xref: /openbmc/linux/arch/ia64/kernel/mca.c (revision 9336b0836bf789136b51caf9ddd49dcbf1726cf4)
1 /*
2  * File:	mca.c
3  * Purpose:	Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *	David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch	GUID cleanups
26  *
27  * 02/01/04 J. Hall	Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *			error flag, set SAL default return values, changed
29  *			error record structure to linked list, added init call
30  *			to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  *
52  * 2005-08-12 Keith Owens <kaos@sgi.com>
53  *	      Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54  *
55  * 2005-10-07 Keith Owens <kaos@sgi.com>
56  *	      Add notify_die() hooks.
57  */
58 #include <linux/config.h>
59 #include <linux/types.h>
60 #include <linux/init.h>
61 #include <linux/sched.h>
62 #include <linux/interrupt.h>
63 #include <linux/irq.h>
64 #include <linux/smp_lock.h>
65 #include <linux/bootmem.h>
66 #include <linux/acpi.h>
67 #include <linux/timer.h>
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/smp.h>
71 #include <linux/workqueue.h>
72 
73 #include <asm/delay.h>
74 #include <asm/kdebug.h>
75 #include <asm/machvec.h>
76 #include <asm/meminit.h>
77 #include <asm/page.h>
78 #include <asm/ptrace.h>
79 #include <asm/system.h>
80 #include <asm/sal.h>
81 #include <asm/mca.h>
82 
83 #include <asm/irq.h>
84 #include <asm/hw_irq.h>
85 
86 #include "entry.h"
87 
88 #if defined(IA64_MCA_DEBUG_INFO)
89 # define IA64_MCA_DEBUG(fmt...)	printk(fmt)
90 #else
91 # define IA64_MCA_DEBUG(fmt...)
92 #endif
93 
94 /* Used by mca_asm.S */
95 u32				ia64_mca_serialize;
96 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
97 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
98 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */
99 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
100 
101 unsigned long __per_cpu_mca[NR_CPUS];
102 
103 /* In mca_asm.S */
104 extern void			ia64_os_init_dispatch_monarch (void);
105 extern void			ia64_os_init_dispatch_slave (void);
106 
107 static int monarch_cpu = -1;
108 
109 static ia64_mc_info_t		ia64_mc_info;
110 
111 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
112 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
113 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
114 #define CPE_HISTORY_LENGTH    5
115 #define CMC_HISTORY_LENGTH    5
116 
117 static struct timer_list cpe_poll_timer;
118 static struct timer_list cmc_poll_timer;
119 /*
120  * This variable tells whether we are currently in polling mode.
121  * Start with this in the wrong state so we won't play w/ timers
122  * before the system is ready.
123  */
124 static int cmc_polling_enabled = 1;
125 
126 /*
127  * Clearing this variable prevents CPE polling from getting activated
128  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
129  * but encounters problems retrieving CPE logs.  This should only be
130  * necessary for debugging.
131  */
132 static int cpe_poll_enabled = 1;
133 
134 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
135 
136 static int mca_init;
137 
138 
139 static void inline
140 ia64_mca_spin(const char *func)
141 {
142 	printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
143 	while (1)
144 		cpu_relax();
145 }
146 /*
147  * IA64_MCA log support
148  */
149 #define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */
150 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
151 
152 typedef struct ia64_state_log_s
153 {
154 	spinlock_t	isl_lock;
155 	int		isl_index;
156 	unsigned long	isl_count;
157 	ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
158 } ia64_state_log_t;
159 
160 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
161 
162 #define IA64_LOG_ALLOCATE(it, size) \
163 	{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
164 		(ia64_err_rec_t *)alloc_bootmem(size); \
165 	ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
166 		(ia64_err_rec_t *)alloc_bootmem(size);}
167 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
168 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
169 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
170 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
171 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
172 #define IA64_LOG_INDEX_INC(it) \
173     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
174     ia64_state_log[it].isl_count++;}
175 #define IA64_LOG_INDEX_DEC(it) \
176     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
177 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
178 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
179 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
180 
181 /*
182  * ia64_log_init
183  *	Reset the OS ia64 log buffer
184  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
185  * Outputs	:	None
186  */
187 static void
188 ia64_log_init(int sal_info_type)
189 {
190 	u64	max_size = 0;
191 
192 	IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
193 	IA64_LOG_LOCK_INIT(sal_info_type);
194 
195 	// SAL will tell us the maximum size of any error record of this type
196 	max_size = ia64_sal_get_state_info_size(sal_info_type);
197 	if (!max_size)
198 		/* alloc_bootmem() doesn't like zero-sized allocations! */
199 		return;
200 
201 	// set up OS data structures to hold error info
202 	IA64_LOG_ALLOCATE(sal_info_type, max_size);
203 	memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
204 	memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
205 }
206 
207 /*
208  * ia64_log_get
209  *
210  *	Get the current MCA log from SAL and copy it into the OS log buffer.
211  *
212  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
213  *              irq_safe    whether you can use printk at this point
214  *  Outputs :   size        (total record length)
215  *              *buffer     (ptr to error record)
216  *
217  */
218 static u64
219 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
220 {
221 	sal_log_record_header_t     *log_buffer;
222 	u64                         total_len = 0;
223 	int                         s;
224 
225 	IA64_LOG_LOCK(sal_info_type);
226 
227 	/* Get the process state information */
228 	log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
229 
230 	total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
231 
232 	if (total_len) {
233 		IA64_LOG_INDEX_INC(sal_info_type);
234 		IA64_LOG_UNLOCK(sal_info_type);
235 		if (irq_safe) {
236 			IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
237 				       "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
238 		}
239 		*buffer = (u8 *) log_buffer;
240 		return total_len;
241 	} else {
242 		IA64_LOG_UNLOCK(sal_info_type);
243 		return 0;
244 	}
245 }
246 
247 /*
248  *  ia64_mca_log_sal_error_record
249  *
250  *  This function retrieves a specified error record type from SAL
251  *  and wakes up any processes waiting for error records.
252  *
253  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
254  *              FIXME: remove MCA and irq_safe.
