819 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat); 820 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat); 821 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat); 822 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat); 823 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat); 824 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat); 825 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat); 826 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat); 827 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat); 828 829 /* Next stack a struct switch_stack. mca_asm.S built a partial 830 * switch_stack, copy it and fill in the blanks using pt_regs and 831 * minstate. 832 * 833 * In the synthesized switch_stack, b0 points to ia64_leave_kernel, 834 * ar.pfs is set to 0. 835 * 836 * unwind.c::unw_unwind() does special processing for interrupt frames. 837 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate 838 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not 839 * that this is documented, of course. Set PRED_NON_SYSCALL in the 840 * switch_stack on the original stack so it will unwind correctly when 841 * unwind.c reads pt_regs. 842 * 843 * thread.ksp is updated to point to the synthesized switch_stack. 844 */ 845 p -= sizeof(struct switch_stack); 846 old_sw = (struct switch_stack *)p; 847 memcpy(old_sw, sw, sizeof(*sw)); 848 old_sw->caller_unat = old_unat; 849 old_sw->ar_fpsr = old_regs->ar_fpsr; 850 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); 851 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); 852 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); 853 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); 854 old_sw->b0 = (u64)ia64_leave_kernel; 855 old_sw->b1 = ms->pmsa_br1; 856 old_sw->ar_pfs = 0; 857 old_sw->ar_unat = old_unat; 858 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); 859 previous_current->thread.ksp = (u64)p - 16; 860 861 /* Finally copy the original stack's registers back to its RBS. 862 * Registers from ar.bspstore through ar.bsp at the time of the event 863 * are in the current RBS, copy them back to the original stack. The 864 * copy must be done register by register because the original bspstore 865 * and the current one have different alignments, so the saved RNAT 866 * data occurs at different places. 867 * 868 * mca_asm does cover, so the old_bsp already includes all registers at 869 * the time of MCA/INIT. It also does flushrs, so all registers before 870 * this function have been written to backing store on the MCA/INIT 871 * stack. 872 */ 873 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); 874 old_rnat = regs->ar_rnat; 875 while (slots--) { 876 if (ia64_rse_is_rnat_slot(new_bspstore)) { 877 new_rnat = ia64_get_rnat(new_bspstore++); 878 } 879 if (ia64_rse_is_rnat_slot(old_bspstore)) { 880 *old_bspstore++ = old_rnat; 881 old_rnat = 0; 882 } 883 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; 884 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); 885 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); 886 *old_bspstore++ = *new_bspstore++; 887 } 888 old_sw->ar_bspstore = (unsigned long)old_bspstore; 889 old_sw->ar_rnat = old_rnat; 890 891 sos->prev_task = previous_current; 892 return previous_current; 893 894 no_mod: 895 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", 896 smp_processor_id(), type, msg); 897 return previous_current; 898 } 899 900 /* The monarch/slave interaction is based on monarch_cpu and requires that all 901 * slaves have entered rendezvous before the monarch leaves. If any cpu has 902 * not entered rendezvous yet then wait a bit. The assumption is that any 903 * slave that has not rendezvoused after a reasonable time is never going to do 904 * so. In this context, slave includes cpus that respond to the MCA rendezvous 905 * interrupt, as well as cpus that receive the INIT slave event. 