xref: /openbmc/linux/arch/ia64/kernel/efi.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
5  *
6  * Copyright (C) 1999 VA Linux Systems
7  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8  * Copyright (C) 1999-2003 Hewlett-Packard Co.
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *	Stephane Eranian <eranian@hpl.hp.com>
11  *
12  * All EFI Runtime Services are not implemented yet as EFI only
13  * supports physical mode addressing on SoftSDV. This is to be fixed
14  * in a future version.  --drummond 1999-07-20
15  *
16  * Implemented EFI runtime services and virtual mode calls.  --davidm
17  *
18  * Goutham Rao: <goutham.rao@intel.com>
19  *	Skip non-WB memory and ignore empty memory ranges.
20  */
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/time.h>
27 #include <linux/efi.h>
28 
29 #include <asm/io.h>
30 #include <asm/kregs.h>
31 #include <asm/meminit.h>
32 #include <asm/pgtable.h>
33 #include <asm/processor.h>
34 #include <asm/mca.h>
35 
36 #define EFI_DEBUG	0
37 
38 extern efi_status_t efi_call_phys (void *, ...);
39 
40 struct efi efi;
41 EXPORT_SYMBOL(efi);
42 static efi_runtime_services_t *runtime;
43 static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
44 
45 #define efi_call_virt(f, args...)	(*(f))(args)
46 
47 #define STUB_GET_TIME(prefix, adjust_arg)							  \
48 static efi_status_t										  \
49 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)						  \
50 {												  \
51 	struct ia64_fpreg fr[6];								  \
52 	efi_time_cap_t *atc = NULL;								  \
53 	efi_status_t ret;									  \
54 												  \
55 	if (tc)											  \
56 		atc = adjust_arg(tc);								  \
57 	ia64_save_scratch_fpregs(fr);								  \
58 	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
59 	ia64_load_scratch_fpregs(fr);								  \
60 	return ret;										  \
61 }
62 
63 #define STUB_SET_TIME(prefix, adjust_arg)							\
64 static efi_status_t										\
65 prefix##_set_time (efi_time_t *tm)								\
66 {												\
67 	struct ia64_fpreg fr[6];								\
68 	efi_status_t ret;									\
69 												\
70 	ia64_save_scratch_fpregs(fr);								\
71 	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm));	\
72 	ia64_load_scratch_fpregs(fr);								\
73 	return ret;										\
74 }
75 
76 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)						\
77 static efi_status_t										\
78 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm)		\
79 {												\
80 	struct ia64_fpreg fr[6];								\
81 	efi_status_t ret;									\
82 												\
83 	ia64_save_scratch_fpregs(fr);								\
84 	ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),	\
85 				adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));	\
86 	ia64_load_scratch_fpregs(fr);								\
87 	return ret;										\
88 }
89 
90 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)						\
91 static efi_status_t										\
92 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)					\
93 {												\
94 	struct ia64_fpreg fr[6];								\
95 	efi_time_t *atm = NULL;									\
96 	efi_status_t ret;									\
97 												\
98 	if (tm)											\
99 		atm = adjust_arg(tm);								\
100 	ia64_save_scratch_fpregs(fr);								\
101 	ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),	\
102 				enabled, atm);							\
103 	ia64_load_scratch_fpregs(fr);								\
104 	return ret;										\
105 }
106 
107 #define STUB_GET_VARIABLE(prefix, adjust_arg)						\
108 static efi_status_t									\
109 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,		\
110 		       unsigned long *data_size, void *data)				\
111 {											\
112 	struct ia64_fpreg fr[6];							\
113 	u32 *aattr = NULL;									\
114 	efi_status_t ret;								\
115 											\
116 	if (attr)									\
117 		aattr = adjust_arg(attr);						\
118 	ia64_save_scratch_fpregs(fr);							\
119 	ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable),	\
120 				adjust_arg(name), adjust_arg(vendor), aattr,		\
121 				adjust_arg(data_size), adjust_arg(data));		\
122 	ia64_load_scratch_fpregs(fr);							\
123 	return ret;									\
124 }
125 
