xref: /openbmc/linux/arch/arm64/kvm/sys_regs.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17 
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_emulate.h>
24 #include <asm/kvm_hyp.h>
25 #include <asm/kvm_mmu.h>
26 #include <asm/perf_event.h>
27 #include <asm/sysreg.h>
28 
29 #include <trace/events/kvm.h>
30 
31 #include "sys_regs.h"
32 
33 #include "trace.h"
34 
35 /*
36  * All of this file is extremely similar to the ARM coproc.c, but the
37  * types are different. My gut feeling is that it should be pretty
38  * easy to merge, but that would be an ABI breakage -- again. VFP
39  * would also need to be abstracted.
40  *
41  * For AArch32, we only take care of what is being trapped. Anything
42  * that has to do with init and userspace access has to go via the
43  * 64bit interface.
44  */
45 
46 static bool read_from_write_only(struct kvm_vcpu *vcpu,
47 				 struct sys_reg_params *params,
48 				 const struct sys_reg_desc *r)
49 {
50 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
51 	print_sys_reg_instr(params);
52 	kvm_inject_undefined(vcpu);
53 	return false;
54 }
55 
56 static bool write_to_read_only(struct kvm_vcpu *vcpu,
57 			       struct sys_reg_params *params,
58 			       const struct sys_reg_desc *r)
59 {
60 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
61 	print_sys_reg_instr(params);
62 	kvm_inject_undefined(vcpu);
63 	return false;
64 }
65 
66 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
67 {
68 	u64 val = 0x8badf00d8badf00d;
69 
70 	if (vcpu->arch.sysregs_loaded_on_cpu &&
71 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
72 		return val;
73 
74 	return __vcpu_sys_reg(vcpu, reg);
75 }
76 
77 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
78 {
79 	if (vcpu->arch.sysregs_loaded_on_cpu &&
80 	    __vcpu_write_sys_reg_to_cpu(val, reg))
81 		return;
82 
83 	 __vcpu_sys_reg(vcpu, reg) = val;
84 }
85 
86 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
87 static u32 cache_levels;
88 
89 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
90 #define CSSELR_MAX 14
91 
92 /* Which cache CCSIDR represents depends on CSSELR value. */
93 static u32 get_ccsidr(u32 csselr)
94 {
95 	u32 ccsidr;
96 
97 	/* Make sure noone else changes CSSELR during this! */
98 	local_irq_disable();
99 	write_sysreg(csselr, csselr_el1);
100 	isb();
101 	ccsidr = read_sysreg(ccsidr_el1);
102 	local_irq_enable();
103 
104 	return ccsidr;
105 }
106 
107 /*
108  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
109  */
110 static bool access_dcsw(struct kvm_vcpu *vcpu,
111 			struct sys_reg_params *p,
112 			const struct sys_reg_desc *r)
113 {
114 	if (!p->is_write)
115 		return read_from_write_only(vcpu, p, r);
116 
117 	/*
118 	 * Only track S/W ops if we don't have FWB. It still indicates
119 	 * that the guest is a bit broken (S/W operations should only
120 	 * be done by firmware, knowing that there is only a single
121 	 * CPU left in the system, and certainly not from non-secure
122 	 * software).
123 	 */
124 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
125 		kvm_set_way_flush(vcpu);
126 
127 	return true;
128 }
129 
130 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
131 {
132 	switch (r->aarch32_map) {
133 	case AA32_LO:
134 		*mask = GENMASK_ULL(31, 0);
135 		*shift = 0;
136 		break;
137 	case AA32_HI:
138 		*mask = GENMASK_ULL(63, 32);
139 		*shift = 32;
140 		break;
141 	default:
142 		*mask = GENMASK_ULL(63, 0);
143 		*shift = 0;
144 		break;
145 	}
146 }
147 
148 /*
149  * Generic accessor for VM registers. Only called as long as HCR_TVM
150  * is set. If the guest enables the MMU, we stop trapping the VM
151  * sys_regs and leave it in complete control of the caches.
