1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/irqchip/arm-gic-v3.h> 4 #include <linux/irq.h> 5 #include <linux/irqdomain.h> 6 #include <linux/kstrtox.h> 7 #include <linux/kvm.h> 8 #include <linux/kvm_host.h> 9 #include <kvm/arm_vgic.h> 10 #include <asm/kvm_hyp.h> 11 #include <asm/kvm_mmu.h> 12 #include <asm/kvm_asm.h> 13 14 #include "vgic.h" 15 16 static bool group0_trap; 17 static bool group1_trap; 18 static bool common_trap; 19 static bool dir_trap; 20 static bool gicv4_enable; 21 22 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) 23 { 24 struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; 25 26 cpuif->vgic_hcr |= ICH_HCR_UIE; 27 } 28 29 static bool lr_signals_eoi_mi(u64 lr_val) 30 { 31 return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && 32 !(lr_val & ICH_LR_HW); 33 } 34 35 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) 36 { 37 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 38 struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; 39 u32 model = vcpu->kvm->arch.vgic.vgic_model; 40 int lr; 41 42 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 43 44 cpuif->vgic_hcr &= ~ICH_HCR_UIE; 45 46 for (lr = 0; lr < cpuif->used_lrs; lr++) { 47 u64 val = cpuif->vgic_lr[lr]; 48 u32 intid, cpuid; 49 struct vgic_irq *irq; 50 bool is_v2_sgi = false; 51 bool deactivated; 52 53 cpuid = val & GICH_LR_PHYSID_CPUID; 54 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; 55 56 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) { 57 intid = val & ICH_LR_VIRTUAL_ID_MASK; 58 } else { 59 intid = val & GICH_LR_VIRTUALID; 60 is_v2_sgi = vgic_irq_is_sgi(intid); 61 } 62 63 /* Notify fds when the guest EOI'ed a level-triggered IRQ */ 64 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) 65 kvm_notify_acked_irq(vcpu->kvm, 0, 66 intid - VGIC_NR_PRIVATE_IRQS); 67 68 irq = vgic_get_irq(vcpu->kvm, vcpu, intid); 69 if (!irq) /* An LPI could have been unmapped. */ 70 continue; 71 72 raw_spin_lock(&irq->irq_lock); 73 74 /* Always preserve the active bit, note deactivation */ 75 deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT); 76 irq->active = !!(val & ICH_LR_ACTIVE_BIT); 77 78 if (irq->active && is_v2_sgi) 79 irq->active_source = cpuid; 80 81 /* Edge is the only case where we preserve the pending bit */ 82 if (irq->config == VGIC_CONFIG_EDGE && 83 (val & ICH_LR_PENDING_BIT)) { 84 irq->pending_latch = true; 85 86 if (is_v2_sgi) 87 irq->source |= (1 << cpuid); 88 } 89 90 /* 91 * Clear soft pending state when level irqs have been acked. 92 */ 93 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) 94 irq->pending_latch = false; 95 96 /* Handle resampling for mapped interrupts if required */ 97 vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT); 98 99 raw_spin_unlock(&irq->irq_lock); 100 vgic_put_irq(vcpu->kvm, irq); 101 } 102 103 cpuif->used_lrs = 0; 104 } 105 106 /* Requires the irq to be locked already */ 107 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) 108 { 109 u32 model = vcpu->kvm->arch.vgic.vgic_model; 110 u64 val = irq->intid; 111 bool allow_pending = true, is_v2_sgi; 112 113 is_v2_sgi = (vgic_irq_is_sgi(irq->intid) && 114 model == KVM_DEV_TYPE_ARM_VGIC_V2); 115 116 if (irq->active) { 117 val |= ICH_LR_ACTIVE_BIT; 118 if (is_v2_sgi) 119 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; 120 if (vgic_irq_is_multi_sgi(irq)) { 121 allow_pending = false; 122 val |= ICH_LR_EOI; 123 } 124 } 125 126 if (irq->hw && !vgic_irq_needs_resampling(irq)) { 127 val |= ICH_LR_HW; 128 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; 129 /* 130 * Never set pending+active on a HW interrupt, as the 131 * pending state is kept at the physical distributor 132 * level. 133 */ 134 if (irq->active) 135 allow_pending = false; 136 } else { 137 if (irq->config == VGIC_CONFIG_LEVEL) { 138 val |= ICH_LR_EOI; 139 140 /* 141 * Software resampling doesn't work very well 142 * if we allow P+A, so let's not do that. 143 */ 144 if (irq->active) 145 allow_pending = false; 146 } 147 } 148 149 if (allow_pending && irq_is_pending(irq)) { 150 val |= ICH_LR_PENDING_BIT; 151 152 if (irq->config == VGIC_CONFIG_EDGE) 153 irq->pending_latch = false; 154 155 if (vgic_irq_is_sgi(irq->intid) && 156 model == KVM_DEV_TYPE_ARM_VGIC_V2) { 157 u32 src = ffs(irq->source); 158 159 if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", 160 irq->intid)) 161 