1 /* 2 * Extensible Firmware Interface 3 * 4 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999 5 * 6 * Copyright (C) 1999 VA Linux Systems 7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 8 * Copyright (C) 1999-2003 Hewlett-Packard Co. 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * Stephane Eranian <eranian@hpl.hp.com> 11 * 12 * All EFI Runtime Services are not implemented yet as EFI only 13 * supports physical mode addressing on SoftSDV. This is to be fixed 14 * in a future version. --drummond 1999-07-20 15 * 16 * Implemented EFI runtime services and virtual mode calls. --davidm 17 * 18 * Goutham Rao: <goutham.rao@intel.com> 19 * Skip non-WB memory and ignore empty memory ranges. 20 */ 21 #include <linux/config.h> 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/init.h> 25 #include <linux/types.h> 26 #include <linux/time.h> 27 #include <linux/efi.h> 28 29 #include <asm/io.h> 30 #include <asm/kregs.h> 31 #include <asm/meminit.h> 32 #include <asm/pgtable.h> 33 #include <asm/processor.h> 34 #include <asm/mca.h> 35 36 #define EFI_DEBUG 0 37 38 extern efi_status_t efi_call_phys (void *, ...); 39 40 struct efi efi; 41 EXPORT_SYMBOL(efi); 42 static efi_runtime_services_t *runtime; 43 static unsigned long mem_limit = ~0UL, max_addr = ~0UL; 44 45 #define efi_call_virt(f, args...) (*(f))(args) 46 47 #define STUB_GET_TIME(prefix, adjust_arg) \ 48 static efi_status_t \ 49 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \ 50 { \ 51 struct ia64_fpreg fr[6]; \ 52 efi_time_cap_t *atc = NULL; \ 53 efi_status_t ret; \ 54 \ 55 if (tc) \ 56 atc = adjust_arg(tc); \ 57 ia64_save_scratch_fpregs(fr); \ 58 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \ 59 ia64_load_scratch_fpregs(fr); \ 60 return ret; \ 61 } 62 63 #define STUB_SET_TIME(prefix, adjust_arg) \ 64 static efi_status_t \ 65 prefix##_set_time (efi_time_t *tm) \ 66 { \ 67 struct ia64_fpreg fr[6]; \ 68 efi_status_t ret; \ 69 \ 70 ia64_save_scratch_fpregs(fr); \ 71 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \ 72 ia64_load_scratch_fpregs(fr); \ 73 return ret; \ 74 } 75 76 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \ 77 static efi_status_t \ 78 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \ 79 { \ 80 struct ia64_fpreg fr[6]; \ 81 efi_status_t ret; \ 82 \ 83 ia64_save_scratch_fpregs(fr); \ 84 ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ 85 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ 86 ia64_load_scratch_fpregs(fr); \ 87 return ret; \ 88 } 89 90 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \ 91 static efi_status_t \ 92 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \ 93 { \ 94 struct ia64_fpreg fr[6]; \ 95 efi_time_t *atm = NULL; \ 96 efi_status_t ret; \ 97 \ 98 if (tm) \ 99 atm = adjust_arg(tm); \ 100 ia64_save_scratch_fpregs(fr); \ 101 ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ 102 enabled, atm); \ 103 ia64_load_scratch_fpregs(fr); \ 104 return ret; \ 105 } 106 107 #define STUB_GET_VARIABLE(prefix, adjust_arg) \ 108 static efi_status_t \ 109 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ 110 unsigned long *data_size, void *data) \ 111 { \ 112 struct ia64_fpreg fr[6]; \ 113 u32 *aattr = NULL; \ 114 efi_status_t ret; \ 115 \ 116 if (attr) \ 117 aattr = adjust_arg(attr); \ 118 ia64_save_scratch_fpregs(fr); \ 119 ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \ 120 adjust_arg(name), adjust_arg(vendor), aattr, \ 121 adjust_arg(data_size), adjust_arg(data)); \ 122 ia64_load_scratch_fpregs(fr); \ 123 return ret; \ 124 } 125 126 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \ 127 static efi_status_t \ 128 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \ 129 { \ 130 struct ia64_fpreg fr[6]; \ 131 efi_status_t ret; \ 132 \ 133 ia64_save_scratch_fpregs(fr); \ 134 ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \ 135 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ 136 ia64_load_scratch_fpregs(fr); \ 137 return ret; \ 138 } 139 140 #define STUB_SET_VARIABLE(prefix, adjust_arg) \ 141 static efi_status_t \ 142 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \ 143 unsigned long data_size, void *data) \ 144 { \ 145 struct ia64_fpreg fr[6]; \ 146 efi_status_t ret; \ 147 \ 148 ia64_save_scratch_fpregs(fr); \ 149 ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \ 150 adjust_arg(name), adjust_arg(vendor), attr, data_size, \ 151 adjust_arg(data)); \ 152 ia64_load_scratch_fpregs(fr); \ 153 return ret; \ 154 } 155 156 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \ 157 static efi_status_t \ 158 prefix##_get_next_high_mono_count (u32 *count) \ 159 { \ 160 struct ia64_fpreg fr[6]; \ 161 efi_status_t ret; \ 162 \ 163 ia64_save_scratch_fpregs(fr); \ 164 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ 165 __va(runtime->get_next_high_mono_count), adjust_arg(count)); \ 166 ia64_load_scratch_fpregs(fr); \ 167 return ret; \ 168 } 169 170 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \ 171 static void \ 172 prefix##_reset_system (int reset_type, efi_status_t status, \ 173 unsigned long data_size, efi_char16_t *data) \ 174 { \ 175 struct ia64_fpreg fr[6]; \ 176 efi_char16_t *adata = NULL; \ 177 \ 178 if (data) \ 179 adata = adjust_arg(data); \ 180 \ 181 ia64_save_scratch_fpregs(fr); \ 182 efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \ 183 reset_type, status, data_size, adata); \ 184 /* should not return, but just in case... */ \ 185 ia64_load_scratch_fpregs(fr); \ 186 } 187 188 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg)) 189 190 STUB_GET_TIME(phys, phys_ptr) 191 STUB_SET_TIME(phys, phys_ptr) 192 STUB_GET_WAKEUP_TIME(phys, phys_ptr) 193 STUB_SET_WAKEUP_TIME(phys, phys_ptr) 194 STUB_GET_VARIABLE(phys, phys_ptr) 195 STUB_GET_NEXT_VARIABLE(phys, phys_ptr) 196 STUB_SET_VARIABLE(phys, phys_ptr) 197 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr) 198 STUB_RESET_SYSTEM(phys, phys_ptr) 199 200 #define id(arg) arg 201 202 STUB_GET_TIME(virt, id) 203 STUB_SET_TIME(virt, id) 204 STUB_GET_WAKEUP_TIME(virt, id) 205 STUB_SET_WAKEUP_TIME(virt, id) 206 STUB_GET_VARIABLE(virt, id) 207 STUB_GET_NEXT_VARIABLE(virt, id) 208 STUB_SET_VARIABLE(virt, id) 209 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id) 210 STUB_RESET_SYSTEM(virt, id) 211 212 void 213 efi_gettimeofday (struct timespec *ts) 214 { 215 efi_time_t tm; 216 217 memset(ts, 0, sizeof(ts)); 218 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) 219 return; 220 221 ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second); 222 ts->tv_nsec = tm.nanosecond; 223 } 224 225 static int 226 is_available_memory (efi_memory_desc_t *md) 227 { 228 if (!(md->attribute & EFI_MEMORY_WB)) 229 return 0; 230 231 switch (md->type) { 232 case EFI_LOADER_CODE: 233 case EFI_LOADER_DATA: 234 case EFI_BOOT_SERVICES_CODE: 235 case EFI_BOOT_SERVICES_DATA: 236 case EFI_CONVENTIONAL_MEMORY: 237 return 1; 238 } 239 return 0; 240 } 241 242 /* 243 * Trim descriptor MD so its starts at address START_ADDR. If the descriptor covers 244 * memory that is normally available to the kernel, issue a warning that some memory 245 * is being ignored. 