152  */
153 static bool access_vm_reg(struct kvm_vcpu *vcpu,
154 			  struct sys_reg_params *p,
155 			  const struct sys_reg_desc *r)
156 {
157 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
158 	u64 val, mask, shift;
159 
160 	BUG_ON(!p->is_write);
161 
162 	get_access_mask(r, &mask, &shift);
163 
164 	if (~mask) {
165 		val = vcpu_read_sys_reg(vcpu, r->reg);
166 		val &= ~mask;
167 	} else {
168 		val = 0;
169 	}
170 
171 	val |= (p->regval & (mask >> shift)) << shift;
172 	vcpu_write_sys_reg(vcpu, val, r->reg);
173 
174 	kvm_toggle_cache(vcpu, was_enabled);
175 	return true;
176 }
177 
178 static bool access_actlr(struct kvm_vcpu *vcpu,
179 			 struct sys_reg_params *p,
180 			 const struct sys_reg_desc *r)
181 {
182 	u64 mask, shift;
183 
184 	if (p->is_write)
185 		return ignore_write(vcpu, p);
186 
187 	get_access_mask(r, &mask, &shift);
188 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
189 
190 	return true;
191 }
192 
193 /*
194  * Trap handler for the GICv3 SGI generation system register.
195  * Forward the request to the VGIC emulation.
196  * The cp15_64 code makes sure this automatically works
197  * for both AArch64 and AArch32 accesses.
198  */
199 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
200 			   struct sys_reg_params *p,
201 			   const struct sys_reg_desc *r)
202 {
203 	bool g1;
204 
205 	if (!p->is_write)
206 		return read_from_write_only(vcpu, p, r);
207 
208 	/*
209 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
210 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
211 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
212 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
213 	 * group.
214 	 */
215 	if (p->Op0 == 0) {		/* AArch32 */
216 		switch (p->Op1) {
217 		default:		/* Keep GCC quiet */
218 		case 0:			/* ICC_SGI1R */
219 			g1 = true;
220 			break;
221 		case 1:			/* ICC_ASGI1R */
222 		case 2:			/* ICC_SGI0R */
223 			g1 = false;
224 			break;
225 		}
226 	} else {			/* AArch64 */
227 		switch (p->Op2) {
228 		default:		/* Keep GCC quiet */
229 		case 5:			/* ICC_SGI1R_EL1 */
230 			g1 = true;
231 			break;
232 		case 6:			/* ICC_ASGI1R_EL1 */
233 		case 7:			/* ICC_SGI0R_EL1 */
234 			g1 = false;
235 			break;
236 		}
237 	}
238 
239 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
240 
241 	return true;
242 }
243 
244 static bool access_gic_sre(struct kvm_vcpu *vcpu,
245 			   struct sys_reg_params *p,
246 			   const struct sys_reg_desc *r)
247 {
248 	if (p->is_write)
249 		return ignore_write(vcpu, p);
250 
251 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
252 	return true;
253 }
254 
255 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
256 			struct sys_reg_params *p,
257 			const struct sys_reg_desc *r)
258 {
259 	if (p->is_write)
260 		return ignore_write(vcpu, p);
261 	else
262 		return read_zero(vcpu, p);
263 }
264 
265 /*
266  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
267  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
268  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
269  * treat it separately.
270  */
271 static bool trap_loregion(struct kvm_vcpu *vcpu,
272 			  struct sys_reg_params *p,
273 			  const struct sys_reg_desc *r)
274 {
275 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
276 	u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
277 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
278 
279 	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
280 		kvm_inject_undefined(vcpu);
281 		return false;
282 	}
283 
284 	if (p->is_write && sr == SYS_LORID_EL1)
285 		return write_to_read_only(vcpu, p, r);
286 
287 	return trap_raz_wi(vcpu, p, r);
288 }
289 
290 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
291 			   struct sys_reg_params *p,
292 			   const struct sys_reg_desc *r)
293 {
294 	if (p->is_write) {
295 		return ignore_write(vcpu, p);
296 	} else {
297 		p->regval = (1 << 3);
298 		return true;
299 	}
300 }
301 
302 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
303 				   struct sys_reg_params *p,
304 				   const struct sys_reg_desc *r)
305 {
306 	if (p->is_write) {
307 		return ignore_write(vcpu, p);
308 	} else {
309 		p->regval = read_sysreg(dbgauthstatus_el1);
310 		return true;
311 	}
312 }
313 
314 /*
315  * We want to avoid world-switching all the DBG registers all the
316  * time:
317  *
318  * - If we've touched any debug register, it is likely that we're
319  *   going to touch more of them. It then makes sense to disable the
320  *   traps and start doing the save/restore dance
321  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
322  *   then mandatory to save/restore the registers, as the guest
323  *   depends on them.