return; 162 163 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; 164 irq->source &= ~(1 << (src - 1)); 165 if (irq->source) { 166 irq->pending_latch = true; 167 val |= ICH_LR_EOI; 168 } 169 } 170 } 171 172 /* 173 * Level-triggered mapped IRQs are special because we only observe 174 * rising edges as input to the VGIC. We therefore lower the line 175 * level here, so that we can take new virtual IRQs. See 176 * vgic_v3_fold_lr_state for more info. 177 */ 178 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) 179 irq->line_level = false; 180 181 if (irq->group) 182 val |= ICH_LR_GROUP; 183 184 val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; 185 186 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; 187 } 188 189 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) 190 { 191 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; 192 } 193 194 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 195 { 196 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 197 u32 model = vcpu->kvm->arch.vgic.vgic_model; 198 u32 vmcr; 199 200 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 201 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & 202 ICH_VMCR_ACK_CTL_MASK; 203 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & 204 ICH_VMCR_FIQ_EN_MASK; 205 } else { 206 /* 207 * When emulating GICv3 on GICv3 with SRE=1 on the 208 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 209 */ 210 vmcr = ICH_VMCR_FIQ_EN_MASK; 211 } 212 213 vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; 214 vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; 215 vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; 216 vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; 217 vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; 218 vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; 219 vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; 220 221 cpu_if->vgic_vmcr = vmcr; 222 } 223 224 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 225 { 226 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 227 u32 model = vcpu->kvm->arch.vgic.vgic_model; 228 u32 vmcr; 229 230 vmcr = cpu_if->vgic_vmcr; 231 232 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 233 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> 234 ICH_VMCR_ACK_CTL_SHIFT; 235 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> 236 ICH_VMCR_FIQ_EN_SHIFT; 237 } else { 238 /* 239 * When emulating GICv3 on GICv3 with SRE=1 on the 240 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 241 */ 242 vmcrp->fiqen = 1; 243 vmcrp->ackctl = 0; 244 } 245 246 vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; 247 vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; 248 vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; 249 vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; 250 vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; 251 vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; 252 vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; 253 } 254 255 #define INITIAL_PENDBASER_VALUE \ 256 (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ 257 GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ 258 GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) 259 260 void vgic_v3_enable(struct kvm_vcpu *vcpu) 261 { 262 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; 263 264 /* 265 * By forcing VMCR to zero, the GIC will restore the binary 266 * points to their reset values. Anything else resets to zero 267 * anyway. 268 */ 269 vgic_v3->vgic_vmcr = 0; 270 271 /* 272 * If we are emulating a GICv3, we do it in an non-GICv2-compatible 273 * way, so we force SRE to 1 to demonstrate this to the guest. 274 * Also, we don't support any form of IRQ/FIQ bypass. 