255  */
256 static void
257 ia64_mca_log_sal_error_record(int sal_info_type)
258 {
259 	u8 *buffer;
260 	sal_log_record_header_t *rh;
261 	u64 size;
262 	int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
263 #ifdef IA64_MCA_DEBUG_INFO
264 	static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
265 #endif
266 
267 	size = ia64_log_get(sal_info_type, &buffer, irq_safe);
268 	if (!size)
269 		return;
270 
271 	salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
272 
273 	if (irq_safe)
274 		IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
275 			smp_processor_id(),
276 			sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
277 
278 	/* Clear logs from corrected errors in case there's no user-level logger */
279 	rh = (sal_log_record_header_t *)buffer;
280 	if (rh->severity == sal_log_severity_corrected)
281 		ia64_sal_clear_state_info(sal_info_type);
282 }
283 
284 /*
285  * platform dependent error handling
286  */
287 #ifndef PLATFORM_MCA_HANDLERS
288 
289 #ifdef CONFIG_ACPI
290 
291 int cpe_vector = -1;
292 
293 static irqreturn_t
294 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
295 {
296 	static unsigned long	cpe_history[CPE_HISTORY_LENGTH];
297 	static int		index;
298 	static DEFINE_SPINLOCK(cpe_history_lock);
299 
300 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
301 		       __FUNCTION__, cpe_irq, smp_processor_id());
302 
303 	/* SAL spec states this should run w/ interrupts enabled */
304 	local_irq_enable();
305 
306 	/* Get the CPE error record and log it */
307 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
308 
309 	spin_lock(&cpe_history_lock);
310 	if (!cpe_poll_enabled && cpe_vector >= 0) {
311 
312 		int i, count = 1; /* we know 1 happened now */
313 		unsigned long now = jiffies;
314 
315 		for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
316 			if (now - cpe_history[i] <= HZ)
317 				count++;
318 		}
319 
320 		IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
321 		if (count >= CPE_HISTORY_LENGTH) {
322 
323 			cpe_poll_enabled = 1;
324 			spin_unlock(&cpe_history_lock);
325 			disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
326 
327 			/*
328 			 * Corrected errors will still be corrected, but
329 			 * make sure there's a log somewhere that indicates
330 			 * something is generating more than we can handle.
331 			 */
332 			printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
333 
334 			mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
335 
336 			/* lock already released, get out now */
337 			return IRQ_HANDLED;
338 		} else {
339 			cpe_history[index++] = now;
340 			if (index == CPE_HISTORY_LENGTH)
341 				index = 0;
342 		}
343 	}
344 	spin_unlock(&cpe_history_lock);
345 	return IRQ_HANDLED;
346 }
347 
348 #endif /* CONFIG_ACPI */
349 
350 #ifdef CONFIG_ACPI
351 /*
352  * ia64_mca_register_cpev
353  *
354  *  Register the corrected platform error vector with SAL.
355  *
356  *  Inputs
357  *      cpev        Corrected Platform Error Vector number
358  *
359  *  Outputs
360  *      None
361  */
362 static void
363 ia64_mca_register_cpev (int cpev)
364 {
365 	/* Register the CPE interrupt vector with SAL */
366 	struct ia64_sal_retval isrv;
367 
368 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
369 	if (isrv.status) {
370 		printk(KERN_ERR "Failed to register Corrected Platform "
371 		       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
372 		return;
373 	}
374 
375 	IA64_MCA_DEBUG("%s: corrected platform error "
376 		       "vector %#x registered\n", __FUNCTION__, cpev);
377 }
378 #endif /* CONFIG_ACPI */
379 
380 #endif /* PLATFORM_MCA_HANDLERS */
381 
382 /*
383  * ia64_mca_cmc_vector_setup
384  *
385  *  Setup the corrected machine check vector register in the processor.
386  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
387  *  This function is invoked on a per-processor basis.
388  *
389  * Inputs
390  *      None
391  *
392  * Outputs
393  *	None
394  */
395 void
396 ia64_mca_cmc_vector_setup (void)
397 {
398 	cmcv_reg_t	cmcv;
399 
400 	cmcv.cmcv_regval	= 0;
401 	cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */
402 	cmcv.cmcv_vector	= IA64_CMC_VECTOR;
403 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
404 
405 	IA64_MCA_DEBUG("%s: CPU %d corrected "
406 		       "machine check vector %#x registered.\n",
407 		       __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
408 
409 	IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
410 		       __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
411 }
412 
413 /*
414  * ia64_mca_cmc_vector_disable
415  *
416  *  Mask the corrected machine check vector register in the processor.
417  *  This function is invoked on a per-processor basis.
418  *
419  * Inputs
420  *      dummy(unused)
421  *
422  * Outputs
423  *	None
424  */
425 static void
426 ia64_mca_cmc_vector_disable (void *dummy)
427 {
428 	cmcv_reg_t	cmcv;
429 
430 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
431 
432 	cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
433 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
434 
435 	IA64_MCA_DEBUG("%s: CPU %d corrected "
436 		       "machine check vector %#x disabled.\n",
437 		       __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
438 }
439 
440 /*
441  * ia64_mca_cmc_vector_enable
442  *
443  *  Unmask the corrected machine check vector register in the processor.
444  *  This function is invoked on a per-processor basis.
445  *
446  * Inputs
447  *      dummy(unused)
448  *
449  * Outputs
450  *	None
451  */
452 static void
453 ia64_mca_cmc_vector_enable (void *dummy)
454 {
455 	cmcv_reg_t	cmcv;
456 
457 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
458 
459 	cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
460 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
461 
462 	IA64_MCA_DEBUG("%s: CPU %d corrected "
463 		       "machine check vector %#x enabled.\n",
464 		       __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
465 }
466 
467 /*
468  * ia64_mca_cmc_vector_disable_keventd
469  *
470  * Called via keventd (smp_call_function() is not safe in interrupt context) to
471  * disable the cmc interrupt vector.
472  */
473 static void
474 ia64_mca_cmc_vector_disable_keventd(void *unused)
475 {
476 	on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
477 }
478 
479 /*
480  * ia64_mca_cmc_vector_enable_keventd
481  *
482  * Called via keventd (smp_call_function() is not safe in interrupt context) to
483  * enable the cmc interrupt vector.
484  */
485 static void
486 ia64_mca_cmc_vector_enable_keventd(void *unused)
487 {
488 	on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
489 }
490 
491 /*
492  * ia64_mca_wakeup
493  *
494  *	Send an inter-cpu interrupt to wake-up a particular cpu
495  *	and mark that cpu to be out of rendez.
496  *
497  *  Inputs  :   cpuid
498  *  Outputs :   None
499  */
500 static void
501 ia64_mca_wakeup(int cpu)
502 {
503 	platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
504 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
505 
506 }
507 
508 /*
509  * ia64_mca_wakeup_all
510  *
511  *	Wakeup all the cpus which have rendez'ed previously.
512  *
513  *  Inputs  :   None
514  *  Outputs :   None
515  */
516 static void
517 ia64_mca_wakeup_all(void)
518 {
519 	int cpu;
520 
521 	/* Clear the Rendez checkin flag for all cpus */
522 	for_each_online_cpu(cpu) {
523 		if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
524 			ia64_mca_wakeup(cpu);
525 	}
526 
527 }
528 
529 /*
530  * ia64_mca_rendez_interrupt_handler
531  *
532  *	This is handler used to put slave processors into spinloop
533  *	while the monarch processor does the mca handling and later
534  *	wake each slave up once the monarch is done.