324  *
325  * For this, we use a DIRTY bit, indicating the guest has modified the
326  * debug registers, used as follow:
327  *
328  * On guest entry:
329  * - If the dirty bit is set (because we're coming back from trapping),
330  *   disable the traps, save host registers, restore guest registers.
331  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
332  *   set the dirty bit, disable the traps, save host registers,
333  *   restore guest registers.
334  * - Otherwise, enable the traps
335  *
336  * On guest exit:
337  * - If the dirty bit is set, save guest registers, restore host
338  *   registers and clear the dirty bit. This ensure that the host can
339  *   now use the debug registers.
340  */
341 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
342 			    struct sys_reg_params *p,
343 			    const struct sys_reg_desc *r)
344 {
345 	if (p->is_write) {
346 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
347 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
348 	} else {
349 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
350 	}
351 
352 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
353 
354 	return true;
355 }
356 
357 /*
358  * reg_to_dbg/dbg_to_reg
359  *
360  * A 32 bit write to a debug register leave top bits alone
361  * A 32 bit read from a debug register only returns the bottom bits
362  *
363  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
364  * hyp.S code switches between host and guest values in future.
365  */
366 static void reg_to_dbg(struct kvm_vcpu *vcpu,
367 		       struct sys_reg_params *p,
368 		       const struct sys_reg_desc *rd,
369 		       u64 *dbg_reg)
370 {
371 	u64 mask, shift, val;
372 
373 	get_access_mask(rd, &mask, &shift);
374 
375 	val = *dbg_reg;
376 	val &= ~mask;
377 	val |= (p->regval & (mask >> shift)) << shift;
378 	*dbg_reg = val;
379 
380 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
381 }
382 
383 static void dbg_to_reg(struct kvm_vcpu *vcpu,
384 		       struct sys_reg_params *p,
385 		       const struct sys_reg_desc *rd,
386 		       u64 *dbg_reg)
387 {
388 	u64 mask, shift;
389 
390 	get_access_mask(rd, &mask, &shift);
391 	p->regval = (*dbg_reg & mask) >> shift;
392 }
393 
394 static bool trap_bvr(struct kvm_vcpu *vcpu,
395 		     struct sys_reg_params *p,
396 		     const struct sys_reg_desc *rd)
397 {
398 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
399 
400 	if (p->is_write)
401 		reg_to_dbg(vcpu, p, rd, dbg_reg);
402 	else
403 		dbg_to_reg(vcpu, p, rd, dbg_reg);
404 
405 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
406 
407 	return true;
408 }
409 
410 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411 		const struct kvm_one_reg *reg, void __user *uaddr)
412 {
413 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
414 
415 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
416 		return -EFAULT;
417 	return 0;
418 }
419 
420 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
421 	const struct kvm_one_reg *reg, void __user *uaddr)
422 {
423 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
424 
425 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
426 		return -EFAULT;
427 	return 0;
428 }
429 
430 static void reset_bvr(struct kvm_vcpu *vcpu,
431 		      const struct sys_reg_desc *rd)
432 {
433 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
434 }
435 
436 static bool trap_bcr(struct kvm_vcpu *vcpu,
437 		     struct sys_reg_params *p,
438 		     const struct sys_reg_desc *rd)
439 {
440 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
441 
442 	if (p->is_write)
443 		reg_to_dbg(vcpu, p, rd, dbg_reg);
444 	else
445 		dbg_to_reg(vcpu, p, rd, dbg_reg);
446 
447 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
448 
449 	return true;
450 }
451 
452 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
453 		const struct kvm_one_reg *reg, void __user *uaddr)
454 {
455 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
456 
457 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
458 		return -EFAULT;