906 */ 907 908 static void 909 ia64_wait_for_slaves(int monarch) 910 { 911 int c, wait = 0, missing = 0; 912 for_each_online_cpu(c) { 913 if (c == monarch) 914 continue; 915 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { 916 udelay(1000); /* short wait first */ 917 wait = 1; 918 break; 919 } 920 } 921 if (!wait) 922 goto all_in; 923 for_each_online_cpu(c) { 924 if (c == monarch) 925 continue; 926 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { 927 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */ 928 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) 929 missing = 1; 930 break; 931 } 932 } 933 if (!missing) 934 goto all_in; 935 printk(KERN_INFO "OS MCA slave did not rendezvous on cpu"); 936 for_each_online_cpu(c) { 937 if (c == monarch) 938 continue; 939 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) 940 printk(" %d", c); 941 } 942 printk("\n"); 943 return; 944 945 all_in: 946 printk(KERN_INFO "All OS MCA slaves have reached rendezvous\n"); 947 return; 948 } 949 950 /* 951 * ia64_mca_handler 952 * 953 * This is uncorrectable machine check handler called from OS_MCA 954 * dispatch code which is in turn called from SAL_CHECK(). 955 * This is the place where the core of OS MCA handling is done. 956 * Right now the logs are extracted and displayed in a well-defined 957 * format. This handler code is supposed to be run only on the 958 * monarch processor. Once the monarch is done with MCA handling 959 * further MCA logging is enabled by clearing logs. 960 * Monarch also has the duty of sending wakeup-IPIs to pull the 961 * slave processors out of rendezvous spinloop. 962 */ 963 void 964 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, 965 struct ia64_sal_os_state *sos) 966 { 967 pal_processor_state_info_t *psp = (pal_processor_state_info_t *) 968 &sos->proc_state_param; 969 int recover, cpu = smp_processor_id(); 970 task_t *previous_current; 971 972 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */ 973 console_loglevel = 15; /* make sure printks make it to console */ 974 printk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d monarch=%ld\n", 975 sos->proc_state_param, cpu, sos->monarch); 976 977 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); 978 monarch_cpu = cpu; 979 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, 0, 0, 0) 980 == NOTIFY_STOP) 981 ia64_mca_spin(__FUNCTION__); 982 ia64_wait_for_slaves(cpu); 983 984 /* Wakeup all the processors which are spinning in the rendezvous loop. 985 * They will leave SAL, then spin in the OS with interrupts disabled 986 * until this monarch cpu leaves the MCA handler. That gets control 987 * back to the OS so we can backtrace the other cpus, backtrace when 988 * spinning in SAL does not work. 989 */ 990 ia64_mca_wakeup_all(); 991 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, 0, 0, 0) 992 == NOTIFY_STOP) 993 ia64_mca_spin(__FUNCTION__); 994 995 /* Get the MCA error record and log it */ 996 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); 997 998 /* TLB error is only exist in this SAL error record */ 999 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc)) 1000 /* other error recovery */ 1001 || (ia64_mca_ucmc_extension 1002 && ia64_mca_ucmc_extension( 1003 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), 1004 sos)); 1005 1006 if (recover) { 1007 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); 1008 rh->severity = sal_log_severity_corrected; 1009 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); 1010 sos->os_status = IA64_MCA_CORRECTED; 1011 } 1012 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, 0, 0, recover) 1013 == NOTIFY_STOP) 1014 ia64_mca_spin(__FUNCTION__); 1015 1016 set_curr_task(cpu, previous_current); 1017 monarch_cpu = -1; 1018 } 1019 1020 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL); 1021 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL); 1022 1023 /* 1024 * ia64_mca_cmc_int_handler 1025 * 1026 * This is corrected machine check interrupt handler. 1027 * Right now the logs are extracted and displayed in a well-defined 1028 * format. 