535  *
536  *  Inputs  :   None
537  *  Outputs :   None
538  */
539 static irqreturn_t
540 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
541 {
542 	unsigned long flags;
543 	int cpu = smp_processor_id();
544 
545 	/* Mask all interrupts */
546 	local_irq_save(flags);
547 	if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, 0, 0, 0)
548 			== NOTIFY_STOP)
549 		ia64_mca_spin(__FUNCTION__);
550 
551 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
552 	/* Register with the SAL monarch that the slave has
553 	 * reached SAL
554 	 */
555 	ia64_sal_mc_rendez();
556 
557 	if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, 0, 0, 0)
558 			== NOTIFY_STOP)
559 		ia64_mca_spin(__FUNCTION__);
560 
561 	/* Wait for the monarch cpu to exit. */
562 	while (monarch_cpu != -1)
563 	       cpu_relax();	/* spin until monarch leaves */
564 
565 	if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, 0, 0, 0)
566 			== NOTIFY_STOP)
567 		ia64_mca_spin(__FUNCTION__);
568 
569 	/* Enable all interrupts */
570 	local_irq_restore(flags);
571 	return IRQ_HANDLED;
572 }
573 
574 /*
575  * ia64_mca_wakeup_int_handler
576  *
577  *	The interrupt handler for processing the inter-cpu interrupt to the
578  *	slave cpu which was spinning in the rendez loop.
579  *	Since this spinning is done by turning off the interrupts and
580  *	polling on the wakeup-interrupt bit in the IRR, there is
581  *	nothing useful to be done in the handler.
582  *
583  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
584  *	arg		(Interrupt handler specific argument)
585  *	ptregs		(Exception frame at the time of the interrupt)
586  *  Outputs :   None
587  *
588  */
589 static irqreturn_t
590 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
591 {
592 	return IRQ_HANDLED;
593 }
594 
595 /* Function pointer for extra MCA recovery */
596 int (*ia64_mca_ucmc_extension)
597 	(void*,struct ia64_sal_os_state*)
598 	= NULL;
599 
600 int
601 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
602 {
603 	if (ia64_mca_ucmc_extension)
604 		return 1;
605 
606 	ia64_mca_ucmc_extension = fn;
607 	return 0;
608 }
609 
610 void
611 ia64_unreg_MCA_extension(void)
612 {
613 	if (ia64_mca_ucmc_extension)
614 		ia64_mca_ucmc_extension = NULL;
615 }
616 
617 EXPORT_SYMBOL(ia64_reg_MCA_extension);
618 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
619 
620 
621 static inline void
622 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
623 {
624 	u64 fslot, tslot, nat;
625 	*tr = *fr;
626 	fslot = ((unsigned long)fr >> 3) & 63;
627 	tslot = ((unsigned long)tr >> 3) & 63;
628 	*tnat &= ~(1UL << tslot);
629 	nat = (fnat >> fslot) & 1;
630 	*tnat |= (nat << tslot);
631 }
632 
633 /* On entry to this routine, we are running on the per cpu stack, see
634  * mca_asm.h.  The original stack has not been touched by this event.  Some of
635  * the original stack's registers will be in the RBS on this stack.  This stack
636  * also contains a partial pt_regs and switch_stack, the rest of the data is in
637  * PAL minstate.
638  *
639  * The first thing to do is modify the original stack to look like a blocked
640  * task so we can run backtrace on the original task.  Also mark the per cpu
641  * stack as current to ensure that we use the correct task state, it also means
642  * that we can do backtrace on the MCA/INIT handler code itself.
643  */
644 
645 static task_t *
646 ia64_mca_modify_original_stack(struct pt_regs *regs,
647 		const struct switch_stack *sw,
648 		struct ia64_sal_os_state *sos,
649 		const char *type)
650 {
651 	char *p, comm[sizeof(current->comm)];
652 	ia64_va va;
653 	extern char ia64_leave_kernel[];	/* Need asm address, not function descriptor */
654 	const pal_min_state_area_t *ms = sos->pal_min_state;
655 	task_t *previous_current;
656 	struct pt_regs *old_regs;
657 	struct switch_stack *old_sw;
658 	unsigned size = sizeof(struct pt_regs) +
659 			sizeof(struct switch_stack) + 16;
660 	u64 *old_bspstore, *old_bsp;
661 	u64 *new_bspstore, *new_bsp;
662 	u64 old_unat, old_rnat, new_rnat, nat;
663 	u64 slots, loadrs = regs->loadrs;
664 	u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
665 	u64 ar_bspstore = regs->ar_bspstore;
666 	u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
667 	const u64 *bank;
668 	const char *msg;
669 	int cpu = smp_processor_id();
670 
671 	previous_current = curr_task(cpu);
672 	set_curr_task(cpu, current);
673 	if ((p = strchr(current->comm, ' ')))
674 		*p = '\0';
675 
676 	/* Best effort attempt to cope with MCA/INIT delivered while in
677 	 * physical mode.
678 	 */
679 	regs->cr_ipsr = ms->pmsa_ipsr;
680 	if (ia64_psr(regs)->dt == 0) {
681 		va.l = r12;
682 		if (va.f.reg == 0) {
683 			va.f.reg = 7;
684 			r12 = va.l;
685 		}
686 		va.l = r13;
687 		if (va.f.reg == 0) {
688 			va.f.reg = 7;
689 			r13 = va.l;
690 		}
691 	}
692 	if (ia64_psr(regs)->rt == 0) {
693 		va.l = ar_bspstore;
694 		if (va.f.reg == 0) {
695 			va.f.reg = 7;
696 			ar_bspstore = va.l;
697 		}
698 		va.l = ar_bsp;
699 		if (va.f.reg == 0) {
700 			va.f.reg = 7;
701 			ar_bsp = va.l;
702 		}
703 	}
704 
705 	/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
706 	 * have been copied to the old stack, the old stack may fail the
707 	 * validation tests below.  So ia64_old_stack() must restore the dirty
708 	 * registers from the new stack.  The old and new bspstore probably
709 	 * have different alignments, so loadrs calculated on the old bsp
710 	 * cannot be used to restore from the new bsp.  Calculate a suitable
711 	 * loadrs for the new stack and save it in the new pt_regs, where
712 	 * ia64_old_stack() can get it.
713 	 */
714 	old_bspstore = (u64 *)ar_bspstore;
715 	old_bsp = (u64 *)ar_bsp;
716 	slots = ia64_rse_num_regs(old_bspstore, old_bsp);
717 	new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
718 	new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
719 	regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
720 
721 	/* Verify the previous stack state before we change it */
722 	if (user_mode(regs)) {
723 		msg = "occurred in user space";
724 		goto no_mod;
725 	}
726 	if (r13 != sos->prev_IA64_KR_CURRENT) {
727 		msg = "inconsistent previous current and r13";
728 		goto no_mod;
729 	}
730 	if ((r12 - r13) >= KERNEL_STACK_SIZE) {
731 		msg = "inconsistent r12 and r13";
732 		goto no_mod;
733 	}
734 	if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
735 		msg = "inconsistent ar.bspstore and r13";
736 		goto no_mod;
737 	}
738 	va.p = old_bspstore;
739 	if (va.f.reg < 5) {
740 		msg = "old_bspstore is in the wrong region";
741 		goto no_mod;
742 	}
743 	if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
744 		msg = "inconsistent ar.bsp and r13";
745 		goto no_mod;
746 	}
747 	size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
748 	if (ar_bspstore + size > r12) {
749 		msg = "no room for blocked state";
750 		goto no_mod;
751 	}
752 
753 	/* Change the comm field on the MCA/INT task to include the pid that
754 	 * was interrupted, it makes for easier debugging.  If that pid was 0
755 	 * (swapper or nested MCA/INIT) then use the start of the previous comm
756 	 * field suffixed with its cpu.