126 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)						\
127 static efi_status_t										\
128 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor)	\
129 {												\
130 	struct ia64_fpreg fr[6];								\
131 	efi_status_t ret;									\
132 												\
133 	ia64_save_scratch_fpregs(fr);								\
134 	ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable),	\
135 				adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));	\
136 	ia64_load_scratch_fpregs(fr);								\
137 	return ret;										\
138 }
139 
140 #define STUB_SET_VARIABLE(prefix, adjust_arg)						\
141 static efi_status_t									\
142 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr,	\
143 		       unsigned long data_size, void *data)				\
144 {											\
145 	struct ia64_fpreg fr[6];							\
146 	efi_status_t ret;								\
147 											\
148 	ia64_save_scratch_fpregs(fr);							\
149 	ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable),	\
150 				adjust_arg(name), adjust_arg(vendor), attr, data_size,	\
151 				adjust_arg(data));					\
152 	ia64_load_scratch_fpregs(fr);							\
153 	return ret;									\
154 }
155 
156 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)					\
157 static efi_status_t										\
158 prefix##_get_next_high_mono_count (u32 *count)							\
159 {												\
160 	struct ia64_fpreg fr[6];								\
161 	efi_status_t ret;									\
162 												\
163 	ia64_save_scratch_fpregs(fr);								\
164 	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)				\
165 				__va(runtime->get_next_high_mono_count), adjust_arg(count));	\
166 	ia64_load_scratch_fpregs(fr);								\
167 	return ret;										\
168 }
169 
170 #define STUB_RESET_SYSTEM(prefix, adjust_arg)					\
171 static void									\
172 prefix##_reset_system (int reset_type, efi_status_t status,			\
173 		       unsigned long data_size, efi_char16_t *data)		\
174 {										\
175 	struct ia64_fpreg fr[6];						\
176 	efi_char16_t *adata = NULL;						\
177 										\
178 	if (data)								\
179 		adata = adjust_arg(data);					\
180 										\
181 	ia64_save_scratch_fpregs(fr);						\
182 	efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system),	\
183 			  reset_type, status, data_size, adata);		\
184 	/* should not return, but just in case... */				\
185 	ia64_load_scratch_fpregs(fr);						\
186 }
187 
188 #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
189 
190 STUB_GET_TIME(phys, phys_ptr)
191 STUB_SET_TIME(phys, phys_ptr)
192 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
193 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
194 STUB_GET_VARIABLE(phys, phys_ptr)
195 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
196 STUB_SET_VARIABLE(phys, phys_ptr)
197 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
198 STUB_RESET_SYSTEM(phys, phys_ptr)
199 
200 #define id(arg)	arg
201 
202 STUB_GET_TIME(virt, id)
203 STUB_SET_TIME(virt, id)
204 STUB_GET_WAKEUP_TIME(virt, id)
205 STUB_SET_WAKEUP_TIME(virt, id)
206 STUB_GET_VARIABLE(virt, id)
207 STUB_GET_NEXT_VARIABLE(virt, id)
208 STUB_SET_VARIABLE(virt, id)
209 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
210 STUB_RESET_SYSTEM(virt, id)
211 
212 void
213 efi_gettimeofday (struct timespec *ts)
214 {
215 	efi_time_t tm;
216 
217 	memset(ts, 0, sizeof(ts));
218 	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
219 		return;
220 
221 	ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
222 	ts->tv_nsec = tm.nanosecond;
223 }
224 
225 static int
226 is_available_memory (efi_memory_desc_t *md)
227 {
228 	if (!(md->attribute & EFI_MEMORY_WB))
229 		return 0;
230 
231 	switch (md->type) {
232 	      case EFI_LOADER_CODE:
233 	      case EFI_LOADER_DATA:
234 	      case EFI_BOOT_SERVICES_CODE:
235 	      case EFI_BOOT_SERVICES_DATA:
236 	      case EFI_CONVENTIONAL_MEMORY:
237 		return 1;
238 	}
239 	return 0;
240 }
241 
242 /*
243  * Trim descriptor MD so its starts at address START_ADDR.  If the descriptor covers
244  * memory that is normally available to the kernel, issue a warning that some memory
245  * is being ignored.
