1 /* 2 * Extensible Firmware Interface 3 * 4 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999 5 * 6 * Copyright (C) 1999 VA Linux Systems 7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 8 * Copyright (C) 1999-2003 Hewlett-Packard Co. 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * Stephane Eranian <eranian@hpl.hp.com> 11 * 12 * All EFI Runtime Services are not implemented yet as EFI only 13 * supports physical mode addressing on SoftSDV. This is to be fixed 14 * in a future version. --drummond 1999-07-20 15 * 16 * Implemented EFI runtime services and virtual mode calls. --davidm 17 * 18 * Goutham Rao: <goutham.rao@intel.com> 19 * Skip non-WB memory and ignore empty memory ranges. 20 */ 21 #include <linux/config.h> 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/init.h> 25 #include <linux/types.h> 26 #include <linux/time.h> 27 #include <linux/efi.h> 28 29 #include <asm/io.h> 30 #include <asm/kregs.h> 31 #include <asm/meminit.h> 32 #include <asm/pgtable.h> 33 #include <asm/processor.h> 34 #include <asm/mca.h> 35 36 #define EFI_DEBUG 0 37 38 extern efi_status_t efi_call_phys (void *, ...); 39 40 struct efi efi; 41 EXPORT_SYMBOL(efi); 42 static efi_runtime_services_t *runtime; 43 static unsigned long mem_limit = ~0UL, max_addr = ~0UL; 44 45 #define efi_call_virt(f, args...) (*(f))(args) 46 47 #define STUB_GET_TIME(prefix, adjust_arg) \ 48 static efi_status_t \ 49 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \ 50 { \ 51 struct ia64_fpreg fr[6]; \ 52 efi_time_cap_t *atc = NULL; \ 53 efi_status_t ret; \ 54 \ 55 if (tc) \ 56 atc = adjust_arg(tc); \ 57 ia64_save_scratch_fpregs(fr); \ 58 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \ 59 ia64_load_scratch_fpregs(fr); \ 60 return ret; \ 61 } 62 63 #define STUB_SET_TIME(prefix, adjust_arg) \ 64 static efi_status_t \ 65 prefix##_set_time (efi_time_t *tm) \ 66 { \ 67 struct ia64_fpreg fr[6]; \ 68 efi_status_t ret; \ 69 \ 70 ia64_save_scratch_fpregs(fr); \ 71 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \ 72 ia64_load_scratch_fpregs(fr); \ 73 return ret; \ 74 } 75 76 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \ 77 static efi_status_t \ 78 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \ 79 { \ 80 struct ia64_fpreg fr[6]; \ 81 efi_status_t ret; \ 82 \ 83 ia64_save_scratch_fpregs(fr); \ 84 ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ 85 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ 86 ia64_load_scratch_fpregs(fr); \ 87 return ret; \ 88 } 89 90 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \ 91 static efi_status_t \ 92 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \ 93 { \ 94 struct ia64_fpreg fr[6]; \ 95 efi_time_t *atm = NULL; \ 96 efi_status_t ret; \ 97 \ 98 if (tm) \ 99 atm = adjust_arg(tm); \ 100 ia64_save_scratch_fpregs(fr); \ 101 ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ 102 enabled, atm); \ 103 ia64_load_scratch_fpregs(fr); \ 104 return ret; \ 105 } 106 107 #define STUB_GET_VARIABLE(prefix, adjust_arg) \ 108 static efi_status_t \ 109 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ 110 unsigned long *data_size, void *data) \ 111 { \ 112 struct ia64_fpreg fr[6]; \ 113 u32 *aattr = NULL; \ 114 efi_status_t ret; \ 115 \ 116 if (attr) \ 117 aattr = adjust_arg(attr); \ 118 ia64_save_scratch_fpregs(fr); \ 119 ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \ 120 adjust_arg(name), adjust_arg(vendor), aattr, \ 121 adjust_arg(data_size), adjust_arg(data)); \ 122 ia64_load_scratch_fpregs(fr); \ 123 return ret; \ 124 } 125 126 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \ 127 static efi_status_t \ 128 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \ 129 { \ 130 struct ia64_fpreg fr[6]; \ 131 efi_status_t ret; \ 132 \ 133 ia64_save_scratch_fpregs(fr); \ 134 ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \ 135 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ 136 ia64_load_scratch_fpregs(fr); \ 137 return ret; \ 138 } 139 140 #define STUB_SET_VARIABLE(prefix, adjust_arg) \ 141 static efi_status_t \ 142 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \ 143 unsigned long data_size, void *data) \ 144 { \ 145 struct ia64_fpreg fr[6]; \ 146 efi_status_t ret; \ 147 \ 148 ia64_save_scratch_fpregs(fr); \ 149 ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \ 150 adjust_arg(name), adjust_arg(vendor), attr, data_size, \ 151 adjust_arg(data)); \ 152 ia64_load_scratch_fpregs(fr); \ 153 return ret; \ 154 } 155 156 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \ 157 static efi_status_t \ 158 prefix##_get_next_high_mono_count (u32 *count) \ 159 { \ 160 struct ia64_fpreg fr[6]; \ 161 efi_status_t ret; \ 162 \ 163 ia64_save_scratch_fpregs(fr); \ 164 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ 165 __va(runtime->get_next_high_mono_count), adjust_arg(count)); \ 166 ia64_load_scratch_fpregs(fr); \ 167 return ret; \ 168 } 169 170 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \ 171 static void \ 172 prefix##_reset_system (int reset_type, efi_status_t status, \ 173 unsigned long data_size, efi_char16_t *data) \ 174 { \ 175 struct ia64_fpreg fr[6]; \ 176 efi_char16_t *adata = NULL; \ 177 \ 178 if (data) \ 179 adata = adjust_arg(data); \ 180 \ 181 ia64_save_scratch_fpregs(fr); \ 182 efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \ 183 reset_type, status, data_size, adata); \ 184 /* should not return, but just in case... */ \ 185 ia64_load_scratch_fpregs(fr); \ 186 } 187 188 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg)) 189 190 STUB_GET_TIME(phys, phys_ptr) 191 STUB_SET_TIME(phys, phys_ptr) 192 STUB_GET_WAKEUP_TIME(phys, phys_ptr) 193 STUB_SET_WAKEUP_TIME(phys, phys_ptr) 194 STUB_GET_VARIABLE(phys, phys_ptr) 195 STUB_GET_NEXT_VARIABLE(phys, phys_ptr) 196 STUB_SET_VARIABLE(phys, phys_ptr) 197 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr) 198 STUB_RESET_SYSTEM(phys, phys_ptr) 199 200 #define id(arg) arg 201 202 STUB_GET_TIME(virt, id) 203 STUB_SET_TIME(virt, id) 204 STUB_GET_WAKEUP_TIME(virt, id) 205 STUB_SET_WAKEUP_TIME(virt, id) 206 STUB_GET_VARIABLE(virt, id) 207 STUB_GET_NEXT_VARIABLE(virt, id) 208 STUB_SET_VARIABLE(virt, id) 209 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id) 210 STUB_RESET_SYSTEM(virt, id) 211 212 void 213 efi_gettimeofday (struct timespec *ts) 214 { 215 efi_time_t tm; 216 217 memset(ts, 0, sizeof(ts)); 218 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) 219 return; 220 221 ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second); 222 ts->tv_nsec = tm.nanosecond; 223 } 224 225 static int 226 is_available_memory (efi_memory_desc_t *md) 227 { 228 if (!(md->attribute & EFI_MEMORY_WB)) 229 return 0; 230 231 switch (md->type) { 232 case EFI_LOADER_CODE: 233 case EFI_LOADER_DATA: 234 case EFI_BOOT_SERVICES_CODE: 235 case EFI_BOOT_SERVICES_DATA: 236 case EFI_CONVENTIONAL_MEMORY: 237 return 1; 238 } 239 return 0; 240 } 241 242 typedef struct kern_memdesc { 243 u64 attribute; 244 u64 start; 245 u64 num_pages; 246 } kern_memdesc_t; 247 248 static kern_memdesc_t *kern_memmap; 249 250 static void 251 walk (efi_freemem_callback_t callback, void *arg, u64 attr) 252 { 253 kern_memdesc_t *k; 254 u64 start, end, voff; 255 256 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET; 257 for (k = kern_memmap; k->start != ~0UL; k++) { 258 if (k->attribute != attr) 259 continue; 260 start = PAGE_ALIGN(k->start); 261 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK; 262 if (start < end) 263 if ((*callback)(start + voff, end + voff, arg) < 0) 264 return; 265 } 266 } 267 268 /* 269 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that 270 * has memory that is available for OS use. 271 */ 272 void 273 efi_memmap_walk (efi_freemem_callback_t callback, void *arg) 274 { 275 walk(callback, arg, EFI_MEMORY_WB); 276 } 277 278 /* 279 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that 280 * has memory that is available for uncached allocator. 281 */ 282 void 283 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg) 284 { 285 walk(callback, arg, EFI_MEMORY_UC); 286 } 287 288 /* 289 * Look for the PAL_CODE region reported by EFI and maps it using an 290 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor 291 * Abstraction Layer chapter 11 in ADAG 292 */ 293 294 void * 295 efi_get_pal_addr (void) 296 { 297 void *efi_map_start, *efi_map_end, *p; 298 efi_memory_desc_t *md; 299 u64 efi_desc_size; 300 int pal_code_count = 0; 301 u64 vaddr, mask; 302 303 efi_map_start = __va(ia64_boot_param->efi_memmap); 304 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 305 efi_desc_size = ia64_boot_param->efi_memdesc_size; 306 307 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 308 md = p; 309 if (md->type != EFI_PAL_CODE) 310 continue; 311 312 if (++pal_code_count > 1) { 313 printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n", 314 md->phys_addr); 315 continue; 316 } 317 /* 318 * The only ITLB entry in region 7 that is used is the one installed by 319 * __start(). That entry covers a 64MB range. 320 */ 321 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); 322 vaddr = PAGE_OFFSET + md->phys_addr; 323 324 /* 325 * We must check that the PAL mapping won't overlap with the kernel 326 * mapping. 327 * 328 * PAL code is guaranteed to be aligned on a power of 2 between 4k and 329 * 256KB and that only one ITR is needed to map it. This implies that the 330 * PAL code is always aligned on its size, i.e., the closest matching page 331 * size supported by the TLB. Therefore PAL code is guaranteed never to 332 * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for 333 * now the following test is enough to determine whether or not we need a 334 * dedicated ITR for the PAL code. 335 */ 336 if ((vaddr & mask) == (KERNEL_START & mask)) { 337 printk(KERN_INFO "%s: no need to install ITR for PAL code\n", 338 __FUNCTION__); 339 continue; 340 } 341 342 if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE) 343 panic("Woah! PAL code size bigger than a granule!"); 344 345 #if EFI_DEBUG 346 mask = ~((1 << IA64_GRANULE_SHIFT) - 1); 347 348 printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n", 349 smp_processor_id(), md->phys_addr, 350 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), 351 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); 352 #endif 353 return __va(md->phys_addr); 354 } 355 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found", 356 __FUNCTION__); 357 return NULL; 358 } 359 360 void 361 efi_map_pal_code (void) 362 { 363 void *pal_vaddr = efi_get_pal_addr (); 364 u64 psr; 365 366 if (!pal_vaddr) 367 return; 368 369 /* 370 * Cannot write to CRx with PSR.ic=1 371 */ 372 psr = ia64_clear_ic(); 373 ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr), 374 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), 375 IA64_GRANULE_SHIFT); 376 ia64_set_psr(psr); /* restore psr */ 377 ia64_srlz_i(); 378 } 379 380 void __init 381 efi_init (void) 382 { 383 void *efi_map_start, *efi_map_end; 384 