459 
460 	return 0;
461 }
462 
463 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464 	const struct kvm_one_reg *reg, void __user *uaddr)
465 {
466 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
467 
468 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469 		return -EFAULT;
470 	return 0;
471 }
472 
473 static void reset_bcr(struct kvm_vcpu *vcpu,
474 		      const struct sys_reg_desc *rd)
475 {
476 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
477 }
478 
479 static bool trap_wvr(struct kvm_vcpu *vcpu,
480 		     struct sys_reg_params *p,
481 		     const struct sys_reg_desc *rd)
482 {
483 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
484 
485 	if (p->is_write)
486 		reg_to_dbg(vcpu, p, rd, dbg_reg);
487 	else
488 		dbg_to_reg(vcpu, p, rd, dbg_reg);
489 
490 	trace_trap_reg(__func__, rd->reg, p->is_write,
491 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
492 
493 	return true;
494 }
495 
496 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
497 		const struct kvm_one_reg *reg, void __user *uaddr)
498 {
499 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
500 
501 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
502 		return -EFAULT;
503 	return 0;
504 }
505 
506 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507 	const struct kvm_one_reg *reg, void __user *uaddr)
508 {
509 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
510 
511 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512 		return -EFAULT;
513 	return 0;
514 }
515 
516 static void reset_wvr(struct kvm_vcpu *vcpu,
517 		      const struct sys_reg_desc *rd)
518 {
519 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
520 }
521 
522 static bool trap_wcr(struct kvm_vcpu *vcpu,
523 		     struct sys_reg_params *p,
524 		     const struct sys_reg_desc *rd)
525 {
526 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
527 
528 	if (p->is_write)
529 		reg_to_dbg(vcpu, p, rd, dbg_reg);
530 	else
531 		dbg_to_reg(vcpu, p, rd, dbg_reg);
532 
533 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
534 
535 	return true;
536 }
537 
538 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
539 		const struct kvm_one_reg *reg, void __user *uaddr)
540 {
541 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
542 
543 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
544 		return -EFAULT;
545 	return 0;
546 }
547 
548 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
549 	const struct kvm_one_reg *reg, void __user *uaddr)
550 {
551 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
552 
553 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
554 		return -EFAULT;
555 	return 0;
556 }
557 
558 static void reset_wcr(struct kvm_vcpu *vcpu,
559 		      const struct sys_reg_desc *rd)
560 {
561 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
562 }
563 
564 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
565 {
566 	u64 amair = read_sysreg(amair_el1);
567 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
568 }
569 
570 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
571 {
572 	u64 actlr = read_sysreg(actlr_el1);
573 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
574 }
575 
576 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
577 {
578 	u64 mpidr;
579 
580 	/*
581 	 * Map the vcpu_id into the first three affinity level fields of
582 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
583 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
584 	 * of the GICv3 to be able to address each CPU directly when
585 	 * sending IPIs.
586 	 */
587 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
588 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
589 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
590 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
591 }
592 
593 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
594 {
595 	u64 pmcr, val;
596 
597 	pmcr = read_sysreg(pmcr_el0);
598 	/*
599 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
600 	 * except PMCR.E resetting to zero.