246  */
247 static void
248 trim_bottom (efi_memory_desc_t *md, u64 start_addr)
249 {
250 	u64 num_skipped_pages;
251 
252 	if (md->phys_addr >= start_addr || !md->num_pages)
253 		return;
254 
255 	num_skipped_pages = (start_addr - md->phys_addr) >> EFI_PAGE_SHIFT;
256 	if (num_skipped_pages > md->num_pages)
257 		num_skipped_pages = md->num_pages;
258 
259 	if (is_available_memory(md))
260 		printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole "
261 		       "at 0x%lx\n", __FUNCTION__,
262 		       (num_skipped_pages << EFI_PAGE_SHIFT) >> 10,
263 		       md->phys_addr, start_addr - IA64_GRANULE_SIZE);
264 	/*
265 	 * NOTE: Don't set md->phys_addr to START_ADDR because that could cause the memory
266 	 * descriptor list to become unsorted.  In such a case, md->num_pages will be
267 	 * zero, so the Right Thing will happen.
268 	 */
269 	md->phys_addr += num_skipped_pages << EFI_PAGE_SHIFT;
270 	md->num_pages -= num_skipped_pages;
271 }
272 
273 static void
274 trim_top (efi_memory_desc_t *md, u64 end_addr)
275 {
276 	u64 num_dropped_pages, md_end_addr;
277 
278 	md_end_addr = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
279 
280 	if (md_end_addr <= end_addr || !md->num_pages)
281 		return;
282 
283 	num_dropped_pages = (md_end_addr - end_addr) >> EFI_PAGE_SHIFT;
284 	if (num_dropped_pages > md->num_pages)
285 		num_dropped_pages = md->num_pages;
286 
287 	if (is_available_memory(md))
288 		printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole "
289 		       "at 0x%lx\n", __FUNCTION__,
290 		       (num_dropped_pages << EFI_PAGE_SHIFT) >> 10,
291 		       md->phys_addr, end_addr);
292 	md->num_pages -= num_dropped_pages;
293 }
294 
295 /*
296  * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
297  * has memory that is available for OS use.
298  */
299 void
300 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
301 {
302 	int prev_valid = 0;
303 	struct range {
304 		u64 start;
305 		u64 end;
306 	} prev, curr;
307 	void *efi_map_start, *efi_map_end, *p, *q;
308 	efi_memory_desc_t *md, *check_md;
309 	u64 efi_desc_size, start, end, granule_addr, last_granule_addr, first_non_wb_addr = 0;
310 	unsigned long total_mem = 0;
311 
312 	efi_map_start = __va(ia64_boot_param->efi_memmap);
313 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
314 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
315 
316 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
317 		md = p;
318 
319 		/* skip over non-WB memory descriptors; that's all we're interested in... */
320 		if (!(md->attribute & EFI_MEMORY_WB))
321 			continue;
322 
323 		/*
324 		 * granule_addr is the base of md's first granule.
325 		 * [granule_addr - first_non_wb_addr) is guaranteed to
326 		 * be contiguous WB memory.