efi_config_table_t *config_tables; 385 efi_char16_t *c16; 386 u64 efi_desc_size; 387 char *cp, *end, vendor[100] = "unknown"; 388 extern char saved_command_line[]; 389 int i; 390 391 /* it's too early to be able to use the standard kernel command line support... */ 392 for (cp = saved_command_line; *cp; ) { 393 if (memcmp(cp, "mem=", 4) == 0) { 394 cp += 4; 395 mem_limit = memparse(cp, &end); 396 if (end != cp) 397 break; 398 cp = end; 399 } else if (memcmp(cp, "max_addr=", 9) == 0) { 400 cp += 9; 401 max_addr = GRANULEROUNDDOWN(memparse(cp, &end)); 402 if (end != cp) 403 break; 404 cp = end; 405 } else { 406 while (*cp != ' ' && *cp) 407 ++cp; 408 while (*cp == ' ') 409 ++cp; 410 } 411 } 412 if (max_addr != ~0UL) 413 printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20); 414 415 efi.systab = __va(ia64_boot_param->efi_systab); 416 417 /* 418 * Verify the EFI Table 419 */ 420 if (efi.systab == NULL) 421 panic("Woah! Can't find EFI system table.\n"); 422 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) 423 panic("Woah! EFI system table signature incorrect\n"); 424 if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0) 425 printk(KERN_WARNING "Warning: EFI system table major version mismatch: " 426 "got %d.%02d, expected %d.%02d\n", 427 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, 428 EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff); 429 430 config_tables = __va(efi.systab->tables); 431 432 /* Show what we know for posterity */ 433 c16 = __va(efi.systab->fw_vendor); 434 if (c16) { 435 for (i = 0;i < (int) sizeof(vendor) && *c16; ++i) 436 vendor[i] = *c16++; 437 vendor[i] = '\0'; 438 } 439 440 printk(KERN_INFO "EFI v%u.%.02u by %s:", 441 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor); 442 443 for (i = 0; i < (int) efi.systab->nr_tables; i++) { 444 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { 445 efi.mps = __va(config_tables[i].table); 446 printk(" MPS=0x%lx", config_tables[i].table); 447 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { 448 efi.acpi20 = __va(config_tables[i].table); 449 printk(" ACPI 2.0=0x%lx", config_tables[i].table); 450 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { 451 efi.acpi = __va(config_tables[i].table); 452 printk(" ACPI=0x%lx", config_tables[i].table); 453 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { 454 efi.smbios = __va(config_tables[i].table); 455 printk(" SMBIOS=0x%lx", config_tables[i].table); 456 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) { 457 efi.sal_systab = __va(config_tables[i].table); 458 printk(" SALsystab=0x%lx", config_tables[i].table); 459 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { 460 efi.hcdp = __va(config_tables[i].table); 461 printk(" HCDP=0x%lx", config_tables[i].table); 462 } 463 } 464 printk("\n"); 465 466 runtime = __va(efi.systab->runtime); 467 efi.get_time = phys_get_time; 468 efi.set_time = phys_set_time; 469 efi.get_wakeup_time = phys_get_wakeup_time; 470 efi.set_wakeup_time = phys_set_wakeup_time; 471 efi.get_variable = phys_get_variable; 472 efi.get_next_variable = phys_get_next_variable; 473 efi.set_variable = phys_set_variable; 474 efi.get_next_high_mono_count = phys_get_next_high_mono_count; 475 efi.reset_system = phys_reset_system; 476 477 efi_map_start = __va(ia64_boot_param->efi_memmap); 478 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 479 efi_desc_size = ia64_boot_param->efi_memdesc_size; 480 481 #if EFI_DEBUG 482 /* print EFI memory map: */ 483 { 484 efi_memory_desc_t *md; 485 void *p; 486 487 for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) { 488 md = p; 489 printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n", 