246 */ 247 static void 248 trim_bottom (efi_memory_desc_t *md, u64 start_addr) 249 { 250 u64 num_skipped_pages; 251 252 if (md->phys_addr >= start_addr || !md->num_pages) 253 return; 254 255 num_skipped_pages = (start_addr - md->phys_addr) >> EFI_PAGE_SHIFT; 256 if (num_skipped_pages > md->num_pages) 257 num_skipped_pages = md->num_pages; 258 259 if (is_available_memory(md)) 260 printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole " 261 "at 0x%lx\n", __FUNCTION__, 262 (num_skipped_pages << EFI_PAGE_SHIFT) >> 10, 263 md->phys_addr, start_addr - IA64_GRANULE_SIZE); 264 /* 265 * NOTE: Don't set md->phys_addr to START_ADDR because that could cause the memory 266 * descriptor list to become unsorted. In such a case, md->num_pages will be 267 * zero, so the Right Thing will happen. 268 */ 269 md->phys_addr += num_skipped_pages << EFI_PAGE_SHIFT; 270 md->num_pages -= num_skipped_pages; 271 } 272 273 static void 274 trim_top (efi_memory_desc_t *md, u64 end_addr) 275 { 276 u64 num_dropped_pages, md_end_addr; 277 278 md_end_addr = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT); 279 280 if (md_end_addr <= end_addr || !md->num_pages) 281 return; 282 283 num_dropped_pages = (md_end_addr - end_addr) >> EFI_PAGE_SHIFT; 284 if (num_dropped_pages > md->num_pages) 285 num_dropped_pages = md->num_pages; 286 287 if (is_available_memory(md)) 288 printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole " 289 "at 0x%lx\n", __FUNCTION__, 290 (num_dropped_pages << EFI_PAGE_SHIFT) >> 10, 291 md->phys_addr, end_addr); 292 md->num_pages -= num_dropped_pages; 293 } 294 295 /* 296 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that 297 * has memory that is available for OS use. 298 */ 299 void 300 efi_memmap_walk (efi_freemem_callback_t callback, void *arg) 301 { 302 int prev_valid = 0; 303 struct range { 304 u64 start; 305 u64 end; 306 } prev, curr; 307 void *efi_map_start, *efi_map_end, *p, *q; 308 efi_memory_desc_t *md, *check_md; 309 u64 efi_desc_size, start, end, granule_addr, last_granule_addr, first_non_wb_addr = 0; 310 unsigned long total_mem = 0; 311 312 efi_map_start = __va(ia64_boot_param->efi_memmap); 313 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 314 efi_desc_size = ia64_boot_param->efi_memdesc_size; 315 316 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 317 md = p; 318 319 /* skip over non-WB memory descriptors; that's all we're interested in... */ 320 if (!(md->attribute & EFI_MEMORY_WB)) 321 continue; 322 323 /* 324 * granule_addr is the base of md's first granule. 325 * [granule_addr - first_non_wb_addr) is guaranteed to 326 * be contiguous WB memory. 327 */ 328 granule_addr = GRANULEROUNDDOWN(md->phys_addr); 329 first_non_wb_addr = max(first_non_wb_addr, granule_addr); 330 331 if (first_non_wb_addr < md->phys_addr) { 332 trim_bottom(md, granule_addr + IA64_GRANULE_SIZE); 333 granule_addr = GRANULEROUNDDOWN(md->phys_addr); 334 first_non_wb_addr = max(first_non_wb_addr, granule_addr); 335 } 336 337 for (q = p; q < efi_map_end; q += efi_desc_size) { 338 check_md = q; 339 340 if ((check_md->attribute & EFI_MEMORY_WB) && 341 (check_md->phys_addr == first_non_wb_addr)) 342 first_non_wb_addr += check_md->num_pages << EFI_PAGE_SHIFT; 343 else 344 break; /* non-WB or hole */ 345 } 346 347 last_granule_addr = GRANULEROUNDDOWN(first_non_wb_addr); 348 if (last_granule_addr < md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) 349 trim_top(md, last_granule_addr); 350 351 if (is_available_memory(md)) { 352 if (md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) >= max_addr) { 353 if (md->phys_addr >= max_addr) 354 continue; 355 