601 	 */
602 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
603 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
604 	if (!system_supports_32bit_el0())
605 		val |= ARMV8_PMU_PMCR_LC;
606 	__vcpu_sys_reg(vcpu, r->reg) = val;
607 }
608 
609 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
610 {
611 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
612 	bool enabled = kvm_vcpu_has_pmu(vcpu);
613 
614 	enabled &= (reg & flags) || vcpu_mode_priv(vcpu);
615 	if (!enabled)
616 		kvm_inject_undefined(vcpu);
617 
618 	return !enabled;
619 }
620 
621 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
622 {
623 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
624 }
625 
626 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
627 {
628 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
629 }
630 
631 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
632 {
633 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
634 }
635 
636 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
637 {
638 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
639 }
640 
641 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
642 			const struct sys_reg_desc *r)
643 {
644 	u64 val;
645 
646 	if (pmu_access_el0_disabled(vcpu))
647 		return false;
648 
649 	if (p->is_write) {
650 		/* Only update writeable bits of PMCR */
651 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
652 		val &= ~ARMV8_PMU_PMCR_MASK;
653 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
654 		if (!system_supports_32bit_el0())
655 			val |= ARMV8_PMU_PMCR_LC;
656 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
657 		kvm_pmu_handle_pmcr(vcpu, val);
658 		kvm_vcpu_pmu_restore_guest(vcpu);
659 	} else {
660 		/* PMCR.P & PMCR.C are RAZ */
661 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
662 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
663 		p->regval = val;
664 	}
665 
666 	return true;
667 }
668 
669 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
670 			  const struct sys_reg_desc *r)
671 {
672 	if (pmu_access_event_counter_el0_disabled(vcpu))
673 		return false;
674 
675 	if (p->is_write)
676 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
677 	else
678 		/* return PMSELR.SEL field */
679 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
680 			    & ARMV8_PMU_COUNTER_MASK;
681 
682 	return true;
683 }
684 
685 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
686 			  const struct sys_reg_desc *r)
687 {
688 	u64 pmceid;
689 
690 	BUG_ON(p->is_write);
691 
692 	if (pmu_access_el0_disabled(vcpu))
693 		return false;
694 
695 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
696 
697 	p->regval = pmceid;
698 
699 	return true;
700 }
701 
702 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
703 {
704 	u64 pmcr, val;
705 
706 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
707 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
708 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
709 		kvm_inject_undefined(vcpu);
710 		return false;
711 	}
712 
713 	return true;
714 }
715 
716 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
717 			      struct sys_reg_params *p,
718 			      const struct sys_reg_desc *r)
719 {
720 	u64 idx = ~0UL;
721 
722 	if (r->CRn == 9 && r->CRm == 13) {
723 		if (r->Op2 == 2) {
724 			/* PMXEVCNTR_EL0 */
725 			if (pmu_access_event_counter_el0_disabled(vcpu))
726 				return false;
727 
728 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
729 			      & ARMV8_PMU_COUNTER_MASK;
730 		} else if (r->Op2 == 0) {
731 			/* PMCCNTR_EL0 */
732 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
733 				return false;
734 
735 			idx = ARMV8_PMU_CYCLE_IDX;
736 		}
737 	} else if (r->CRn == 0 && r->CRm == 9) {
738 		/* PMCCNTR */
739 		if (pmu_access_event_counter_el0_disabled(vcpu))
740 			return false;
741 
742 		idx = ARMV8_PMU_CYCLE_IDX;
743 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
744 		/* PMEVCNTRn_EL0 */
745 		if (pmu_access_event_counter_el0_disabled(vcpu))
746 			return false;
747 
748 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
749 	}
750 
751 	/* Catch any decoding mistake */
752 	WARN_ON(idx == ~0UL);
753 
754 	if (!pmu_counter_idx_valid(vcpu, idx))
755 		return false;
756 
757 	if (p->is_write) {
758 		if (pmu_access_el0_disabled(vcpu))
759 			return false;
760 
761 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
762 	} else {
763 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
764 	}
765 
766 	return true;
767 }
768 
769 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
770 			       const struct sys_reg_desc *r)
771 {
772 	u64 idx, reg;
773 
774 	if (pmu_access_el0_disabled(vcpu))
775 		return false;
776 
777 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
778 		/* PMXEVTYPER_EL0 */
779 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
780 		reg = PMEVTYPER0_EL0 + idx;
781 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
782 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
783 		if (idx == ARMV8_PMU_CYCLE_IDX)
784 			reg = PMCCFILTR_EL0;
785 		else
786 			/* PMEVTYPERn_EL0 */
787 			reg = PMEVTYPER0_EL0 + idx;
788 	} else {
789 		BUG();
790 	}
791 
792 	if (!pmu_counter_idx_valid(vcpu, idx))
793 		return false;
794 
795 	if (p->is_write) {