490 i, md->type, md->attribute, md->phys_addr, 491 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), 492 md->num_pages >> (20 - EFI_PAGE_SHIFT)); 493 } 494 } 495 #endif 496 497 efi_map_pal_code(); 498 efi_enter_virtual_mode(); 499 } 500 501 void 502 efi_enter_virtual_mode (void) 503 { 504 void *efi_map_start, *efi_map_end, *p; 505 efi_memory_desc_t *md; 506 efi_status_t status; 507 u64 efi_desc_size; 508 509 efi_map_start = __va(ia64_boot_param->efi_memmap); 510 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 511 efi_desc_size = ia64_boot_param->efi_memdesc_size; 512 513 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 514 md = p; 515 if (md->attribute & EFI_MEMORY_RUNTIME) { 516 /* 517 * Some descriptors have multiple bits set, so the order of 518 * the tests is relevant. 519 */ 520 if (md->attribute & EFI_MEMORY_WB) { 521 md->virt_addr = (u64) __va(md->phys_addr); 522 } else if (md->attribute & EFI_MEMORY_UC) { 523 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 524 } else if (md->attribute & EFI_MEMORY_WC) { 525 #if 0 526 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P 527 | _PAGE_D 528 | _PAGE_MA_WC 529 | _PAGE_PL_0 530 | _PAGE_AR_RW)); 531 #else 532 printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); 533 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 534 #endif 535 } else if (md->attribute & EFI_MEMORY_WT) { 536 #if 0 537 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P 538 | _PAGE_D | _PAGE_MA_WT 539 | _PAGE_PL_0 540 | _PAGE_AR_RW)); 541 #else 542 printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); 543 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 544 #endif 545 } 546 } 547 } 548 549 status = efi_call_phys(__va(runtime->set_virtual_address_map), 550 ia64_boot_param->efi_memmap_size, 551 efi_desc_size, ia64_boot_param->efi_memdesc_version, 552 ia64_boot_param->efi_memmap); 553 if (status != EFI_SUCCESS) { 554 printk(KERN_WARNING "warning: unable to switch EFI into virtual mode " 555 "(status=%lu)\n", status); 556 return; 557 } 558 559 /* 560 * Now that EFI is in virtual mode, we call the EFI functions more efficiently: 561 */ 562 efi.get_time = virt_get_time; 563 efi.set_time = virt_set_time; 564 efi.get_wakeup_time = virt_get_wakeup_time; 565 efi.set_wakeup_time = virt_set_wakeup_time; 566 efi.get_variable = virt_get_variable; 567 efi.get_next_variable = virt_get_next_variable; 568 efi.set_variable = virt_set_variable; 569 efi.get_next_high_mono_count = virt_get_next_high_mono_count; 570 efi.reset_system = virt_reset_system; 571 } 572 573 /* 574 * Walk the EFI memory map looking for the I/O port range. There can only be one entry of 575 * this type, other I/O port ranges should be described via ACPI. 576 */ 577 u64 578 efi_get_iobase (void) 579 { 580 void *efi_map_start, *efi_map_end, *p; 581 efi_memory_desc_t *md; 582 u64 efi_desc_size; 583 584 efi_map_start = __va(ia64_boot_param->efi_memmap); 585 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 586 efi_desc_size = ia64_boot_param->efi_memdesc_size; 587 588 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 589 md = p; 590 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { 591 if (md->attribute & EFI_MEMORY_UC) 592 return md->phys_addr; 593 } 594 } 595 return 0; 596 } 597 598 u32 599 efi_mem_type (unsigned long phys_addr) 600 { 601 void *efi_map_start, *efi_map_end, *p; 602 efi_memory_desc_t *md; 603 u64 efi_desc_size; 604 605 efi_map_start = __va(ia64_boot_param->efi_memmap); 606 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 607 efi_desc_size = ia64_boot_param->efi_memdesc_size; 608 609 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 