275 * This goes with the spec allowing the value to be RAO/WI. 276 */ 277 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 278 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | 279 ICC_SRE_EL1_DFB | 280 ICC_SRE_EL1_SRE); 281 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; 282 } else { 283 vgic_v3->vgic_sre = 0; 284 } 285 286 vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & 287 ICH_VTR_ID_BITS_MASK) >> 288 ICH_VTR_ID_BITS_SHIFT; 289 vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & 290 ICH_VTR_PRI_BITS_MASK) >> 291 ICH_VTR_PRI_BITS_SHIFT) + 1; 292 293 /* Get the show on the road... */ 294 vgic_v3->vgic_hcr = ICH_HCR_EN; 295 if (group0_trap) 296 vgic_v3->vgic_hcr |= ICH_HCR_TALL0; 297 if (group1_trap) 298 vgic_v3->vgic_hcr |= ICH_HCR_TALL1; 299 if (common_trap) 300 vgic_v3->vgic_hcr |= ICH_HCR_TC; 301 if (dir_trap) 302 vgic_v3->vgic_hcr |= ICH_HCR_TDIR; 303 } 304 305 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) 306 { 307 struct kvm_vcpu *vcpu; 308 int byte_offset, bit_nr; 309 gpa_t pendbase, ptr; 310 bool status; 311 u8 val; 312 int ret; 313 unsigned long flags; 314 315 retry: 316 vcpu = irq->target_vcpu; 317 if (!vcpu) 318 return 0; 319 320 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 321 322 byte_offset = irq->intid / BITS_PER_BYTE; 323 bit_nr = irq->intid % BITS_PER_BYTE; 324 ptr = pendbase + byte_offset; 325 326 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 327 if (ret) 328 return ret; 329 330 status = val & (1 << bit_nr); 331 332 raw_spin_lock_irqsave(&irq->irq_lock, flags); 333 if (irq->target_vcpu != vcpu) { 334 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 335 goto retry; 336 } 337 irq->pending_latch = status; 338 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 339 340 if (status) { 341 /* clear consumed data */ 342 val &= ~(1 << bit_nr); 343 ret = kvm_write_guest_lock(kvm, ptr, &val, 1); 344 if (ret) 345 return ret; 346 } 347 return 0; 348 } 349 350 /* 351 * The deactivation of the doorbell interrupt will trigger the 352 * unmapping of the associated vPE. 353 */ 354 static void unmap_all_vpes(struct vgic_dist *dist) 355 { 356 struct irq_desc *desc; 357 int i; 358 359 for (i = 0; i < dist->its_vm.nr_vpes; i++) { 360 desc = irq_to_desc(dist->its_vm.vpes[i]->irq); 361 irq_domain_deactivate_irq(irq_desc_get_irq_data(desc)); 362 } 363 } 364 365 static void map_all_vpes(struct vgic_dist *dist) 366 { 367 struct irq_desc *desc; 368 int i; 369 370 for (i = 0; i < dist->its_vm.nr_vpes; i++) { 371 desc = irq_to_desc(dist->its_vm.vpes[i]->irq); 372 irq_domain_activate_irq(irq_desc_get_irq_data(desc), false); 373 } 374 } 375 376 /** 377 * vgic_v3_save_pending_tables - Save the pending tables into guest RAM 378 * kvm lock and all vcpu lock must be held 379 */ 380 int vgic_v3_save_pending_tables(struct kvm *kvm) 381 { 382 struct vgic_dist *dist = &kvm->arch.vgic; 383 struct vgic_irq *irq; 384 gpa_t last_ptr = ~(gpa_t)0; 385 bool vlpi_avail = false; 386 int ret = 0; 387 u8 val; 388 389 if (unlikely(!vgic_initialized(kvm))) 390 return -ENXIO; 391 392 /* 393 * A preparation for getting any VLPI states. 394 * The above vgic initialized check also ensures that the allocation 395 * and enabling of the doorbells have already been done. 396 */ 397 if (kvm_vgic_global_state.has_gicv4_1) { 398 unmap_all_vpes(dist); 399 vlpi_avail = true; 400 } 401 402 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 403 int byte_offset, bit_nr; 404 struct kvm_vcpu *vcpu; 405 gpa_t pendbase, ptr; 406 bool is_pending; 407 bool stored; 408 409 vcpu = irq->target_vcpu; 410 if (!vcpu) 411 continue; 412 413 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 414 415 byte_offset = irq->intid / BITS_PER_BYTE; 416 bit_nr = irq->intid % BITS_PER_BYTE; 417 ptr = pendbase + byte_offset; 418 419 if (ptr != last_ptr) { 420 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 421 if (ret) 422 goto out; 423 last_ptr = ptr; 424 } 425 426 stored = val & (1U << bit_nr); 427 428 is_pending = irq->pending_latch; 429 430 if (irq->hw && vlpi_avail) 431 vgic_v4_get_vlpi_state(irq, &is_pending); 432 433 if (stored == is_pending) 434 continue; 435 436 if (is_pending) 437 val |= 1 << bit_nr; 438 else 439 val &= ~(1 << bit_nr); 440 441 ret = kvm_write_guest_lock(kvm, ptr, &val, 1); 442 if (ret) 443 goto out; 444 } 445 446 out: 447 if (vlpi_avail) 448 map_all_vpes(dist); 449 450 return ret; 451 } 452 453 /** 454 * vgic_v3_rdist_overlap - check if a region overlaps with any 455 * existing redistributor region 456 * 457 * @kvm: kvm handle 458 * @base: base of the region 459 * @size: size of region 460 * 461 * Return: true if there is an overlap 462 */ 463 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size) 464 { 465 struct vgic_dist *d = &kvm->arch.vgic; 466 struct vgic_redist_region *rdreg; 467 468 list_for_each_entry(rdreg, &d->rd_regions, list) { 469 if ((base + size > rdreg->base) && 470 (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg))) 471 