757 	 */
758 	if (previous_current->pid)
759 		snprintf(comm, sizeof(comm), "%s %d",
760 			current->comm, previous_current->pid);
761 	else {
762 		int l;
763 		if ((p = strchr(previous_current->comm, ' ')))
764 			l = p - previous_current->comm;
765 		else
766 			l = strlen(previous_current->comm);
767 		snprintf(comm, sizeof(comm), "%s %*s %d",
768 			current->comm, l, previous_current->comm,
769 			task_thread_info(previous_current)->cpu);
770 	}
771 	memcpy(current->comm, comm, sizeof(current->comm));
772 
773 	/* Make the original task look blocked.  First stack a struct pt_regs,
774 	 * describing the state at the time of interrupt.  mca_asm.S built a
775 	 * partial pt_regs, copy it and fill in the blanks using minstate.
776 	 */
777 	p = (char *)r12 - sizeof(*regs);
778 	old_regs = (struct pt_regs *)p;
779 	memcpy(old_regs, regs, sizeof(*regs));
780 	/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
781 	 * pmsa_{xip,xpsr,xfs}
782 	 */
783 	if (ia64_psr(regs)->ic) {
784 		old_regs->cr_iip = ms->pmsa_iip;
785 		old_regs->cr_ipsr = ms->pmsa_ipsr;
786 		old_regs->cr_ifs = ms->pmsa_ifs;
787 	} else {
788 		old_regs->cr_iip = ms->pmsa_xip;
789 		old_regs->cr_ipsr = ms->pmsa_xpsr;
790 		old_regs->cr_ifs = ms->pmsa_xfs;
791 	}
792 	old_regs->pr = ms->pmsa_pr;
793 	old_regs->b0 = ms->pmsa_br0;
794 	old_regs->loadrs = loadrs;
795 	old_regs->ar_rsc = ms->pmsa_rsc;
796 	old_unat = old_regs->ar_unat;
797 	copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
798 	copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
799 	copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
800 	copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
801 	copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
802 	copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
803 	copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
804 	copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
805 	copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
806 	copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
807 	copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
808 	if (ia64_psr(old_regs)->bn)
809 		bank = ms->pmsa_bank1_gr;
810 	else
811 		bank = ms->pmsa_bank0_gr;
812 	copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
813 	copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
814 	copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
815 	copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
816 	copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
817 	copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
818 	copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
819 	copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
820 	copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
821 	copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
822 	copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
823 	copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
824 	copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
825 	copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
826 	copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
827 	copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
828 
829 	/* Next stack a struct switch_stack.  mca_asm.S built a partial
830 	 * switch_stack, copy it and fill in the blanks using pt_regs and
831 	 * minstate.
832 	 *
833 	 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
834 	 * ar.pfs is set to 0.
835 	 *
836 	 * unwind.c::unw_unwind() does special processing for interrupt frames.
837 	 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
838 	 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
839 	 * that this is documented, of course.  Set PRED_NON_SYSCALL in the
840 	 * switch_stack on the original stack so it will unwind correctly when
841 	 * unwind.c reads pt_regs.
842 	 *
843 	 * thread.ksp is updated to point to the synthesized switch_stack.
844 	 */
845 	p -= sizeof(struct switch_stack);
846 	old_sw = (struct switch_stack *)p;
847 	memcpy(old_sw, sw, sizeof(*sw));
848 	old_sw->caller_unat = old_unat;
849 	old_sw->ar_fpsr = old_regs->ar_fpsr;
850 	copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
851 	copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
852 	copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
853 	copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
854 	old_sw->b0 = (u64)ia64_leave_kernel;
855 	old_sw->b1 = ms->pmsa_br1;
856 	old_sw->ar_pfs = 0;
857 	old_sw->ar_unat = old_unat;
858 	old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
859 	previous_current->thread.ksp = (u64)p - 16;
860 
861 	/* Finally copy the original stack's registers back to its RBS.
862 	 * Registers from ar.bspstore through ar.bsp at the time of the event
863 	 * are in the current RBS, copy them back to the original stack.  The
864 	 * copy must be done register by register because the original bspstore
865 	 * and the current one have different alignments, so the saved RNAT
866 	 * data occurs at different places.
867 	 *
868 	 * mca_asm does cover, so the old_bsp already includes all registers at
869 	 * the time of MCA/INIT.  It also does flushrs, so all registers before
870 	 * this function have been written to backing store on the MCA/INIT
871 	 * stack.
872 	 */
873 	new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
874 	old_rnat = regs->ar_rnat;
875 	while (slots--) {
876 		if (ia64_rse_is_rnat_slot(new_bspstore)) {
877 			new_rnat = ia64_get_rnat(new_bspstore++);
878 		}
879 		if (ia64_rse_is_rnat_slot(old_bspstore)) {
880 			*old_bspstore++ = old_rnat;
881 			old_rnat = 0;
882 		}
883 		nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
884 		old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
885 		old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
886 		*old_bspstore++ = *new_bspstore++;
887 	}
888 	old_sw->ar_bspstore = (unsigned long)old_bspstore;
889 	old_sw->ar_rnat = old_rnat;
890 
891 	sos->prev_task = previous_current;
892 	return previous_current;
893 
894 no_mod:
895 	printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
896 			smp_processor_id(), type, msg);
897 	return previous_current;
898 }
899 
900 /* The monarch/slave interaction is based on monarch_cpu and requires that all
901  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
902  * not entered rendezvous yet then wait a bit.  The assumption is that any
903  * slave that has not rendezvoused after a reasonable time is never going to do
904  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
905  * interrupt, as well as cpus that receive the INIT slave event.