1029 * 1030 * Inputs 1031 * interrupt number 1032 * client data arg ptr 1033 * saved registers ptr 1034 * 1035 * Outputs 1036 * None 1037 */ 1038 static irqreturn_t 1039 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs) 1040 { 1041 static unsigned long cmc_history[CMC_HISTORY_LENGTH]; 1042 static int index; 1043 static DEFINE_SPINLOCK(cmc_history_lock); 1044 1045 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 1046 __FUNCTION__, cmc_irq, smp_processor_id()); 1047 1048 /* SAL spec states this should run w/ interrupts enabled */ 1049 local_irq_enable(); 1050 1051 /* Get the CMC error record and log it */ 1052 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); 1053 1054 spin_lock(&cmc_history_lock); 1055 if (!cmc_polling_enabled) { 1056 int i, count = 1; /* we know 1 happened now */ 1057 unsigned long now = jiffies; 1058 1059 for (i = 0; i < CMC_HISTORY_LENGTH; i++) { 1060 if (now - cmc_history[i] <= HZ) 1061 count++; 1062 } 1063 1064 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); 1065 if (count >= CMC_HISTORY_LENGTH) { 1066 1067 cmc_polling_enabled = 1; 1068 spin_unlock(&cmc_history_lock); 1069 /* If we're being hit with CMC interrupts, we won't 1070 * ever execute the schedule_work() below. Need to 1071 * disable CMC interrupts on this processor now. 1072 */ 1073 ia64_mca_cmc_vector_disable(NULL); 1074 schedule_work(&cmc_disable_work); 1075 1076 /* 1077 * Corrected errors will still be corrected, but 1078 * make sure there's a log somewhere that indicates 1079 * something is generating more than we can handle. 1080 */ 1081 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); 1082 1083 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1084 1085 /* lock already released, get out now */ 1086 return IRQ_HANDLED; 1087 } else { 1088 cmc_history[index++] = now; 1089 if (index == CMC_HISTORY_LENGTH) 1090 index = 0; 1091 } 1092 } 1093 spin_unlock(&cmc_history_lock); 1094 return IRQ_HANDLED; 1095 } 1096 1097 /* 1098 * ia64_mca_cmc_int_caller 1099 * 1100 * Triggered by sw interrupt from CMC polling routine. Calls 1101 * real interrupt handler and either triggers a sw interrupt 1102 * on the next cpu or does cleanup at the end. 1103 * 1104 * Inputs 1105 * interrupt number 1106 * client data arg ptr 1107 * saved registers ptr 1108 * Outputs 1109 * handled 1110 */ 1111 static irqreturn_t 1112 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs) 1113 { 1114 static int start_count = -1; 1115 unsigned int cpuid; 1116 1117 cpuid = smp_processor_id(); 1118 1119 /* If first cpu, update count */ 1120 if (start_count == -1) 1121 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); 1122 1123 ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs); 1124 1125 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++); 1126 1127 if (cpuid < NR_CPUS) { 1128 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); 1129 } else { 1130 /* If no log record, switch out of polling mode */ 1131 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { 1132 1133 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); 1134 schedule_work(&cmc_enable_work); 1135 cmc_polling_enabled = 0; 1136 1137 } else { 1138 1139 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1140 } 1141 1142 start_count = -1; 1143 } 1144 1145 return IRQ_HANDLED; 1146 } 1147 1148 /* 1149 * ia64_mca_cmc_poll 1150 * 1151 * Poll for Corrected Machine Checks (CMCs) 1152 * 1153 * Inputs : dummy(unused) 1154 * Outputs : None 1155 * 1156 */ 1157 static void 1158 ia64_mca_cmc_poll (unsigned long dummy) 1159 { 1160 /* Trigger a CMC interrupt cascade */ 1161 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); 1162 } 1163 1164 /* 1165 * ia64_mca_cpe_int_caller 1166 * 1167 * Triggered by sw interrupt from CPE polling routine. Calls 1168 * real interrupt handler and either triggers a sw interrupt 1169 * on the next cpu or does cleanup at the end. 1170 * 1171 * Inputs 1172 * interrupt number 1173 * client data arg ptr 1174 * saved registers ptr 1175 * Outputs 1176 * handled 1177 */ 1178 #ifdef CONFIG_ACPI 1179 1180 static irqreturn_t 1181 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs) 1182 { 1183 static int start_count = -1; 1184 static int poll_time = MIN_CPE_POLL_INTERVAL; 1185 unsigned int cpuid; 1186 1187 cpuid = smp_processor_id(); 1188 1189 /* If first cpu, update count */ 1190 if (start_count == -1) 1191 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); 1192 1193 ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs); 1194 1195 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++); 1196 1197 if (cpuid < NR_CPUS) { 1198 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); 1199 } else { 1200 /* 1201 * If a log was recorded, increase our polling frequency, 1202 * otherwise, backoff or return to interrupt mode. 1203 */ 1204 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { 1205 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); 