796 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
797 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
798 		kvm_vcpu_pmu_restore_guest(vcpu);
799 	} else {
800 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
801 	}
802 
803 	return true;
804 }
805 
806 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
807 			   const struct sys_reg_desc *r)
808 {
809 	u64 val, mask;
810 
811 	if (pmu_access_el0_disabled(vcpu))
812 		return false;
813 
814 	mask = kvm_pmu_valid_counter_mask(vcpu);
815 	if (p->is_write) {
816 		val = p->regval & mask;
817 		if (r->Op2 & 0x1) {
818 			/* accessing PMCNTENSET_EL0 */
819 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
820 			kvm_pmu_enable_counter_mask(vcpu, val);
821 			kvm_vcpu_pmu_restore_guest(vcpu);
822 		} else {
823 			/* accessing PMCNTENCLR_EL0 */
824 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
825 			kvm_pmu_disable_counter_mask(vcpu, val);
826 		}
827 	} else {
828 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
829 	}
830 
831 	return true;
832 }
833 
834 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
835 			   const struct sys_reg_desc *r)
836 {
837 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
838 
839 	if (check_pmu_access_disabled(vcpu, 0))
840 		return false;
841 
842 	if (p->is_write) {
843 		u64 val = p->regval & mask;
844 
845 		if (r->Op2 & 0x1)
846 			/* accessing PMINTENSET_EL1 */
847 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
848 		else
849 			/* accessing PMINTENCLR_EL1 */
850 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
851 	} else {
852 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
853 	}
854 
855 	return true;
856 }
857 
858 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
859 			 const struct sys_reg_desc *r)
860 {
861 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
862 
863 	if (pmu_access_el0_disabled(vcpu))
864 		return false;
865 
866 	if (p->is_write) {
867 		if (r->CRm & 0x2)
868 			/* accessing PMOVSSET_EL0 */
869 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
870 		else
871 			/* accessing PMOVSCLR_EL0 */
872 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
873 	} else {
874 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
875 	}
876 
877 	return true;
878 }
879 
880 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
881 			   const struct sys_reg_desc *r)
882 {
883 	u64 mask;
884 
885 	if (!p->is_write)
886 		return read_from_write_only(vcpu, p, r);
887 
888 	if (pmu_write_swinc_el0_disabled(vcpu))
889 		return false;
890 
891 	mask = kvm_pmu_valid_counter_mask(vcpu);
892 	kvm_pmu_software_increment(vcpu, p->regval & mask);
893 	return true;
894 }
895 
896 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
897 			     const struct sys_reg_desc *r)
898 {
899 	if (!kvm_vcpu_has_pmu(vcpu)) {
900 		kvm_inject_undefined(vcpu);
901 		return false;
902 	}
903 
904 	if (p->is_write) {
905 		if (!vcpu_mode_priv(vcpu)) {
906 			kvm_inject_undefined(vcpu);
907 			return false;
908 		}
909 
910 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
911 			       p->regval & ARMV8_PMU_USERENR_MASK;
912 	} else {
913 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
914 			    & ARMV8_PMU_USERENR_MASK;
915 	}
916 
917 	return true;
918 }
919 
920 #define reg_to_encoding(x)						\
921 	sys_reg((u32)(x)->Op0, (u32)(x)->Op1,				\
922 		(u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
923 
924 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
925 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
926 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
927 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
928 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
929 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
930 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
931 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
932 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
933 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
934 
935 /* Macro to expand the PMEVCNTRn_EL0 register */
936 #define PMU_PMEVCNTR_EL0(n)						\
937 	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
938 	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
939 
940 /* Macro to expand the PMEVTYPERn_EL0 register */
941 #define PMU_PMEVTYPER_EL0(n)						\
942 	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
943 	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
944 
945 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
946 			 const struct sys_reg_desc *r)
947 {
948 	kvm_inject_undefined(vcpu);
949 
950 	return false;
951 }
952 
953 /* Macro to expand the AMU counter and type registers*/
954 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
955 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
956 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
957 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
958 
959 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
960 			const struct sys_reg_desc *rd)
961 {
962 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
963 }
964 
965 /*
966  * If we land here on a PtrAuth access, that is because we didn't
967  * fixup the access on exit by allowing the PtrAuth sysregs. The only
968  * way this happens is when the guest does not have PtrAuth support
969  * enabled.