906  */
907 
908 static void
909 ia64_wait_for_slaves(int monarch)
910 {
911 	int c, wait = 0, missing = 0;
912 	for_each_online_cpu(c) {
913 		if (c == monarch)
914 			continue;
915 		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
916 			udelay(1000);		/* short wait first */
917 			wait = 1;
918 			break;
919 		}
920 	}
921 	if (!wait)
922 		goto all_in;
923 	for_each_online_cpu(c) {
924 		if (c == monarch)
925 			continue;
926 		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
927 			udelay(5*1000000);	/* wait 5 seconds for slaves (arbitrary) */
928 			if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
929 				missing = 1;
930 			break;
931 		}
932 	}
933 	if (!missing)
934 		goto all_in;
935 	printk(KERN_INFO "OS MCA slave did not rendezvous on cpu");
936 	for_each_online_cpu(c) {
937 		if (c == monarch)
938 			continue;
939 		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
940 			printk(" %d", c);
941 	}
942 	printk("\n");
943 	return;
944 
945 all_in:
946 	printk(KERN_INFO "All OS MCA slaves have reached rendezvous\n");
947 	return;
948 }
949 
950 /*
951  * ia64_mca_handler
952  *
953  *	This is uncorrectable machine check handler called from OS_MCA
954  *	dispatch code which is in turn called from SAL_CHECK().
955  *	This is the place where the core of OS MCA handling is done.
956  *	Right now the logs are extracted and displayed in a well-defined
957  *	format. This handler code is supposed to be run only on the
958  *	monarch processor. Once the monarch is done with MCA handling
959  *	further MCA logging is enabled by clearing logs.
960  *	Monarch also has the duty of sending wakeup-IPIs to pull the
961  *	slave processors out of rendezvous spinloop.
962  */
963 void
964 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
965 		 struct ia64_sal_os_state *sos)
966 {
967 	pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
968 		&sos->proc_state_param;
969 	int recover, cpu = smp_processor_id();
970 	task_t *previous_current;
971 
972 	oops_in_progress = 1;	/* FIXME: make printk NMI/MCA/INIT safe */
973 	console_loglevel = 15;	/* make sure printks make it to console */
974 	printk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d monarch=%ld\n",
975 		sos->proc_state_param, cpu, sos->monarch);
976 
977 	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
978 	monarch_cpu = cpu;
979 	if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, 0, 0, 0)
980 			== NOTIFY_STOP)
981 		ia64_mca_spin(__FUNCTION__);
982 	ia64_wait_for_slaves(cpu);
983 
984 	/* Wakeup all the processors which are spinning in the rendezvous loop.
985 	 * They will leave SAL, then spin in the OS with interrupts disabled
986 	 * until this monarch cpu leaves the MCA handler.  That gets control
987 	 * back to the OS so we can backtrace the other cpus, backtrace when
988 	 * spinning in SAL does not work.
989 	 */
990 	ia64_mca_wakeup_all();
991 	if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, 0, 0, 0)
992 			== NOTIFY_STOP)
993 		ia64_mca_spin(__FUNCTION__);
994 
995 	/* Get the MCA error record and log it */
996 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
997 
998 	/* TLB error is only exist in this SAL error record */
999 	recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1000 	/* other error recovery */
1001 	   || (ia64_mca_ucmc_extension
1002 		&& ia64_mca_ucmc_extension(
1003 			IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1004 			sos));
1005 
1006 	if (recover) {
1007 		sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1008 		rh->severity = sal_log_severity_corrected;
1009 		ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1010 		sos->os_status = IA64_MCA_CORRECTED;
1011 	}
1012 	if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, 0, 0, recover)
1013 			== NOTIFY_STOP)
1014 		ia64_mca_spin(__FUNCTION__);
1015 
1016 	set_curr_task(cpu, previous_current);
1017 	monarch_cpu = -1;
1018 }
1019 
1020 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1021 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1022 
1023 /*
1024  * ia64_mca_cmc_int_handler
1025  *
1026  *  This is corrected machine check interrupt handler.
1027  *	Right now the logs are extracted and displayed in a well-defined
1028  *	format.
1029  *
1030  * Inputs
1031  *      interrupt number
1032  *      client data arg ptr
1033  *      saved registers ptr
1034  *
1035  * Outputs
1036  *	None
1037  */
1038 static irqreturn_t
1039 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1040 {
1041 	static unsigned long	cmc_history[CMC_HISTORY_LENGTH];
1042 	static int		index;
1043 	static DEFINE_SPINLOCK(cmc_history_lock);
1044 
1045 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1046 		       __FUNCTION__, cmc_irq, smp_processor_id());
1047 
1048 	/* SAL spec states this should run w/ interrupts enabled */
1049 	local_irq_enable();
1050 
1051 	/* Get the CMC error record and log it */
1052 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1053 
1054 	spin_lock(&cmc_history_lock);
1055 	if (!cmc_polling_enabled) {
1056 		int i, count = 1; /* we know 1 happened now */
1057 		unsigned long now = jiffies;
1058 
1059 		for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1060 			if (now - cmc_history[i] <= HZ)
1061 				count++;
1062 		}
1063 
1064 		IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1065 		if (count >= CMC_HISTORY_LENGTH) {
1066 
1067 			cmc_polling_enabled = 1;
1068 			spin_unlock(&cmc_history_lock);
1069 			/* If we're being hit with CMC interrupts, we won't
1070 			 * ever execute the schedule_work() below.  Need to
1071 			 * disable CMC interrupts on this processor now.
1072 			 */
1073 			ia64_mca_cmc_vector_disable(NULL);
1074 			schedule_work(&cmc_disable_work);
1075 
1076 			/*
1077 			 * Corrected errors will still be corrected, but
1078 			 * make sure there's a log somewhere that indicates
1079 			 * something is generating more than we can handle.
1080 			 */
1081 			printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1082 
1083 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1084 
1085 			/* lock already released, get out now */
1086 			return IRQ_HANDLED;
1087 		} else {
1088 			cmc_history[index++] = now;
1089 			if (index == CMC_HISTORY_LENGTH)
1090 				index = 0;
1091 		}
1092 	}
1093 	spin_unlock(&cmc_history_lock);
1094 	return IRQ_HANDLED;
1095 }
1096 
1097 /*
1098  *  ia64_mca_cmc_int_caller
1099  *
1100  * 	Triggered by sw interrupt from CMC polling routine.  Calls
1101  * 	real interrupt handler and either triggers a sw interrupt
1102  * 	on the next cpu or does cleanup at the end.
1103  *
1104  * Inputs
1105  *	interrupt number
1106  *	client data arg ptr
1107  *	saved registers ptr
1108  * Outputs
1109  * 	handled
1110  */
1111 static irqreturn_t
1112 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1113 {
1114 	static int start_count = -1;
1115 	unsigned int cpuid;
1116 
1117 	cpuid = smp_processor_id();
1118 
1119 	/* If first cpu, update count */
1120 	if (start_count == -1)
1121 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1122 
1123 	ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1124 
1125 	for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1126 
1127 	if (cpuid < NR_CPUS) {
1128 		platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1129 	} else {
1130 		/* If no log record, switch out of polling mode */
1131 		if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1132 
1133 			printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1134 			schedule_work(&cmc_enable_work);
1135 			cmc_polling_enabled = 0;
1136 
1137 		} else {
1138 
1139 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1140 		}
1141 
1142 		start_count = -1;
1143 	}
1144 
1145 	return IRQ_HANDLED;
1146 }
1147 
1148 /*
1149  *  ia64_mca_cmc_poll
1150  *
1151  *	Poll for Corrected Machine Checks (CMCs)
1152  *
1153  * Inputs   :   dummy(unused)
1154  * Outputs  :   None
1155  *
1156  */
1157 static void
1158 ia64_mca_cmc_poll (unsigned long dummy)
1159 {
1160 	/* Trigger a CMC interrupt cascade  */
1161 	platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1162 }
1163 
1164 /*
1165  *  ia64_mca_cpe_int_caller
1166  *
1167  * 	Triggered by sw interrupt from CPE polling routine.  Calls
1168  * 	real interrupt handler and either triggers a sw interrupt
1169  * 	on the next cpu or does cleanup at the end.