610 md = p; 611 612 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) 613 return md->type; 614 } 615 return 0; 616 } 617 618 u64 619 efi_mem_attributes (unsigned long phys_addr) 620 { 621 void *efi_map_start, *efi_map_end, *p; 622 efi_memory_desc_t *md; 623 u64 efi_desc_size; 624 625 efi_map_start = __va(ia64_boot_param->efi_memmap); 626 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 627 efi_desc_size = ia64_boot_param->efi_memdesc_size; 628 629 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 630 md = p; 631 632 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) 633 return md->attribute; 634 } 635 return 0; 636 } 637 EXPORT_SYMBOL(efi_mem_attributes); 638 639 int 640 valid_phys_addr_range (unsigned long phys_addr, unsigned long *size) 641 { 642 void *efi_map_start, *efi_map_end, *p; 643 efi_memory_desc_t *md; 644 u64 efi_desc_size; 645 646 efi_map_start = __va(ia64_boot_param->efi_memmap); 647 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 648 efi_desc_size = ia64_boot_param->efi_memdesc_size; 649 650 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 651 md = p; 652 653 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) { 654 if (!(md->attribute & EFI_MEMORY_WB)) 655 return 0; 656 657 if (*size > md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr) 658 *size = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr; 659 return 1; 660 } 661 } 662 return 0; 663 } 664 665 int __init 666 efi_uart_console_only(void) 667 { 668 efi_status_t status; 669 char *s, name[] = "ConOut"; 670 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; 671 efi_char16_t *utf16, name_utf16[32]; 672 unsigned char data[1024]; 673 unsigned long size = sizeof(data); 674 struct efi_generic_dev_path *hdr, *end_addr; 675 int uart = 0; 676 677 /* Convert to UTF-16 */ 678 utf16 = name_utf16; 679 s = name; 680 while (*s) 681 *utf16++ = *s++ & 0x7f; 682 *utf16 = 0; 683 684 status = efi.get_variable(name_utf16, &guid, NULL, &size, data); 685 if (status != EFI_SUCCESS) { 686 printk(KERN_ERR "No EFI %s variable?\n", name); 687 return 0; 688 } 689 690 hdr = (struct efi_generic_dev_path *) data; 691 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); 692 while (hdr < end_addr) { 693 if (hdr->type == EFI_DEV_MSG && 694 hdr->sub_type == EFI_DEV_MSG_UART) 695 uart = 1; 696 else if (hdr->type == EFI_DEV_END_PATH || 697 hdr->type == EFI_DEV_END_PATH2) { 698 if (!uart) 699 return 0; 700 if (hdr->sub_type == EFI_DEV_END_ENTIRE) 701 return 1; 702 uart = 0; 703 } 704 hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length); 705 } 706 printk(KERN_ERR "Malformed %s value\n", name); 707 return 0; 708 } 709 710 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT) 711 712 static inline u64 713 kmd_end(kern_memdesc_t *kmd) 714 { 715 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT)); 716 } 717 718 static inline u64 719 efi_md_end(efi_memory_desc_t *md) 720 { 721 return (md->phys_addr + efi_md_size(md)); 722 } 723 724 static inline int 725 efi_wb(efi_memory_desc_t *md) 726 { 727 return (md->attribute & EFI_MEMORY_WB); 728 } 729 730 static inline int 731 efi_uc(efi_memory_desc_t *md) 732 { 733 return (md->attribute & EFI_MEMORY_UC); 734 } 735 736 /* 737 * Look for the first granule aligned memory descriptor memory 738 * that is big enough to hold EFI memory map. Make sure this 739 * descriptor is atleast granule sized so it does not get trimmed 740 */ 741 struct kern_memdesc * 742 find_memmap_space (void) 743 { 744 u64 contig_low=0, contig_high=0; 745 u64 as = 0, ae; 746 void *efi_map_start, *efi_map_end, *p, *q; 747 efi_memory_desc_t *md, *pmd = NULL, *check_md; 748 u64 space_needed, efi_desc_size; 749 unsigned long total_mem = 0; 750 751 efi_map_start = __va(ia64_boot_param->efi_memmap); 752 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 753 efi_desc_size = ia64_boot_param->efi_memdesc_size; 754 755 /* 756 * Worst case: we need 3 kernel descriptors for each efi descriptor 757 * (if every entry has a WB part in the middle, and UC head and tail), 758 * plus one for the end marker. 