md->num_pages = (max_addr - md->phys_addr) >> EFI_PAGE_SHIFT; 356 first_non_wb_addr = max_addr; 357 } 358 359 if (total_mem >= mem_limit) 360 continue; 361 362 if (total_mem + (md->num_pages << EFI_PAGE_SHIFT) > mem_limit) { 363 unsigned long limit_addr = md->phys_addr; 364 365 limit_addr += mem_limit - total_mem; 366 limit_addr = GRANULEROUNDDOWN(limit_addr); 367 368 if (md->phys_addr > limit_addr) 369 continue; 370 371 md->num_pages = (limit_addr - md->phys_addr) >> 372 EFI_PAGE_SHIFT; 373 first_non_wb_addr = max_addr = md->phys_addr + 374 (md->num_pages << EFI_PAGE_SHIFT); 375 } 376 total_mem += (md->num_pages << EFI_PAGE_SHIFT); 377 378 if (md->num_pages == 0) 379 continue; 380 381 curr.start = PAGE_OFFSET + md->phys_addr; 382 curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT); 383 384 if (!prev_valid) { 385 prev = curr; 386 prev_valid = 1; 387 } else { 388 if (curr.start < prev.start) 389 printk(KERN_ERR "Oops: EFI memory table not ordered!\n"); 390 391 if (prev.end == curr.start) { 392 /* merge two consecutive memory ranges */ 393 prev.end = curr.end; 394 } else { 395 start = PAGE_ALIGN(prev.start); 396 end = prev.end & PAGE_MASK; 397 if ((end > start) && (*callback)(start, end, arg) < 0) 398 return; 399 prev = curr; 400 } 401 } 402 } 403 } 404 if (prev_valid) { 405 start = PAGE_ALIGN(prev.start); 406 end = prev.end & PAGE_MASK; 407 if (end > start) 408 (*callback)(start, end, arg); 409 } 410 } 411 412 /* 413 * Look for the PAL_CODE region reported by EFI and maps it using an 414 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor 415 * Abstraction Layer chapter 11 in ADAG 416 */ 417 418 void * 419 efi_get_pal_addr (void) 420 { 421 void *efi_map_start, *efi_map_end, *p; 422 efi_memory_desc_t *md; 423 u64 efi_desc_size; 424 int pal_code_count = 0; 425 u64 vaddr, mask; 426 427 efi_map_start = __va(ia64_boot_param->efi_memmap); 428 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 429 efi_desc_size = ia64_boot_param->efi_memdesc_size; 430 431 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 432 md = p; 433 if (md->type != EFI_PAL_CODE) 434 continue; 435 436 if (++pal_code_count > 1) { 437 printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n", 438 md->phys_addr); 439 continue; 440 } 441 /* 442 * The only ITLB entry in region 7 that is used is the one installed by 443 * __start(). That entry covers a 64MB range. 444 */ 445 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); 446 vaddr = PAGE_OFFSET + md->phys_addr; 447 448 /* 449 * We must check that the PAL mapping won't overlap with the kernel 450 * mapping. 451 * 452 * PAL code is guaranteed to be aligned on a power of 2 between 4k and 453 * 256KB and that only one ITR is needed to map it. This implies that the 454 * PAL code is always aligned on its size, i.e., the closest matching page 455 * size supported by the TLB. Therefore PAL code is guaranteed never to 456 * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for 457 * now the following test is enough to determine whether or not we need a 458 * dedicated ITR for the PAL code. 459 */ 460 if ((vaddr & mask) == (KERNEL_START & mask)) { 461 printk(KERN_INFO "%s: no need to install ITR for PAL code\n", 462 __FUNCTION__); 463 continue; 464 } 465 466 if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE) 467 panic("Woah! PAL code size bigger than a granule!"); 468 469 #if EFI_DEBUG 470 mask = ~((1 << IA64_GRANULE_SHIFT) - 1); 471 472 printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n", 473 smp_processor_id(), md->phys_addr, 474 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), 