1170  *
1171  * Inputs
1172  *	interrupt number
1173  *	client data arg ptr
1174  *	saved registers ptr
1175  * Outputs
1176  * 	handled
1177  */
1178 #ifdef CONFIG_ACPI
1179 
1180 static irqreturn_t
1181 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1182 {
1183 	static int start_count = -1;
1184 	static int poll_time = MIN_CPE_POLL_INTERVAL;
1185 	unsigned int cpuid;
1186 
1187 	cpuid = smp_processor_id();
1188 
1189 	/* If first cpu, update count */
1190 	if (start_count == -1)
1191 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1192 
1193 	ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1194 
1195 	for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1196 
1197 	if (cpuid < NR_CPUS) {
1198 		platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1199 	} else {
1200 		/*
1201 		 * If a log was recorded, increase our polling frequency,
1202 		 * otherwise, backoff or return to interrupt mode.
1203 		 */
1204 		if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1205 			poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1206 		} else if (cpe_vector < 0) {
1207 			poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1208 		} else {
1209 			poll_time = MIN_CPE_POLL_INTERVAL;
1210 
1211 			printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1212 			enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1213 			cpe_poll_enabled = 0;
1214 		}
1215 
1216 		if (cpe_poll_enabled)
1217 			mod_timer(&cpe_poll_timer, jiffies + poll_time);
1218 		start_count = -1;
1219 	}
1220 
1221 	return IRQ_HANDLED;
1222 }
1223 
1224 /*
1225  *  ia64_mca_cpe_poll
1226  *
1227  *	Poll for Corrected Platform Errors (CPEs), trigger interrupt
1228  *	on first cpu, from there it will trickle through all the cpus.
1229  *
1230  * Inputs   :   dummy(unused)
1231  * Outputs  :   None
1232  *
1233  */
1234 static void
1235 ia64_mca_cpe_poll (unsigned long dummy)
1236 {
1237 	/* Trigger a CPE interrupt cascade  */
1238 	platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1239 }
1240 
1241 #endif /* CONFIG_ACPI */
1242 
1243 static int
1244 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1245 {
1246 	int c;
1247 	struct task_struct *g, *t;
1248 	if (val != DIE_INIT_MONARCH_PROCESS)
1249 		return NOTIFY_DONE;
1250 	printk(KERN_ERR "Processes interrupted by INIT -");
1251 	for_each_online_cpu(c) {
1252 		struct ia64_sal_os_state *s;
1253 		t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1254 		s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1255 		g = s->prev_task;
1256 		if (g) {
1257 			if (g->pid)
1258 				printk(" %d", g->pid);
1259 			else
1260 				printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1261 		}
1262 	}
1263 	printk("\n\n");
1264 	if (read_trylock(&tasklist_lock)) {
1265 		do_each_thread (g, t) {
1266 			printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1267 			show_stack(t, NULL);
1268 		} while_each_thread (g, t);
1269 		read_unlock(&tasklist_lock);
1270 	}
1271 	return NOTIFY_DONE;
1272 }
1273 
1274 /*
1275  * C portion of the OS INIT handler
1276  *
1277  * Called from ia64_os_init_dispatch
1278  *
1279  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1280  * this event.  This code is used for both monarch and slave INIT events, see
1281  * sos->monarch.
1282  *
1283  * All INIT events switch to the INIT stack and change the previous process to
1284  * blocked status.  If one of the INIT events is the monarch then we are
1285  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1286  * the processes.  The slave INIT events all spin until the monarch cpu
1287  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1288  * process is the monarch.
1289  */
1290 
1291 void
1292 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1293 		  struct ia64_sal_os_state *sos)
1294 {
1295 	static atomic_t slaves;
1296 	static atomic_t monarchs;
1297 	task_t *previous_current;
1298 	int cpu = smp_processor_id();
1299 
1300 	oops_in_progress = 1;	/* FIXME: make printk NMI/MCA/INIT safe */
1301 	console_loglevel = 15;	/* make sure printks make it to console */
1302 
1303 	printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1304 		sos->proc_state_param, cpu, sos->monarch);
1305 	salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1306 
1307 	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1308 	sos->os_status = IA64_INIT_RESUME;
1309 
1310 	/* FIXME: Workaround for broken proms that drive all INIT events as
1311 	 * slaves.  The last slave that enters is promoted to be a monarch.
1312 	 * Remove this code in September 2006, that gives platforms a year to
1313 	 * fix their proms and get their customers updated.
1314 	 */
1315 	if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1316 		printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1317 		       __FUNCTION__, cpu);
1318 		atomic_dec(&slaves);
1319 		sos->monarch = 1;
1320 	}
1321 
1322 	/* FIXME: Workaround for broken proms that drive all INIT events as
1323 	 * monarchs.  Second and subsequent monarchs are demoted to slaves.
1324 	 * Remove this code in September 2006, that gives platforms a year to
1325 	 * fix their proms and get their customers updated.
1326 	 */
1327 	if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1328 		printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1329 			       __FUNCTION__, cpu);
1330 		atomic_dec(&monarchs);
1331 		sos->monarch = 0;
1332 	}
1333 
1334 	if (!sos->monarch) {
1335 		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1336 		while (monarch_cpu == -1)
1337 		       cpu_relax();	/* spin until monarch enters */
1338 		if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, 0, 0, 0)
1339 				== NOTIFY_STOP)
1340 			ia64_mca_spin(__FUNCTION__);
1341 		if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, 0, 0, 0)
1342 				== NOTIFY_STOP)
1343 			ia64_mca_spin(__FUNCTION__);
1344 		while (monarch_cpu != -1)
1345 		       cpu_relax();	/* spin until monarch leaves */
1346 		if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, 0, 0, 0)
1347 				== NOTIFY_STOP)
1348 			ia64_mca_spin(__FUNCTION__);
1349 		printk("Slave on cpu %d returning to normal service.\n", cpu);
1350 		set_curr_task(cpu, previous_current);
1351 		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1352 		atomic_dec(&slaves);
1353 		return;
1354 	}
1355 
1356 	monarch_cpu = cpu;
1357 	if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, 0, 0, 0)
1358 			== NOTIFY_STOP)
1359 		ia64_mca_spin(__FUNCTION__);
1360 
1361 	/*
1362 	 * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1363 	 * generated via the BMC's command-line interface, but since the console is on the
1364 	 * same serial line, the user will need some time to switch out of the BMC before
1365 	 * the dump begins.