759 */ 760 space_needed = sizeof(kern_memdesc_t) * 761 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1); 762 763 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { 764 md = p; 765 if (!efi_wb(md)) { 766 continue; 767 } 768 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) { 769 contig_low = GRANULEROUNDUP(md->phys_addr); 770 contig_high = efi_md_end(md); 771 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) { 772 check_md = q; 773 if (!efi_wb(check_md)) 774 break; 775 if (contig_high != check_md->phys_addr) 776 break; 777 contig_high = efi_md_end(check_md); 778 } 779 contig_high = GRANULEROUNDDOWN(contig_high); 780 } 781 if (!is_available_memory(md) || md->type == EFI_LOADER_DATA) 782 continue; 783 784 /* Round ends inward to granule boundaries */ 785 as = max(contig_low, md->phys_addr); 786 ae = min(contig_high, efi_md_end(md)); 787 788 /* keep within max_addr= command line arg */ 789 ae = min(ae, max_addr); 790 if (ae <= as) 791 continue; 792 793 /* avoid going over mem= command line arg */ 794 if (total_mem + (ae - as) > mem_limit) 795 ae -= total_mem + (ae - as) - mem_limit; 796 797 if (ae <= as) 798 continue; 799 800 if (ae - as > space_needed) 801 break; 802 } 803 if (p >= efi_map_end) 804 panic("Can't allocate space for kernel memory descriptors"); 805 806 return __va(as); 807 } 808 809 /* 810 * Walk the EFI memory map and gather all memory available for kernel 811 * to use. We can allocate partial granules only if the unavailable 812 * parts exist, and are WB. 813 */ 814 void 815 efi_memmap_init(unsigned long *s, unsigned long *e) 816 { 817 struct kern_memdesc *k, *prev = 0; 818 u64 contig_low=0, contig_high=0; 819 u64 as, ae, lim; 820 void *efi_map_start, *efi_map_end, *p, *q; 821 efi_memory_desc_t *md, *pmd = NULL, *check_md; 822 u64 efi_desc_size; 823 unsigned long total_mem = 0; 824 825 k = kern_memmap = find_memmap_space(); 826 827 efi_map_start = __va(ia64_boot_param->efi_memmap); 828 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 829 efi_desc_size = ia64_boot_param->efi_memdesc_size; 830 831 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { 832 md = p; 833 if (!efi_wb(md)) { 834 if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY || 835 md->type == EFI_BOOT_SERVICES_DATA)) { 836 k->attribute = EFI_MEMORY_UC; 837 k->start = md->phys_addr; 838 k->num_pages = md->num_pages; 839 k++; 840 } 841 continue; 842 } 843 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) { 844 contig_low = GRANULEROUNDUP(md->phys_addr); 845 contig_high = efi_md_end(md); 846 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) { 847 check_md = q; 848 if (!efi_wb(check_md)) 849 break; 850 if (contig_high != check_md->phys_addr) 851 break; 852 contig_high = efi_md_end(check_md); 853 } 854 contig_high = GRANULEROUNDDOWN(contig_high); 855 } 856 if (!is_available_memory(md)) 857 continue; 858 859 /* 860 * Round ends inward to granule boundaries 861 * Give trimmings to uncached allocator 862 */ 863 if (md->phys_addr < contig_low) { 864 lim = min(efi_md_end(md), contig_low); 865 if (efi_uc(md)) { 866 if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC && 867 kmd_end(k-1) == md->phys_addr) { 868 (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT; 