1206 } else if (cpe_vector < 0) { 1207 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); 1208 } else { 1209 poll_time = MIN_CPE_POLL_INTERVAL; 1210 1211 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); 1212 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); 1213 cpe_poll_enabled = 0; 1214 } 1215 1216 if (cpe_poll_enabled) 1217 mod_timer(&cpe_poll_timer, jiffies + poll_time); 1218 start_count = -1; 1219 } 1220 1221 return IRQ_HANDLED; 1222 } 1223 1224 /* 1225 * ia64_mca_cpe_poll 1226 * 1227 * Poll for Corrected Platform Errors (CPEs), trigger interrupt 1228 * on first cpu, from there it will trickle through all the cpus. 1229 * 1230 * Inputs : dummy(unused) 1231 * Outputs : None 1232 * 1233 */ 1234 static void 1235 ia64_mca_cpe_poll (unsigned long dummy) 1236 { 1237 /* Trigger a CPE interrupt cascade */ 1238 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); 1239 } 1240 1241 #endif /* CONFIG_ACPI */ 1242 1243 static int 1244 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data) 1245 { 1246 int c; 1247 struct task_struct *g, *t; 1248 if (val != DIE_INIT_MONARCH_PROCESS) 1249 return NOTIFY_DONE; 1250 printk(KERN_ERR "Processes interrupted by INIT -"); 1251 for_each_online_cpu(c) { 1252 struct ia64_sal_os_state *s; 1253 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); 1254 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); 1255 g = s->prev_task; 1256 if (g) { 1257 if (g->pid) 1258 printk(" %d", g->pid); 1259 else 1260 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); 1261 } 1262 } 1263 printk("\n\n"); 1264 if (read_trylock(&tasklist_lock)) { 1265 do_each_thread (g, t) { 1266 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); 1267 show_stack(t, NULL); 1268 } while_each_thread (g, t); 1269 read_unlock(&tasklist_lock); 1270 } 1271 return NOTIFY_DONE; 1272 } 1273 1274 /* 1275 * C portion of the OS INIT handler 1276 * 1277 * Called from ia64_os_init_dispatch 1278 * 1279 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for 1280 * this event. This code is used for both monarch and slave INIT events, see 1281 * sos->monarch. 1282 * 1283 * All INIT events switch to the INIT stack and change the previous process to 1284 * blocked status. If one of the INIT events is the monarch then we are 1285 * probably processing the nmi button/command. Use the monarch cpu to dump all 1286 * the processes. The slave INIT events all spin until the monarch cpu 1287 * returns. We can also get INIT slave events for MCA, in which case the MCA 1288 * process is the monarch. 1289 */ 1290 1291 void 1292 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, 1293 struct ia64_sal_os_state *sos) 1294 { 1295 static atomic_t slaves; 1296 static atomic_t monarchs; 1297 task_t *previous_current; 1298 int cpu = smp_processor_id(); 1299 1300 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */ 1301 console_loglevel = 15; /* make sure printks make it to console */ 1302 1303 printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", 1304 sos->proc_state_param, cpu, sos->monarch); 1305 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); 1306 1307 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); 1308 sos->os_status = IA64_INIT_RESUME; 1309 1310 /* FIXME: Workaround for broken proms that drive all INIT events as 1311 * slaves. The last slave that enters is promoted to be a monarch. 1312 * Remove this code in September 2006, that gives platforms a year to 1313 * fix their proms and get their customers updated. 1314 */ 1315 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { 1316 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", 1317 __FUNCTION__, cpu); 1318 atomic_dec(&slaves); 1319 sos->monarch = 1; 1320 } 1321 1322 /* FIXME: Workaround for broken proms that drive all INIT events as 1323 * monarchs. Second and subsequent monarchs are demoted to slaves. 1324 * Remove this code in September 2006, that gives platforms a year to 1325 * fix their proms and get their customers updated. 