1366 	 */
1367 	printk("Delaying for 5 seconds...\n");
1368 	udelay(5*1000000);
1369 	ia64_wait_for_slaves(cpu);
1370 	/* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1371 	 * to default_monarch_init_process() above and just print all the
1372 	 * tasks.
1373 	 */
1374 	if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, 0, 0, 0)
1375 			== NOTIFY_STOP)
1376 		ia64_mca_spin(__FUNCTION__);
1377 	if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, 0, 0, 0)
1378 			== NOTIFY_STOP)
1379 		ia64_mca_spin(__FUNCTION__);
1380 	printk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1381 	atomic_dec(&monarchs);
1382 	set_curr_task(cpu, previous_current);
1383 	monarch_cpu = -1;
1384 	return;
1385 }
1386 
1387 static int __init
1388 ia64_mca_disable_cpe_polling(char *str)
1389 {
1390 	cpe_poll_enabled = 0;
1391 	return 1;
1392 }
1393 
1394 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1395 
1396 static struct irqaction cmci_irqaction = {
1397 	.handler =	ia64_mca_cmc_int_handler,
1398 	.flags =	SA_INTERRUPT,
1399 	.name =		"cmc_hndlr"
1400 };
1401 
1402 static struct irqaction cmcp_irqaction = {
1403 	.handler =	ia64_mca_cmc_int_caller,
1404 	.flags =	SA_INTERRUPT,
1405 	.name =		"cmc_poll"
1406 };
1407 
1408 static struct irqaction mca_rdzv_irqaction = {
1409 	.handler =	ia64_mca_rendez_int_handler,
1410 	.flags =	SA_INTERRUPT,
1411 	.name =		"mca_rdzv"
1412 };
1413 
1414 static struct irqaction mca_wkup_irqaction = {
1415 	.handler =	ia64_mca_wakeup_int_handler,
1416 	.flags =	SA_INTERRUPT,
1417 	.name =		"mca_wkup"
1418 };
1419 
1420 #ifdef CONFIG_ACPI
1421 static struct irqaction mca_cpe_irqaction = {
1422 	.handler =	ia64_mca_cpe_int_handler,
1423 	.flags =	SA_INTERRUPT,
1424 	.name =		"cpe_hndlr"
1425 };
1426 
1427 static struct irqaction mca_cpep_irqaction = {
1428 	.handler =	ia64_mca_cpe_int_caller,
1429 	.flags =	SA_INTERRUPT,
1430 	.name =		"cpe_poll"
1431 };
1432 #endif /* CONFIG_ACPI */
1433 
1434 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1435  * these stacks can never sleep, they cannot return from the kernel to user
1436  * space, they do not appear in a normal ps listing.  So there is no need to
1437  * format most of the fields.
1438  */
1439 
1440 static void
1441 format_mca_init_stack(void *mca_data, unsigned long offset,
1442 		const char *type, int cpu)
1443 {
1444 	struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1445 	struct thread_info *ti;
1446 	memset(p, 0, KERNEL_STACK_SIZE);
1447 	ti = task_thread_info(p);
1448 	ti->flags = _TIF_MCA_INIT;
1449 	ti->preempt_count = 1;
1450 	ti->task = p;
1451 	ti->cpu = cpu;
1452 	p->thread_info = ti;
1453 	p->state = TASK_UNINTERRUPTIBLE;
1454 	__set_bit(cpu, &p->cpus_allowed);
1455 	INIT_LIST_HEAD(&p->tasks);
1456 	p->parent = p->real_parent = p->group_leader = p;
1457 	INIT_LIST_HEAD(&p->children);
1458 	INIT_LIST_HEAD(&p->sibling);
1459 	strncpy(p->comm, type, sizeof(p->comm)-1);
1460 }
1461 
1462 /* Do per-CPU MCA-related initialization.  */
1463 
1464 void __devinit
1465 ia64_mca_cpu_init(void *cpu_data)
1466 {
1467 	void *pal_vaddr;
1468 
1469 	if (smp_processor_id() == 0) {
1470 		void *mca_data;
1471 		int cpu;
1472 
1473 		mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1474 					 * NR_CPUS + KERNEL_STACK_SIZE);
1475 		mca_data = (void *)(((unsigned long)mca_data +
1476 					KERNEL_STACK_SIZE - 1) &
1477 				(-KERNEL_STACK_SIZE));
1478 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
1479 			format_mca_init_stack(mca_data,
1480 					offsetof(struct ia64_mca_cpu, mca_stack),
1481 					"MCA", cpu);
1482 			format_mca_init_stack(mca_data,
1483 					offsetof(struct ia64_mca_cpu, init_stack),
1484 					"INIT", cpu);
1485 			__per_cpu_mca[cpu] = __pa(mca_data);
1486 			mca_data += sizeof(struct ia64_mca_cpu);
1487 		}
1488 	}
1489 
1490 	/*
1491 	 * The MCA info structure was allocated earlier and its
1492 	 * physical address saved in __per_cpu_mca[cpu].  Copy that
1493 	 * address * to ia64_mca_data so we can access it as a per-CPU
1494 	 * variable.
1495 	 */
1496 	__get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1497 
1498 	/*
1499 	 * Stash away a copy of the PTE needed to map the per-CPU page.
1500 	 * We may need it during MCA recovery.
1501 	 */
1502 	__get_cpu_var(ia64_mca_per_cpu_pte) =
1503 		pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1504 
1505 	/*
1506 	 * Also, stash away a copy of the PAL address and the PTE
1507 	 * needed to map it.
1508 	 */
1509 	pal_vaddr = efi_get_pal_addr();
1510 	if (!pal_vaddr)
1511 		return;
1512 	__get_cpu_var(ia64_mca_pal_base) =
1513 		GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1514 	__get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1515 							      PAGE_KERNEL));
1516 }
1517 
1518 /*
1519  * ia64_mca_init
1520  *
1521  *  Do all the system level mca specific initialization.
1522  *
1523  *	1. Register spinloop and wakeup request interrupt vectors
1524  *
1525  *	2. Register OS_MCA handler entry point
1526  *
1527  *	3. Register OS_INIT handler entry point
1528  *
1529  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1530  *
1531  *  Note that this initialization is done very early before some kernel
1532  *  services are available.