327 		 */
328 		granule_addr = GRANULEROUNDDOWN(md->phys_addr);
329 		first_non_wb_addr = max(first_non_wb_addr, granule_addr);
330 
331 		if (first_non_wb_addr < md->phys_addr) {
332 			trim_bottom(md, granule_addr + IA64_GRANULE_SIZE);
333 			granule_addr = GRANULEROUNDDOWN(md->phys_addr);
334 			first_non_wb_addr = max(first_non_wb_addr, granule_addr);
335 		}
336 
337 		for (q = p; q < efi_map_end; q += efi_desc_size) {
338 			check_md = q;
339 
340 			if ((check_md->attribute & EFI_MEMORY_WB) &&
341 			    (check_md->phys_addr == first_non_wb_addr))
342 				first_non_wb_addr += check_md->num_pages << EFI_PAGE_SHIFT;
343 			else
344 				break;		/* non-WB or hole */
345 		}
346 
347 		last_granule_addr = GRANULEROUNDDOWN(first_non_wb_addr);
348 		if (last_granule_addr < md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT))
349 			trim_top(md, last_granule_addr);
350 
351 		if (is_available_memory(md)) {
352 			if (md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) >= max_addr) {
353 				if (md->phys_addr >= max_addr)
354 					continue;
355 				md->num_pages = (max_addr - md->phys_addr) >> EFI_PAGE_SHIFT;
356 				first_non_wb_addr = max_addr;
357 			}
358 
359 			if (total_mem >= mem_limit)
360 				continue;
361 
362 			if (total_mem + (md->num_pages << EFI_PAGE_SHIFT) > mem_limit) {
363 				unsigned long limit_addr = md->phys_addr;
364 
365 				limit_addr += mem_limit - total_mem;
366 				limit_addr = GRANULEROUNDDOWN(limit_addr);
367 
368 				if (md->phys_addr > limit_addr)
369 					continue;
370 
371 				md->num_pages = (limit_addr - md->phys_addr) >>
372 				                EFI_PAGE_SHIFT;
373 				first_non_wb_addr = max_addr = md->phys_addr +
374 				              (md->num_pages << EFI_PAGE_SHIFT);
375 			}
376 			total_mem += (md->num_pages << EFI_PAGE_SHIFT);
377 
378 			if (md->num_pages == 0)
379 				continue;
380 
381 			curr.start = PAGE_OFFSET + md->phys_addr;
382 			curr.end   = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
383 
384 			if (!prev_valid) {
385 				prev = curr;
386 				prev_valid = 1;
387 			} else {
388 				if (curr.start < prev.start)
389 					printk(KERN_ERR "Oops: EFI memory table not ordered!\n");
390 
391 				if (prev.end == curr.start) {
392 					/* merge two consecutive memory ranges */
393 					prev.end = curr.end;
394 				} else {
395 					start = PAGE_ALIGN(prev.start);
396 					end = prev.end & PAGE_MASK;
397 					if ((end > start) && (*callback)(start, end, arg) < 0)
398 						return;
399 					prev = curr;
400 				}
401 			}
402 		}
403 	}
404 	if (prev_valid) {
405 		start = PAGE_ALIGN(prev.start);
406 		end = prev.end & PAGE_MASK;
407 		if (end > start)
408 			(*callback)(start, end, arg);
409 	}
410 }
411 
412 /*
413  * Look for the PAL_CODE region reported by EFI and maps it using an
414  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
415  * Abstraction Layer chapter 11 in ADAG
416  */
417 
418 void *
419 efi_get_pal_addr (void)
420 {
421 	void *efi_map_start, *efi_map_end, *p;
422 	efi_memory_desc_t *md;
423 	u64 efi_desc_size;
424 	int pal_code_count = 0;
425 	u64 vaddr, mask;
426 
427 	efi_map_start = __va(ia64_boot_param->efi_memmap);
428 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
429 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
430 
431 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
432 		md = p;
433 		if (md->type != EFI_PAL_CODE)
434 			continue;
435 
436 		if (++pal_code_count > 1) {
437 			printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
438 			       md->phys_addr);
439 			continue;
440 		}
441 		/*
442 		 * The only ITLB entry in region 7 that is used is the one installed by
443 		 * __start().  That entry covers a 64MB range.
444 		 */
445 		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
446 		vaddr = PAGE_OFFSET + md->phys_addr;
447 
448 		/*
449 		 * We must check that the PAL mapping won't overlap with the kernel
450 		 * mapping.