1326 */ 1327 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { 1328 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", 1329 __FUNCTION__, cpu); 1330 atomic_dec(&monarchs); 1331 sos->monarch = 0; 1332 } 1333 1334 if (!sos->monarch) { 1335 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; 1336 while (monarch_cpu == -1) 1337 cpu_relax(); /* spin until monarch enters */ 1338 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, 0, 0, 0) 1339 == NOTIFY_STOP) 1340 ia64_mca_spin(__FUNCTION__); 1341 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, 0, 0, 0) 1342 == NOTIFY_STOP) 1343 ia64_mca_spin(__FUNCTION__); 1344 while (monarch_cpu != -1) 1345 cpu_relax(); /* spin until monarch leaves */ 1346 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, 0, 0, 0) 1347 == NOTIFY_STOP) 1348 ia64_mca_spin(__FUNCTION__); 1349 printk("Slave on cpu %d returning to normal service.\n", cpu); 1350 set_curr_task(cpu, previous_current); 1351 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1352 atomic_dec(&slaves); 1353 return; 1354 } 1355 1356 monarch_cpu = cpu; 1357 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, 0, 0, 0) 1358 == NOTIFY_STOP) 1359 ia64_mca_spin(__FUNCTION__); 1360 1361 /* 1362 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be 1363 * generated via the BMC's command-line interface, but since the console is on the 1364 * same serial line, the user will need some time to switch out of the BMC before 1365 * the dump begins. 1366 */ 1367 printk("Delaying for 5 seconds...\n"); 1368 udelay(5*1000000); 1369 ia64_wait_for_slaves(cpu); 1370 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through 1371 * to default_monarch_init_process() above and just print all the 1372 * tasks. 1373 */ 1374 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, 0, 0, 0) 1375 == NOTIFY_STOP) 1376 ia64_mca_spin(__FUNCTION__); 1377 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, 0, 0, 0) 1378 == NOTIFY_STOP) 1379 ia64_mca_spin(__FUNCTION__); 1380 printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu); 1381 atomic_dec(&monarchs); 1382 set_curr_task(cpu, previous_current); 1383 monarch_cpu = -1; 1384 return; 1385 } 1386 1387 static int __init 1388 ia64_mca_disable_cpe_polling(char *str) 1389 { 1390 cpe_poll_enabled = 0; 1391 return 1; 1392 } 1393 1394 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); 1395 1396 static struct irqaction cmci_irqaction = { 1397 .handler = ia64_mca_cmc_int_handler, 1398 .flags = SA_INTERRUPT, 1399 .name = "cmc_hndlr" 1400 }; 1401 1402 static struct irqaction cmcp_irqaction = { 1403 .handler = ia64_mca_cmc_int_caller, 1404 .flags = SA_INTERRUPT, 1405 .name = "cmc_poll" 1406 }; 1407 1408 static struct irqaction mca_rdzv_irqaction = { 1409 .handler = ia64_mca_rendez_int_handler, 1410 .flags = SA_INTERRUPT, 1411 .name = "mca_rdzv" 1412 }; 1413 1414 static struct irqaction mca_wkup_irqaction = { 1415 .handler = ia64_mca_wakeup_int_handler, 1416 .flags = SA_INTERRUPT, 1417 .name = "mca_wkup" 1418 }; 1419 1420 #ifdef CONFIG_ACPI 1421 static struct irqaction mca_cpe_irqaction = { 1422 .handler = ia64_mca_cpe_int_handler, 1423 .flags = SA_INTERRUPT, 1424 .name = "cpe_hndlr" 1425 }; 1426 1427 static struct irqaction mca_cpep_irqaction = { 1428 .handler = ia64_mca_cpe_int_caller, 1429 .flags = SA_INTERRUPT, 1430 .name = "cpe_poll" 1431 }; 1432 #endif /* CONFIG_ACPI */ 1433 1434 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on 1435 * these stacks can never sleep, they cannot return from the kernel to user 1436 * space, they do not appear in a normal ps listing. So there is no need to 1437 * format most of the fields. 1438 */ 1439 1440 static void 1441 format_mca_init_stack(void *mca_data, unsigned long offset, 1442 const char *type, int cpu) 1443 { 1444 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); 1445 struct thread_info *ti; 1446 memset(p, 0, KERNEL_STACK_SIZE); 1447 ti = task_thread_info(p); 1448 ti->flags = _TIF_MCA_INIT; 1449 ti->preempt_count = 1; 1450 ti->task = p; 1451 ti->cpu = cpu; 1452 p->thread_info = ti; 1453 p->state = TASK_UNINTERRUPTIBLE; 1454 __set_bit(cpu, &p->cpus_allowed); 1455 INIT_LIST_HEAD(&p->tasks); 1456 p->parent = p->real_parent = p->group_leader = p; 1457 INIT_LIST_HEAD(&p->children); 1458 INIT_LIST_HEAD(&p->sibling); 1459 strncpy(p->comm, type, sizeof(p->comm)-1); 1460 } 1461 1462 /* Do per-CPU MCA-related initialization. */ 1463 1464 void __devinit 1465 ia64_mca_cpu_init(void *cpu_data) 1466 { 1467 void *pal_vaddr; 1468 1469 if (smp_processor_id() == 0) { 1470 void *mca_data; 1471 int cpu; 1472 1473 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu) 