475 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); 476 #endif 477 return __va(md->phys_addr); 478 } 479 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found", 480 __FUNCTION__); 481 return NULL; 482 } 483 484 void 485 efi_map_pal_code (void) 486 { 487 void *pal_vaddr = efi_get_pal_addr (); 488 u64 psr; 489 490 if (!pal_vaddr) 491 return; 492 493 /* 494 * Cannot write to CRx with PSR.ic=1 495 */ 496 psr = ia64_clear_ic(); 497 ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr), 498 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), 499 IA64_GRANULE_SHIFT); 500 ia64_set_psr(psr); /* restore psr */ 501 ia64_srlz_i(); 502 } 503 504 void __init 505 efi_init (void) 506 { 507 void *efi_map_start, *efi_map_end; 508 efi_config_table_t *config_tables; 509 efi_char16_t *c16; 510 u64 efi_desc_size; 511 char *cp, *end, vendor[100] = "unknown"; 512 extern char saved_command_line[]; 513 int i; 514 515 /* it's too early to be able to use the standard kernel command line support... */ 516 for (cp = saved_command_line; *cp; ) { 517 if (memcmp(cp, "mem=", 4) == 0) { 518 cp += 4; 519 mem_limit = memparse(cp, &end); 520 if (end != cp) 521 break; 522 cp = end; 523 } else if (memcmp(cp, "max_addr=", 9) == 0) { 524 cp += 9; 525 max_addr = GRANULEROUNDDOWN(memparse(cp, &end)); 526 if (end != cp) 527 break; 528 cp = end; 529 } else { 530 while (*cp != ' ' && *cp) 531 ++cp; 532 while (*cp == ' ') 533 ++cp; 534 } 535 } 536 if (max_addr != ~0UL) 537 printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20); 538 539 efi.systab = __va(ia64_boot_param->efi_systab); 540 541 /* 542 * Verify the EFI Table 543 */ 544 if (efi.systab == NULL) 545 panic("Woah! Can't find EFI system table.\n"); 546 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) 547 panic("Woah! EFI system table signature incorrect\n"); 548 if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0) 549 printk(KERN_WARNING "Warning: EFI system table major version mismatch: " 550 "got %d.%02d, expected %d.%02d\n", 551 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, 552 EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff); 553 554 config_tables = __va(efi.systab->tables); 555 556 /* Show what we know for posterity */ 557 c16 = __va(efi.systab->fw_vendor); 558 if (c16) { 559 for (i = 0;i < (int) sizeof(vendor) && *c16; ++i) 560 vendor[i] = *c16++; 561 vendor[i] = '\0'; 562 } 563 564 printk(KERN_INFO "EFI v%u.%.02u by %s:", 565 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor); 566 567 for (i = 0; i < (int) efi.systab->nr_tables; i++) { 568 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { 569 efi.mps = __va(config_tables[i].table); 570 printk(" MPS=0x%lx", config_tables[i].table); 571 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { 572 efi.acpi20 = __va(config_tables[i].table); 573 printk(" ACPI 2.0=0x%lx", config_tables[i].table); 574 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { 575 efi.acpi = __va(config_tables[i].table); 576 printk(" ACPI=0x%lx", config_tables[i].table); 577 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { 578 efi.smbios = __va(config_tables[i].table); 579 printk(" SMBIOS=0x%lx", config_tables[i].table); 580 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) { 581 efi.sal_systab = __va(config_tables[i].table); 582 printk(" SALsystab=0x%lx", config_tables[i].table); 583 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { 584 efi.hcdp = __va(config_tables[i].table); 585 printk(" HCDP=0x%lx", config_tables[i].table); 586 } 587 } 588 printk("\n"); 589 590 runtime = __va(efi.systab->runtime); 591 efi.get_time = phys_get_time; 592 efi.set_time = phys_set_time; 593 efi.get_wakeup_time = phys_get_wakeup_time; 594 efi.set_wakeup_time = phys_set_wakeup_time; 595 efi.get_variable = phys_get_variable; 596 efi.get_next_variable = phys_get_next_variable; 597 efi.set_variable = phys_set_variable; 598 efi.get_next_high_mono_count = phys_get_next_high_mono_count; 599 efi.reset_system = phys_reset_system; 600 601 efi_map_start = __va(ia64_boot_param->efi_memmap); 602 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 603 efi_desc_size = ia64_boot_param->efi_memdesc_size; 604 605 #if EFI_DEBUG 606 /* print EFI memory map: */ 607 { 608 efi_memory_desc_t *md; 609 void *p; 610 611 for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) { 612 md = p; 613 printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n", 614 i, md->type, md->attribute, md->phys_addr, 615 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), 616 md->num_pages >> (20 - EFI_PAGE_SHIFT)); 617 } 618 } 619 #endif 620 621 efi_map_pal_code(); 622 efi_enter_virtual_mode(); 623 } 624 625 void 626 efi_enter_virtual_mode (void) 627 { 628 void *efi_map_start, *efi_map_end, *p; 629 efi_memory_desc_t *md; 630 efi_status_t status; 631 u64 efi_desc_size; 632 633 efi_map_start = __va(ia64_boot_param->efi_memmap); 634 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 635 efi_desc_size = ia64_boot_param->efi_memdesc_size; 636 637 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 638 md = p; 639 if (md->attribute & EFI_MEMORY_RUNTIME) { 640 /* 641 * Some descriptors have multiple bits set, so the order of 642 * the tests is relevant. 643 */ 644 if (md->attribute & EFI_MEMORY_WB) { 645 md->virt_addr = (u64) __va(md->phys_addr); 646 } else if (md->attribute & EFI_MEMORY_UC) { 647 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 648 } else if (md->attribute & EFI_MEMORY_WC) { 649 #if 0 650 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P 651 | _PAGE_D 652 | _PAGE_MA_WC 653 | _PAGE_PL_0 654 | _PAGE_AR_RW)); 655 #else 656 printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); 657 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 658 #endif 659 } else if (md->attribute & EFI_MEMORY_WT) { 660 #if 0 661 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P 662 | _PAGE_D | _PAGE_MA_WT 663 | _PAGE_PL_0 664 | _PAGE_AR_RW)); 665 #else 666 printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); 667 md->virt_addr = (u64) ioremap(md->phys_addr, 0); 668 #endif 669 } 670 } 671 } 672 673 status = efi_call_phys(__va(runtime->set_virtual_address_map), 674 ia64_boot_param->efi_memmap_size, 675 efi_desc_size, ia64_boot_param->efi_memdesc_version, 676 ia64_boot_param->efi_memmap); 677 if (status != EFI_SUCCESS) { 678 printk(KERN_WARNING "warning: unable to switch EFI into virtual mode " 679 "(status=%lu)\n", status); 680 return; 681 } 682 683 /* 684 * Now that EFI is in virtual mode, we call the EFI functions more efficiently: 685 */ 686 efi.get_time = virt_get_time; 687 efi.set_time = virt_set_time; 688 efi.get_wakeup_time = virt_get_wakeup_time; 689 efi.set_wakeup_time = virt_set_wakeup_time; 690 efi.get_variable = virt_get_variable; 691 efi.get_next_variable = virt_get_next_variable; 692 efi.set_variable = virt_set_variable; 693 efi.get_next_high_mono_count = virt_get_next_high_mono_count; 694 efi.reset_system = virt_reset_system; 695 } 696 697 /* 698 * Walk the EFI memory map looking for the I/O port range. There can only be one entry of 699 * this type, other I/O port ranges should be described via ACPI. 700 */ 