451 		 *
452 		 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
453 		 * 256KB and that only one ITR is needed to map it. This implies that the
454 		 * PAL code is always aligned on its size, i.e., the closest matching page
455 		 * size supported by the TLB. Therefore PAL code is guaranteed never to
456 		 * cross a 64MB unless it is bigger than 64MB (very unlikely!).  So for
457 		 * now the following test is enough to determine whether or not we need a
458 		 * dedicated ITR for the PAL code.
459 		 */
460 		if ((vaddr & mask) == (KERNEL_START & mask)) {
461 			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
462 			       __FUNCTION__);
463 			continue;
464 		}
465 
466 		if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
467 			panic("Woah!  PAL code size bigger than a granule!");
468 
469 #if EFI_DEBUG
470 		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
471 
472 		printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
473 			smp_processor_id(), md->phys_addr,
474 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
475 			vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
476 #endif
477 		return __va(md->phys_addr);
478 	}
479 	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
480 	       __FUNCTION__);
481 	return NULL;
482 }
483 
484 void
485 efi_map_pal_code (void)
486 {
487 	void *pal_vaddr = efi_get_pal_addr ();
488 	u64 psr;
489 
490 	if (!pal_vaddr)
491 		return;
492 
493 	/*
494 	 * Cannot write to CRx with PSR.ic=1
495 	 */
496 	psr = ia64_clear_ic();
497 	ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
498 		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
499 		 IA64_GRANULE_SHIFT);
500 	ia64_set_psr(psr);		/* restore psr */
501 	ia64_srlz_i();
502 }
503 
504 void __init
505 efi_init (void)
506 {
507 	void *efi_map_start, *efi_map_end;
508 	efi_config_table_t *config_tables;
509 	efi_char16_t *c16;
510 	u64 efi_desc_size;
511 	char *cp, *end, vendor[100] = "unknown";
512 	extern char saved_command_line[];
513 	int i;
514 
515 	/* it's too early to be able to use the standard kernel command line support... */
516 	for (cp = saved_command_line; *cp; ) {
517 		if (memcmp(cp, "mem=", 4) == 0) {
518 			cp += 4;
519 			mem_limit = memparse(cp, &end);
520 			if (end != cp)
521 				break;
522 			cp = end;
523 		} else if (memcmp(cp, "max_addr=", 9) == 0) {
524 			cp += 9;
525 			max_addr = GRANULEROUNDDOWN(memparse(cp, &end));
526 			if (end != cp)
527 				break;
528 			cp = end;
529 		} else {
530 			while (*cp != ' ' && *cp)
531 				++cp;
532 			while (*cp == ' ')
533 				++cp;
534 		}
535 	}
536 	if (max_addr != ~0UL)
537 		printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
538 
539 	efi.systab = __va(ia64_boot_param->efi_systab);
540 
541 	/*
542 	 * Verify the EFI Table
543 	 */
544 	if (efi.systab == NULL)
545 		panic("Woah! Can't find EFI system table.\n");
546 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
547 		panic("Woah! EFI system table signature incorrect\n");
548 	if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
549 		printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
550 		       "got %d.%02d, expected %d.%02d\n",
551 		       efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
552 		       EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
553 
554 	config_tables = __va(efi.systab->tables);
555 
556 	/* Show what we know for posterity */
557 	c16 = __va(efi.systab->fw_vendor);
558 	if (c16) {
559 		for (i = 0;i < (int) sizeof(vendor) && *c16; ++i)
560 			vendor[i] = *c16++;
561 		vendor[i] = '\0';
562 	}
563 
564 	printk(KERN_INFO "EFI v%u.%.02u by %s:",
565 	       efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
566 
567 	for (i = 0; i < (int) efi.systab->nr_tables; i++) {
568 		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
569 			efi.mps = __va(config_tables[i].table);
570 			printk(" MPS=0x%lx", config_tables[i].table);
571 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
572 			efi.acpi20 = __va(config_tables[i].table);
573 			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
574 		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
575 			efi.acpi = __va(config_tables[i].table);
576 			printk(" ACPI=0x%lx", config_tables[i].table);
577 		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