return true; 472 } 473 return false; 474 } 475 476 /* 477 * Check for overlapping regions and for regions crossing the end of memory 478 * for base addresses which have already been set. 479 */ 480 bool vgic_v3_check_base(struct kvm *kvm) 481 { 482 struct vgic_dist *d = &kvm->arch.vgic; 483 struct vgic_redist_region *rdreg; 484 485 if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && 486 d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) 487 return false; 488 489 list_for_each_entry(rdreg, &d->rd_regions, list) { 490 size_t sz = vgic_v3_rd_region_size(kvm, rdreg); 491 492 if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF, 493 rdreg->base, SZ_64K, sz)) 494 return false; 495 } 496 497 if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base)) 498 return true; 499 500 return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base, 501 KVM_VGIC_V3_DIST_SIZE); 502 } 503 504 /** 505 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one 506 * which has free space to put a new rdist region. 507 * 508 * @rd_regions: redistributor region list head 509 * 510 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB). 511 * Stride between redistributors is 0 and regions are filled in the index order. 512 * 513 * Return: the redist region handle, if any, that has space to map a new rdist 514 * region. 515 */ 516 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions) 517 { 518 struct vgic_redist_region *rdreg; 519 520 list_for_each_entry(rdreg, rd_regions, list) { 521 if (!vgic_v3_redist_region_full(rdreg)) 522 return rdreg; 523 } 524 return NULL; 525 } 526 527 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, 528 u32 index) 529 { 530 struct list_head *rd_regions = &kvm->arch.vgic.rd_regions; 531 struct vgic_redist_region *rdreg; 532 533 list_for_each_entry(rdreg, rd_regions, list) { 534 if (rdreg->index == index) 535 return rdreg; 536 } 537 return NULL; 538 } 539 540 541 int vgic_v3_map_resources(struct kvm *kvm) 542 { 543 struct vgic_dist *dist = &kvm->arch.vgic; 544 struct kvm_vcpu *vcpu; 545 int ret = 0; 546 unsigned long c; 547 548 kvm_for_each_vcpu(c, vcpu, kvm) { 549 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 550 551 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) { 552 kvm_debug("vcpu %ld redistributor base not set\n", c); 553 return -ENXIO; 554 } 555 } 556 557 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) { 558 kvm_debug("Need to set vgic distributor addresses first\n"); 559 return -ENXIO; 560 } 561 562 if (!vgic_v3_check_base(kvm)) { 563 kvm_debug("VGIC redist and dist frames overlap\n"); 564 return -EINVAL; 565 } 566 567 /* 568 * For a VGICv3 we require the userland to explicitly initialize 569 * the VGIC before we need to use it. 570 */ 571 if (!vgic_initialized(kvm)) { 572 return -EBUSY; 573 } 574 575 ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3); 576 if (ret) { 577 kvm_err("Unable to register VGICv3 dist MMIO regions\n"); 578 return ret; 579 } 580 581 if (kvm_vgic_global_state.has_gicv4_1) 582 vgic_v4_configure_vsgis(kvm); 583 584 return 0; 585 } 586 587 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); 588 589 static int __init early_group0_trap_cfg(char *buf) 590 { 591 return kstrtobool(buf, &group0_trap); 592 } 593 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); 594 595 static int __init early_group1_trap_cfg(char *buf) 596 { 597 return kstrtobool(buf, &group1_trap); 598 } 599 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); 600 601 static int __init early_common_trap_cfg(char *buf) 602 { 603 return kstrtobool(buf, &common_trap); 604 } 605 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); 606 607 static int __init early_gicv4_enable(char *buf) 608 { 609 return kstrtobool(buf, &gicv4_enable); 610 } 611 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); 612 613 static const struct midr_range broken_seis[] = { 614 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM), 615 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM), 616 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO), 617 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO), 618 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX), 619 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX), 620 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD), 621 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE), 