701 u64 702 efi_get_iobase (void) 703 { 704 void *efi_map_start, *efi_map_end, *p; 705 efi_memory_desc_t *md; 706 u64 efi_desc_size; 707 708 efi_map_start = __va(ia64_boot_param->efi_memmap); 709 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 710 efi_desc_size = ia64_boot_param->efi_memdesc_size; 711 712 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 713 md = p; 714 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { 715 if (md->attribute & EFI_MEMORY_UC) 716 return md->phys_addr; 717 } 718 } 719 return 0; 720 } 721 722 u32 723 efi_mem_type (unsigned long phys_addr) 724 { 725 void *efi_map_start, *efi_map_end, *p; 726 efi_memory_desc_t *md; 727 u64 efi_desc_size; 728 729 efi_map_start = __va(ia64_boot_param->efi_memmap); 730 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 731 efi_desc_size = ia64_boot_param->efi_memdesc_size; 732 733 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 734 md = p; 735 736 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) 737 return md->type; 738 } 739 return 0; 740 } 741 742 u64 743 efi_mem_attributes (unsigned long phys_addr) 744 { 745 void *efi_map_start, *efi_map_end, *p; 746 efi_memory_desc_t *md; 747 u64 efi_desc_size; 748 749 efi_map_start = __va(ia64_boot_param->efi_memmap); 750 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 751 efi_desc_size = ia64_boot_param->efi_memdesc_size; 752 753 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 754 md = p; 755 756 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) 757 return md->attribute; 758 } 759 return 0; 760 } 761 EXPORT_SYMBOL(efi_mem_attributes); 762 763 int 764 valid_phys_addr_range (unsigned long phys_addr, unsigned long *size) 765 { 766 void *efi_map_start, *efi_map_end, *p; 767 efi_memory_desc_t *md; 768 u64 efi_desc_size; 769 770 efi_map_start = __va(ia64_boot_param->efi_memmap); 771 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; 772 efi_desc_size = ia64_boot_param->efi_memdesc_size; 773 774 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { 775 md = p; 776 777 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) { 778 if (!(md->attribute & EFI_MEMORY_WB)) 779 return 0; 780 781 if (*size > md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr) 782 *size = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr; 783 return 1; 784 } 785 } 786 return 0; 787 } 788 789 int __init 790 efi_uart_console_only(void) 791 { 792 efi_status_t status; 793 char *s, name[] = "ConOut"; 794 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; 795 efi_char16_t *utf16, name_utf16[32]; 796 unsigned char data[1024]; 797 unsigned long size = sizeof(data); 798 struct efi_generic_dev_path *hdr, *end_addr; 799 int uart = 0; 800 801 /* Convert to UTF-16 */ 802 utf16 = name_utf16; 803 s = name; 804 while (*s) 805 *utf16++ = *s++ & 0x7f; 806 *utf16 = 0; 807 808 status = efi.get_variable(name_utf16, &guid, NULL, &size, data); 809 if (status != EFI_SUCCESS) { 810 printk(KERN_ERR "No EFI %s variable?\n", name); 811 return 0; 812 } 813 814 hdr = (struct efi_generic_dev_path *) data; 815 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); 816 while (hdr < end_addr) { 817 if (hdr->type == EFI_DEV_MSG && 818 hdr->sub_type == EFI_DEV_MSG_UART) 819 uart = 1; 820 else if (hdr->type == EFI_DEV_END_PATH || 821 hdr->type == EFI_DEV_END_PATH2) { 822 if (!uart) 823 return 0; 824 if (hdr->sub_type == EFI_DEV_END_ENTIRE) 825 return 1; 826 uart = 0; 827 } 828 hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length); 829 } 830 printk(KERN_ERR "Malformed %s value\n", name); 831 return 0; 832 } 833