578 			efi.smbios = __va(config_tables[i].table);
579 			printk(" SMBIOS=0x%lx", config_tables[i].table);
580 		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
581 			efi.sal_systab = __va(config_tables[i].table);
582 			printk(" SALsystab=0x%lx", config_tables[i].table);
583 		} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
584 			efi.hcdp = __va(config_tables[i].table);
585 			printk(" HCDP=0x%lx", config_tables[i].table);
586 		}
587 	}
588 	printk("\n");
589 
590 	runtime = __va(efi.systab->runtime);
591 	efi.get_time = phys_get_time;
592 	efi.set_time = phys_set_time;
593 	efi.get_wakeup_time = phys_get_wakeup_time;
594 	efi.set_wakeup_time = phys_set_wakeup_time;
595 	efi.get_variable = phys_get_variable;
596 	efi.get_next_variable = phys_get_next_variable;
597 	efi.set_variable = phys_set_variable;
598 	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
599 	efi.reset_system = phys_reset_system;
600 
601 	efi_map_start = __va(ia64_boot_param->efi_memmap);
602 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
603 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
604 
605 #if EFI_DEBUG
606 	/* print EFI memory map: */
607 	{
608 		efi_memory_desc_t *md;
609 		void *p;
610 
611 		for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
612 			md = p;
613 			printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
614 			       i, md->type, md->attribute, md->phys_addr,
615 			       md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
616 			       md->num_pages >> (20 - EFI_PAGE_SHIFT));
617 		}
618 	}
619 #endif
620 
621 	efi_map_pal_code();
622 	efi_enter_virtual_mode();
623 }
624 
625 void
626 efi_enter_virtual_mode (void)
627 {
628 	void *efi_map_start, *efi_map_end, *p;
629 	efi_memory_desc_t *md;
630 	efi_status_t status;
631 	u64 efi_desc_size;
632 
633 	efi_map_start = __va(ia64_boot_param->efi_memmap);
634 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
635 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
636 
637 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
638 		md = p;
639 		if (md->attribute & EFI_MEMORY_RUNTIME) {
640 			/*
641 			 * Some descriptors have multiple bits set, so the order of
642 			 * the tests is relevant.
643 			 */
644 			if (md->attribute & EFI_MEMORY_WB) {
645 				md->virt_addr = (u64) __va(md->phys_addr);
646 			} else if (md->attribute & EFI_MEMORY_UC) {
647 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
648 			} else if (md->attribute & EFI_MEMORY_WC) {
649 #if 0
650 				md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
651 									   | _PAGE_D
652 									   | _PAGE_MA_WC
653 									   | _PAGE_PL_0
654 									   | _PAGE_AR_RW));
655 #else
656 				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
657 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
658 #endif
659 			} else if (md->attribute & EFI_MEMORY_WT) {
660 #if 0
661 				md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
662 									   | _PAGE_D | _PAGE_MA_WT
663 									   | _PAGE_PL_0
664 									   | _PAGE_AR_RW));
665 #else
666 				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
667 				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
668 #endif
669 			}
670 		}
671 	}
672 
673 	status = efi_call_phys(__va(runtime->set_virtual_address_map),
674 			       ia64_boot_param->efi_memmap_size,
675 			       efi_desc_size, ia64_boot_param->efi_memdesc_version,
676 			       ia64_boot_param->efi_memmap);
677 	if (status != EFI_SUCCESS) {
678 		printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
679 		       "(status=%lu)\n", status);
680 		return;
681 	}
682 
683 	/*
684 	 * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
685 	 */
686 	efi.get_time = virt_get_time;
687 	efi.set_time = virt_set_time;
688 	efi.get_wakeup_time = virt_get_wakeup_time;
689 	efi.set_wakeup_time = virt_set_wakeup_time;
690 	efi.get_variable = virt_get_variable;
691 	efi.get_next_variable = virt_get_next_variable;
692 	efi.set_variable = virt_set_variable;
693 	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
694 	efi.reset_system = virt_reset_system;
695 }
696 
697 /*
698  * Walk the EFI memory map looking for the I/O port range.  There can only be one entry of
699  * this type, other I/O port ranges should be described via ACPI.