622 {}, 623 }; 624 625 static bool vgic_v3_broken_seis(void) 626 { 627 return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) && 628 is_midr_in_range_list(read_cpuid_id(), broken_seis)); 629 } 630 631 /** 632 * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller 633 * @info: pointer to the GIC description 634 * 635 * Returns 0 if the VGICv3 has been probed successfully, returns an error code 636 * otherwise 637 */ 638 int vgic_v3_probe(const struct gic_kvm_info *info) 639 { 640 u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config); 641 bool has_v2; 642 int ret; 643 644 has_v2 = ich_vtr_el2 >> 63; 645 ich_vtr_el2 = (u32)ich_vtr_el2; 646 647 /* 648 * The ListRegs field is 5 bits, but there is an architectural 649 * maximum of 16 list registers. Just ignore bit 4... 650 */ 651 kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; 652 kvm_vgic_global_state.can_emulate_gicv2 = false; 653 kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; 654 655 /* GICv4 support? */ 656 if (info->has_v4) { 657 kvm_vgic_global_state.has_gicv4 = gicv4_enable; 658 kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable; 659 kvm_info("GICv4%s support %sabled\n", 660 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "", 661 gicv4_enable ? "en" : "dis"); 662 } 663 664 kvm_vgic_global_state.vcpu_base = 0; 665 666 if (!info->vcpu.start) { 667 kvm_info("GICv3: no GICV resource entry\n"); 668 } else if (!has_v2) { 669 pr_warn(FW_BUG "CPU interface incapable of MMIO access\n"); 670 } else if (!PAGE_ALIGNED(info->vcpu.start)) { 671 pr_warn("GICV physical address 0x%llx not page aligned\n", 672 (unsigned long long)info->vcpu.start); 673 } else if (kvm_get_mode() != KVM_MODE_PROTECTED) { 674 kvm_vgic_global_state.vcpu_base = info->vcpu.start; 675 kvm_vgic_global_state.can_emulate_gicv2 = true; 676 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); 677 if (ret) { 678 kvm_err("Cannot register GICv2 KVM device.\n"); 679 return ret; 680 } 681 kvm_info("vgic-v2@%llx\n", info->vcpu.start); 682 } 683 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); 684 if (ret) { 685 kvm_err("Cannot register GICv3 KVM device.\n"); 686 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); 687 return ret; 688 } 689 690 if (kvm_vgic_global_state.vcpu_base == 0) 691 kvm_info("disabling GICv2 emulation\n"); 692 693 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) { 694 group0_trap = true; 695 group1_trap = true; 696 } 697 698 if (vgic_v3_broken_seis()) { 699 kvm_info("GICv3 with broken locally generated SEI\n"); 700 701 kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK; 702 group0_trap = true; 703 group1_trap = true; 704 if (ich_vtr_el2 & ICH_VTR_TDS_MASK) 705 dir_trap = true; 706 else 707 common_trap = true; 708 } 709 710 if (group0_trap || group1_trap || common_trap | dir_trap) { 711 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n", 712 group0_trap ? "G0" : "", 713 group1_trap ? "G1" : "", 714 common_trap ? "C" : "", 715 dir_trap ? "D" : ""); 716 static_branch_enable(&vgic_v3_cpuif_trap); 717 } 718 719 kvm_vgic_global_state.vctrl_base = NULL; 720 kvm_vgic_global_state.type = VGIC_V3; 721 kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; 722 723 return 0; 724 } 725 726 void vgic_v3_load(struct kvm_vcpu *vcpu) 727 { 728 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 729 730 /* 731 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen 732 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the 733 * VMCR_EL2 save/restore in the world switch. 734 */ 735 if (likely(cpu_if->vgic_sre)) 736 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr); 737 738 kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if); 739 740 if (has_vhe()) 741 __vgic_v3_activate_traps(cpu_if); 742 743 WARN_ON(vgic_v4_load(vcpu)); 744 } 745 746 void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu) 747 { 748 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 749 750 if (likely(cpu_if->vgic_sre)) 751 cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr); 752 } 753 754 void vgic_v3_put(struct kvm_vcpu *vcpu) 755 { 756 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 757 758 WARN_ON(vgic_v4_put(vcpu, false)); 759 760 vgic_v3_vmcr_sync(vcpu); 761 762 kvm_call_hyp(__vgic_v3_save_aprs, cpu_if); 763 764 if (has_vhe()) 765 __vgic_v3_deactivate_traps(cpu_if); 766 } 767