1533  *
1534  *  Inputs  :   None
1535  *
1536  *  Outputs :   None
1537  */
1538 void __init
1539 ia64_mca_init(void)
1540 {
1541 	ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1542 	ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1543 	ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1544 	int i;
1545 	s64 rc;
1546 	struct ia64_sal_retval isrv;
1547 	u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;	/* platform specific */
1548 	static struct notifier_block default_init_monarch_nb = {
1549 		.notifier_call = default_monarch_init_process,
1550 		.priority = 0/* we need to notified last */
1551 	};
1552 
1553 	IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1554 
1555 	/* Clear the Rendez checkin flag for all cpus */
1556 	for(i = 0 ; i < NR_CPUS; i++)
1557 		ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1558 
1559 	/*
1560 	 * Register the rendezvous spinloop and wakeup mechanism with SAL
1561 	 */
1562 
1563 	/* Register the rendezvous interrupt vector with SAL */
1564 	while (1) {
1565 		isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1566 					      SAL_MC_PARAM_MECHANISM_INT,
1567 					      IA64_MCA_RENDEZ_VECTOR,
1568 					      timeout,
1569 					      SAL_MC_PARAM_RZ_ALWAYS);
1570 		rc = isrv.status;
1571 		if (rc == 0)
1572 			break;
1573 		if (rc == -2) {
1574 			printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1575 				"%ld to %ld milliseconds\n", timeout, isrv.v0);
1576 			timeout = isrv.v0;
1577 			continue;
1578 		}
1579 		printk(KERN_ERR "Failed to register rendezvous interrupt "
1580 		       "with SAL (status %ld)\n", rc);
1581 		return;
1582 	}
1583 
1584 	/* Register the wakeup interrupt vector with SAL */
1585 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1586 				      SAL_MC_PARAM_MECHANISM_INT,
1587 				      IA64_MCA_WAKEUP_VECTOR,
1588 				      0, 0);
1589 	rc = isrv.status;
1590 	if (rc) {
1591 		printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1592 		       "(status %ld)\n", rc);
1593 		return;
1594 	}
1595 
1596 	IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1597 
1598 	ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1599 	/*
1600 	 * XXX - disable SAL checksum by setting size to 0; should be
1601 	 *	ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1602 	 */
1603 	ia64_mc_info.imi_mca_handler_size	= 0;
1604 
1605 	/* Register the os mca handler with SAL */
1606 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1607 				       ia64_mc_info.imi_mca_handler,
1608 				       ia64_tpa(mca_hldlr_ptr->gp),
1609 				       ia64_mc_info.imi_mca_handler_size,
1610 				       0, 0, 0)))
1611 	{
1612 		printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1613 		       "(status %ld)\n", rc);
1614 		return;
1615 	}
1616 
1617 	IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1618 		       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1619 
1620 	/*
1621 	 * XXX - disable SAL checksum by setting size to 0, should be
1622 	 * size of the actual init handler in mca_asm.S.
1623 	 */
1624 	ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(init_hldlr_ptr_monarch->fp);
1625 	ia64_mc_info.imi_monarch_init_handler_size	= 0;
1626 	ia64_mc_info.imi_slave_init_handler		= ia64_tpa(init_hldlr_ptr_slave->fp);
1627 	ia64_mc_info.imi_slave_init_handler_size	= 0;
1628 
1629 	IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1630 		       ia64_mc_info.imi_monarch_init_handler);
1631 
1632 	/* Register the os init handler with SAL */
1633 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1634 				       ia64_mc_info.imi_monarch_init_handler,
1635 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1636 				       ia64_mc_info.imi_monarch_init_handler_size,
1637 				       ia64_mc_info.imi_slave_init_handler,
1638 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1639 				       ia64_mc_info.imi_slave_init_handler_size)))
1640 	{
1641 		printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1642 		       "(status %ld)\n", rc);
1643 		return;
1644 	}
1645 	if (register_die_notifier(&default_init_monarch_nb)) {
1646 		printk(KERN_ERR "Failed to register default monarch INIT process\n");
1647 		return;
1648 	}
1649 
1650 	IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1651 
1652 	/*
1653 	 *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1654 	 *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1655 	 */
1656 	register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1657 	register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1658 	ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1659 
1660 	/* Setup the MCA rendezvous interrupt vector */
1661 	register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1662 
1663 	/* Setup the MCA wakeup interrupt vector */
1664 	register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1665 
1666 #ifdef CONFIG_ACPI
1667 	/* Setup the CPEI/P handler */
1668 	register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1669 #endif
1670 
1671 	/* Initialize the areas set aside by the OS to buffer the
1672 	 * platform/processor error states for MCA/INIT/CMC
1673 	 * handling.
1674 	 */
1675 	ia64_log_init(SAL_INFO_TYPE_MCA);
1676 	ia64_log_init(SAL_INFO_TYPE_INIT);
1677 	ia64_log_init(SAL_INFO_TYPE_CMC);
1678 	ia64_log_init(SAL_INFO_TYPE_CPE);
1679 
1680 	mca_init = 1;
1681 	printk(KERN_INFO "MCA related initialization done\n");
1682 }
1683 
1684 /*
1685  * ia64_mca_late_init
1686  *
1687  *	Opportunity to setup things that require initialization later
1688  *	than ia64_mca_init.  Setup a timer to poll for CPEs if the
1689  *	platform doesn't support an interrupt driven mechanism.
1690  *
1691  *  Inputs  :   None
1692  *  Outputs :   Status
1693  */
1694 static int __init
1695 ia64_mca_late_init(void)
1696 {
1697 	if (!mca_init)
1698 		return 0;
1699 
1700 	/* Setup the CMCI/P vector and handler */
1701 	init_timer(&cmc_poll_timer);
1702 	cmc_poll_timer.function = ia64_mca_cmc_poll;
1703 
1704 	/* Unmask/enable the vector */
1705 	cmc_polling_enabled = 0;
1706 	schedule_work(&cmc_enable_work);
1707 
1708 	IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1709 
1710 #ifdef CONFIG_ACPI
1711 	/* Setup the CPEI/P vector and handler */
1712 	cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1713 	init_timer(&cpe_poll_timer);
1714 	cpe_poll_timer.function = ia64_mca_cpe_poll;
1715 
1716 	{
1717 		irq_desc_t *desc;
1718 		unsigned int irq;
1719 
1720 		if (cpe_vector >= 0) {
1721 			/* If platform supports CPEI, enable the irq. */
1722 			cpe_poll_enabled = 0;
1723 			for (irq = 0; irq < NR_IRQS; ++irq)
1724 				if (irq_to_vector(irq) == cpe_vector) {
1725 					desc = irq_descp(irq);
1726 					desc->status |= IRQ_PER_CPU;
1727 					setup_irq(irq, &mca_cpe_irqaction);
1728 				}
1729 			ia64_mca_register_cpev(cpe_vector);
1730 			IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1731 		} else {
1732 			/* If platform doesn't support CPEI, get the timer going. */
1733 			if (cpe_poll_enabled) {
1734 				ia64_mca_cpe_poll(0UL);
1735 				IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1736 			}
1737 		}
1738 	}
1739 #endif
1740 
1741 	return 0;
1742 }
1743 
1744 device_initcall(ia64_mca_late_init);
1745