869 } else { 870 k->attribute = EFI_MEMORY_UC; 871 k->start = md->phys_addr; 872 k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT; 873 k++; 874 } 875 } 876 as = contig_low; 877 } else 878 as = md->phys_addr; 879 880 if (efi_md_end(md) > contig_high) { 881 lim = max(md->phys_addr, contig_high); 882 if (efi_uc(md)) { 883 if (lim == md->phys_addr && k > kern_memmap && 884 (k-1)->attribute == EFI_MEMORY_UC && 885 kmd_end(k-1) == md->phys_addr) { 886 (k-1)->num_pages += md->num_pages; 887 } else { 888 k->attribute = EFI_MEMORY_UC; 889 k->start = lim; 890 k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT; 891 k++; 892 } 893 } 894 ae = contig_high; 895 } else 896 ae = efi_md_end(md); 897 898 /* keep within max_addr= command line arg */ 899 ae = min(ae, max_addr); 900 if (ae <= as) 901 continue; 902 903 /* avoid going over mem= command line arg */ 904 if (total_mem + (ae - as) > mem_limit) 905 ae -= total_mem + (ae - as) - mem_limit; 906 907 if (ae <= as) 908 continue; 909 if (prev && kmd_end(prev) == md->phys_addr) { 910 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT; 911 total_mem += ae - as; 912 continue; 913 } 914 k->attribute = EFI_MEMORY_WB; 915 k->start = as; 916 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT; 917 total_mem += ae - as; 918 prev = k++; 919 } 920 k->start = ~0L; /* end-marker */ 921 922 /* reserve the memory we are using for kern_memmap */ 923 *s = (u64)kern_memmap; 924 *e = (u64)++k; 925 } 926 927 void 928 efi_initialize_iomem_resources(struct resource *code_resource, 929 struct resource *data_resource) 930 { 931 struct resource *res; 932 void *efi_map_start, *efi_map_end, *p; 933 efi_memory_desc_t *md; 934 u64 efi_desc_size; 935 char *name; 936 unsigned long flags; 937 938 efi_map_start = __va(ia64_boot_param->efi_memmap); 939 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 940 efi_desc_size = ia64_boot_param->efi_memdesc_size; 941 942 res = NULL; 943 944 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 945 md = p; 946 947 if (md->num_pages == 0) /* should not happen */ 948 continue; 949 950 flags = IORESOURCE_MEM; 951 switch (md->type) { 952 953 case EFI_MEMORY_MAPPED_IO: 954 case EFI_MEMORY_MAPPED_IO_PORT_SPACE: 955 continue; 956 957 case EFI_LOADER_CODE: 958 case EFI_LOADER_DATA: 959 case EFI_BOOT_SERVICES_DATA: 960 case EFI_BOOT_SERVICES_CODE: 961 case EFI_CONVENTIONAL_MEMORY: 962 if (md->attribute & EFI_MEMORY_WP) { 963 name = "System ROM"; 964 flags |= IORESOURCE_READONLY; 965 } else { 966 name = "System RAM"; 967 } 968 break; 969 970 case EFI_ACPI_MEMORY_NVS: 971 name = "ACPI Non-volatile Storage"; 972 flags |= IORESOURCE_BUSY; 973 break; 974 975 case EFI_UNUSABLE_MEMORY: 976 name = "reserved"; 977 flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED; 978 break; 979 980 case EFI_RESERVED_TYPE: 981 case EFI_RUNTIME_SERVICES_CODE: 982 case EFI_RUNTIME_SERVICES_DATA: 983 case EFI_ACPI_RECLAIM_MEMORY: 984 default: 985 name = "reserved"; 986 flags |= IORESOURCE_BUSY; 987 break; 988 } 989 990 if ((res = kcalloc(1, sizeof(struct resource), GFP_KERNEL)) == NULL) { 991 printk(KERN_ERR "failed to alocate resource for iomem\n"); 992 return; 993 } 994 995 res->name = name; 996 res->start = md->phys_addr; 997 res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; 998 res->flags = flags; 999 1000 if (insert_resource(&iomem_resource, res) < 0) 1001 kfree(res); 1002 else { 1003 /* 1004 * We don't know which region contains 1005 * kernel data so we try it repeatedly and 1006 * let the resource manager test it. 1007 */ 1008 insert_resource(res, code_resource); 1009 insert_resource(res, data_resource); 1010 } 1011 } 1012 } 1013