1474 * NR_CPUS + KERNEL_STACK_SIZE); 1475 mca_data = (void *)(((unsigned long)mca_data + 1476 KERNEL_STACK_SIZE - 1) & 1477 (-KERNEL_STACK_SIZE)); 1478 for (cpu = 0; cpu < NR_CPUS; cpu++) { 1479 format_mca_init_stack(mca_data, 1480 offsetof(struct ia64_mca_cpu, mca_stack), 1481 "MCA", cpu); 1482 format_mca_init_stack(mca_data, 1483 offsetof(struct ia64_mca_cpu, init_stack), 1484 "INIT", cpu); 1485 __per_cpu_mca[cpu] = __pa(mca_data); 1486 mca_data += sizeof(struct ia64_mca_cpu); 1487 } 1488 } 1489 1490 /* 1491 * The MCA info structure was allocated earlier and its 1492 * physical address saved in __per_cpu_mca[cpu]. Copy that 1493 * address * to ia64_mca_data so we can access it as a per-CPU 1494 * variable. 1495 */ 1496 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()]; 1497 1498 /* 1499 * Stash away a copy of the PTE needed to map the per-CPU page. 1500 * We may need it during MCA recovery. 1501 */ 1502 __get_cpu_var(ia64_mca_per_cpu_pte) = 1503 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)); 1504 1505 /* 1506 * Also, stash away a copy of the PAL address and the PTE 1507 * needed to map it. 1508 */ 1509 pal_vaddr = efi_get_pal_addr(); 1510 if (!pal_vaddr) 1511 return; 1512 __get_cpu_var(ia64_mca_pal_base) = 1513 GRANULEROUNDDOWN((unsigned long) pal_vaddr); 1514 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr), 1515 PAGE_KERNEL)); 1516 } 1517 1518 /* 1519 * ia64_mca_init 1520 * 1521 * Do all the system level mca specific initialization. 1522 * 1523 * 1. Register spinloop and wakeup request interrupt vectors 1524 * 1525 * 2. Register OS_MCA handler entry point 1526 * 1527 * 3. Register OS_INIT handler entry point 1528 * 1529 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. 1530 * 1531 * Note that this initialization is done very early before some kernel 1532 * services are available. 1533 * 1534 * Inputs : None 1535 * 1536 * Outputs : None 1537 */ 1538 void __init 1539 ia64_mca_init(void) 1540 { 1541 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; 1542 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; 1543 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; 1544 int i; 1545 s64 rc; 1546 struct ia64_sal_retval isrv; 1547 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */ 1548 static struct notifier_block default_init_monarch_nb = { 1549 .notifier_call = default_monarch_init_process, 1550 .priority = 0/* we need to notified last */ 1551 }; 1552 1553 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__); 1554 1555 /* Clear the Rendez checkin flag for all cpus */ 1556 for(i = 0 ; i < NR_CPUS; i++) 1557 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1558 1559 /* 1560 * Register the rendezvous spinloop and wakeup mechanism with SAL 1561 */ 1562 1563 /* Register the rendezvous interrupt vector with SAL */ 1564 while (1) { 1565 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, 1566 SAL_MC_PARAM_MECHANISM_INT, 1567 IA64_MCA_RENDEZ_VECTOR, 1568 timeout, 1569 SAL_MC_PARAM_RZ_ALWAYS); 1570 rc = isrv.status; 1571 if (rc == 0) 1572 break; 1573 if (rc == -2) { 1574 printk(KERN_INFO "Increasing MCA rendezvous timeout from " 1575 "%ld to %ld milliseconds\n", timeout, isrv.v0); 1576 timeout = isrv.v0; 1577 continue; 1578 } 1579 printk(KERN_ERR "Failed to register rendezvous interrupt " 1580 "with SAL (status %ld)\n", rc); 1581 return; 1582 } 1583 1584 /* Register the wakeup interrupt vector with SAL */ 1585 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, 1586 SAL_MC_PARAM_MECHANISM_INT, 1587 IA64_MCA_WAKEUP_VECTOR, 1588 0, 0); 1589 rc = isrv.status; 1590 if (rc) { 1591 printk(KERN_ERR "Failed to register wakeup interrupt with SAL " 1592 "(status %ld)\n", rc); 1593 return; 1594 } 1595 1596 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__); 1597 1598 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp); 1599 /* 1600 * XXX - disable SAL checksum by setting size to 0; should be 1601 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); 1602 */ 1603 ia64_mc_info.imi_mca_handler_size = 0; 1604 1605 /* Register the os mca handler with SAL */ 1606 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, 1607 ia64_mc_info.imi_mca_handler, 1608 ia64_tpa(mca_hldlr_ptr->gp), 1609 ia64_mc_info.imi_mca_handler_size, 1610 0, 0, 0))) 1611 { 1612 printk(KERN_ERR "Failed to register OS MCA handler with SAL " 1613 "(status %ld)\n", rc); 1614 return; 1615 } 1616 1617 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__, 1618 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); 1619 1620 /* 1621 * XXX - disable SAL checksum by setting size to 0, should be 1622 * size of the actual init handler in mca_asm.S. 1623 */ 1624 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp); 1625 ia64_mc_info.imi_monarch_init_handler_size = 0; 1626 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp); 1627 ia64_mc_info.imi_slave_init_handler_size = 0; 1628 1629 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__, 1630 ia64_mc_info.imi_monarch_init_handler); 1631 1632 /* Register the os init handler with SAL */ 1633 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, 1634 ia64_mc_info.imi_monarch_init_handler, 1635 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 1636 ia64_mc_info.imi_monarch_init_handler_size, 1637 ia64_mc_info.imi_slave_init_handler, 1638 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 1639 ia64_mc_info.imi_slave_init_handler_size))) 1640 { 1641 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " 1642 "(status %ld)\n", rc); 1643 return; 1644 } 1645 if (register_die_notifier(&default_init_monarch_nb)) { 1646 printk(KERN_ERR "Failed to register default monarch INIT process\n"); 1647 return; 1648 } 1649 1650 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__); 1651 1652 /* 1653 * Configure the CMCI/P vector and handler. Interrupts for CMC are 1654 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). 1655 */ 1656 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction); 1657 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction); 1658 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */ 1659 1660 /* Setup the MCA rendezvous interrupt vector */ 1661 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction); 1662 1663 /* Setup the MCA wakeup interrupt vector */ 1664 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction); 1665 1666 #ifdef CONFIG_ACPI 1667 /* Setup the CPEI/P handler */ 1668 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction); 1669 #endif 1670 1671 /* Initialize the areas set aside by the OS to buffer the 1672 * platform/processor error states for MCA/INIT/CMC 1673 * handling. 1674 */ 1675 ia64_log_init(SAL_INFO_TYPE_MCA); 1676 ia64_log_init(SAL_INFO_TYPE_INIT); 1677 ia64_log_init(SAL_INFO_TYPE_CMC); 1678 ia64_log_init(SAL_INFO_TYPE_CPE); 1679 1680 mca_init = 1; 1681 printk(KERN_INFO "MCA related initialization done\n"); 1682 } 1683 1684 /* 1685 * ia64_mca_late_init 1686 * 1687 * Opportunity to setup things that require initialization later 1688 * than ia64_mca_init. Setup a timer to poll for CPEs if the 1689 * platform doesn't support an interrupt driven mechanism. 1690 * 1691 * Inputs : None 1692 * Outputs : Status 1693 */ 1694 static int __init 1695 ia64_mca_late_init(void) 1696 { 1697 if (!mca_init) 1698 return 0; 1699 1700 /* Setup the CMCI/P vector and handler */ 1701 init_timer(&cmc_poll_timer); 1702 cmc_poll_timer.function = ia64_mca_cmc_poll; 1703 1704 /* Unmask/enable the vector */ 1705 cmc_polling_enabled = 0; 1706 schedule_work(&cmc_enable_work); 1707 1708 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__); 1709 1710 #ifdef CONFIG_ACPI 1711 /* Setup the CPEI/P vector and handler */ 1712 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); 1713 init_timer(&cpe_poll_timer); 1714 cpe_poll_timer.function = ia64_mca_cpe_poll; 1715 1716 { 1717 irq_desc_t *desc; 1718 unsigned int irq; 1719 1720 if (cpe_vector >= 0) { 1721 /* If platform supports CPEI, enable the irq. */ 1722 cpe_poll_enabled = 0; 1723 for (irq = 0; irq < NR_IRQS; ++irq) 1724 if (irq_to_vector(irq) == cpe_vector) { 1725 desc = irq_descp(irq); 1726 desc->status |= IRQ_PER_CPU; 1727 setup_irq(irq, &mca_cpe_irqaction); 1728 } 1729 ia64_mca_register_cpev(cpe_vector); 1730 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__); 1731 } else { 1732 /* If platform doesn't support CPEI, get the timer going. */ 1733 if (cpe_poll_enabled) { 1734 ia64_mca_cpe_poll(0UL); 1735 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__); 1736 } 1737 } 1738 } 1739 #endif 1740 1741 return 0; 1742 } 1743 1744 device_initcall(ia64_mca_late_init); 1745