700  */
701 u64
702 efi_get_iobase (void)
703 {
704 	void *efi_map_start, *efi_map_end, *p;
705 	efi_memory_desc_t *md;
706 	u64 efi_desc_size;
707 
708 	efi_map_start = __va(ia64_boot_param->efi_memmap);
709 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
710 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
711 
712 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
713 		md = p;
714 		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
715 			if (md->attribute & EFI_MEMORY_UC)
716 				return md->phys_addr;
717 		}
718 	}
719 	return 0;
720 }
721 
722 u32
723 efi_mem_type (unsigned long phys_addr)
724 {
725 	void *efi_map_start, *efi_map_end, *p;
726 	efi_memory_desc_t *md;
727 	u64 efi_desc_size;
728 
729 	efi_map_start = __va(ia64_boot_param->efi_memmap);
730 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
731 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
732 
733 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
734 		md = p;
735 
736 		if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
737 			 return md->type;
738 	}
739 	return 0;
740 }
741 
742 u64
743 efi_mem_attributes (unsigned long phys_addr)
744 {
745 	void *efi_map_start, *efi_map_end, *p;
746 	efi_memory_desc_t *md;
747 	u64 efi_desc_size;
748 
749 	efi_map_start = __va(ia64_boot_param->efi_memmap);
750 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
751 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
752 
753 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
754 		md = p;
755 
756 		if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
757 			return md->attribute;
758 	}
759 	return 0;
760 }
761 EXPORT_SYMBOL(efi_mem_attributes);
762 
763 int
764 valid_phys_addr_range (unsigned long phys_addr, unsigned long *size)
765 {
766 	void *efi_map_start, *efi_map_end, *p;
767 	efi_memory_desc_t *md;
768 	u64 efi_desc_size;
769 
770 	efi_map_start = __va(ia64_boot_param->efi_memmap);
771 	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
772 	efi_desc_size = ia64_boot_param->efi_memdesc_size;
773 
774 	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
775 		md = p;
776 
777 		if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) {
778 			if (!(md->attribute & EFI_MEMORY_WB))
779 				return 0;
780 
781 			if (*size > md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr)
782 				*size = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr;
783 			return 1;
784 		}
785 	}
786 	return 0;
787 }
788 
789 int __init
790 efi_uart_console_only(void)
791 {
792 	efi_status_t status;
793 	char *s, name[] = "ConOut";
794 	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
795 	efi_char16_t *utf16, name_utf16[32];
796 	unsigned char data[1024];
797 	unsigned long size = sizeof(data);
798 	struct efi_generic_dev_path *hdr, *end_addr;
799 	int uart = 0;
800 
801 	/* Convert to UTF-16 */
802 	utf16 = name_utf16;
803 	s = name;
804 	while (*s)
805 		*utf16++ = *s++ & 0x7f;
806 	*utf16 = 0;
807 
808 	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
809 	if (status != EFI_SUCCESS) {
810 		printk(KERN_ERR "No EFI %s variable?\n", name);
811 		return 0;
812 	}
813 
814 	hdr = (struct efi_generic_dev_path *) data;
815 	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
816 	while (hdr < end_addr) {
817 		if (hdr->type == EFI_DEV_MSG &&
818 		    hdr->sub_type == EFI_DEV_MSG_UART)
819 			uart = 1;
820 		else if (hdr->type == EFI_DEV_END_PATH ||
821 			  hdr->type == EFI_DEV_END_PATH2) {
822 			if (!uart)
823 				return 0;
824 			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
825 				return 1;
826 			uart = 0;
827 		}
828 		hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
829 	}
830 	printk(KERN_ERR "Malformed %s value\n", name);
831 	return 0;
832 }
833