970  */
971 #define __PTRAUTH_KEY(k)						\
972 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
973 	.visibility = ptrauth_visibility}
974 
975 #define PTRAUTH_KEY(k)							\
976 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
977 	__PTRAUTH_KEY(k ## KEYHI_EL1)
978 
979 static bool access_arch_timer(struct kvm_vcpu *vcpu,
980 			      struct sys_reg_params *p,
981 			      const struct sys_reg_desc *r)
982 {
983 	enum kvm_arch_timers tmr;
984 	enum kvm_arch_timer_regs treg;
985 	u64 reg = reg_to_encoding(r);
986 
987 	switch (reg) {
988 	case SYS_CNTP_TVAL_EL0:
989 	case SYS_AARCH32_CNTP_TVAL:
990 		tmr = TIMER_PTIMER;
991 		treg = TIMER_REG_TVAL;
992 		break;
993 	case SYS_CNTP_CTL_EL0:
994 	case SYS_AARCH32_CNTP_CTL:
995 		tmr = TIMER_PTIMER;
996 		treg = TIMER_REG_CTL;
997 		break;
998 	case SYS_CNTP_CVAL_EL0:
999 	case SYS_AARCH32_CNTP_CVAL:
1000 		tmr = TIMER_PTIMER;
1001 		treg = TIMER_REG_CVAL;
1002 		break;
1003 	default:
1004 		BUG();
1005 	}
1006 
1007 	if (p->is_write)
1008 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1009 	else
1010 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1011 
1012 	return true;
1013 }
1014 
1015 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1016 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1017 		struct sys_reg_desc const *r, bool raz)
1018 {
1019 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1020 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1021 	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1022 
1023 	if (id == SYS_ID_AA64PFR0_EL1) {
1024 		if (!vcpu_has_sve(vcpu))
1025 			val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1026 		val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1027 		val &= ~(0xfUL << ID_AA64PFR0_CSV2_SHIFT);
1028 		val |= ((u64)vcpu->kvm->arch.pfr0_csv2 << ID_AA64PFR0_CSV2_SHIFT);
1029 		val &= ~(0xfUL << ID_AA64PFR0_CSV3_SHIFT);
1030 		val |= ((u64)vcpu->kvm->arch.pfr0_csv3 << ID_AA64PFR0_CSV3_SHIFT);
1031 	} else if (id == SYS_ID_AA64PFR1_EL1) {
1032 		val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1033 	} else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1034 		val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1035 			 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1036 			 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1037 			 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1038 	} else if (id == SYS_ID_AA64DFR0_EL1) {
1039 		u64 cap = 0;
1040 
1041 		/* Limit guests to PMUv3 for ARMv8.1 */
1042 		if (kvm_vcpu_has_pmu(vcpu))
1043 			cap = ID_AA64DFR0_PMUVER_8_1;
1044 
1045 		val = cpuid_feature_cap_perfmon_field(val,
1046 						ID_AA64DFR0_PMUVER_SHIFT,
1047 						cap);
1048 	} else if (id == SYS_ID_DFR0_EL1) {
1049 		/* Limit guests to PMUv3 for ARMv8.1 */
1050 		val = cpuid_feature_cap_perfmon_field(val,
1051 						ID_DFR0_PERFMON_SHIFT,
1052 						ID_DFR0_PERFMON_8_1);
1053 	}
1054 
1055 	return val;
1056 }
1057 
1058 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1059 				  const struct sys_reg_desc *r)
1060 {
1061 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1062 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1063 
1064 	switch (id) {
1065 	case SYS_ID_AA64ZFR0_EL1:
1066 		if (!vcpu_has_sve(vcpu))
1067 			return REG_RAZ;
1068 		break;
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 /* cpufeature ID register access trap handlers */
1075 
1076 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1077 			    struct sys_reg_params *p,
1078 			    const struct sys_reg_desc *r,
1079 			    bool raz)
1080 {
1081 	if (p->is_write)
1082 		return write_to_read_only(vcpu, p, r);
1083 
1084 	p->regval = read_id_reg(vcpu, r, raz);
1085 	return true;
1086 }
1087 
1088 static bool access_id_reg(struct kvm_vcpu *vcpu,
1089 			  struct sys_reg_params *p,
1090 			  const struct sys_reg_desc *r)
1091 {
1092 	bool raz = sysreg_visible_as_raz(vcpu, r);
1093 
1094 	return __access_id_reg(vcpu, p, r, raz);
1095 }
1096 
1097 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1098 			      struct sys_reg_params *p,
1099 			      const struct sys_reg_desc *r)
1100 {
1101 	return __access_id_reg(vcpu, p, r, true);
1102 }
1103 
1104 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1105 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1106 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1107 
1108 /* Visibility overrides for SVE-specific control registers */
1109 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1110 				   const struct sys_reg_desc *rd)
1111 {
1112 	if (vcpu_has_sve(vcpu))
1113 		return 0;
1114 
1115 	return REG_HIDDEN;
1116 }
1117 
1118 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1119 			       const struct sys_reg_desc *rd,
1120 			       const struct kvm_one_reg *reg, void __user *uaddr)
1121 {
1122 	const u64 id = sys_reg_to_index(rd);
1123 	u8 csv2, csv3;
1124 	int err;
1125 	u64 val;
1126 
1127 	err = reg_from_user(&val, uaddr, id);
1128 	if (err)
1129 		return err;
1130 
1131 	/*
1132 	 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1133 	 * it doesn't promise more than what is actually provided (the
1134 	 * guest could otherwise be covered in ectoplasmic residue).
1135 	 */
1136 	csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1137 	if (csv2 > 1 ||
1138 	    (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1139 		return -EINVAL;
1140 
1141 	/* Same thing for CSV3 */
1142 	csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1143 	if (csv3 > 1 ||
1144 	    (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1145 		return -EINVAL;
1146 
1147 	/* We can only differ with CSV[23], and anything else is an error */
1148 	val ^= read_id_reg(vcpu, rd, false);
1149 	val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1150 		 (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1151 	if (val)
1152 		return -EINVAL;
1153 
1154 	vcpu->kvm->arch.pfr0_csv2 = csv2;
1155 	vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1156 
1157 	return 0;
1158 }
1159 
1160 /*
1161  * cpufeature ID register user accessors
1162  *
1163  * For now, these registers are immutable for userspace, so no values
1164  * are stored, and for set_id_reg() we don't allow the effective value
1165  * to be changed.
1166  */
1167 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1168 			const struct sys_reg_desc *rd, void __user *uaddr,
1169 			bool raz)
1170 {
1171 	const u64 id = sys_reg_to_index(rd);
1172 	const u64 val = read_id_reg(vcpu, rd, raz);
1173 
1174 	return reg_to_user(uaddr, &val, id);
1175 }
1176 
1177 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1178 			const struct sys_reg_desc *rd, void __user *uaddr,
1179 			bool raz)
1180 {
1181 	const u64 id = sys_reg_to_index(rd);
1182 	int err;
1183 	u64 val;
1184 
1185 	err = reg_from_user(&val, uaddr, id);
1186 	if (err)
1187 		return err;
1188 
1189 	/* This is what we mean by invariant: you can't change it. */
1190 	if (val != read_id_reg(vcpu, rd, raz))
1191 		return -EINVAL;
1192 
1193 	return 0;
1194 }
1195 
1196 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1197 		      const struct kvm_one_reg *reg, void __user *uaddr)
1198 {
1199 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1200 
1201 	return __get_id_reg(vcpu, rd, uaddr, raz);
1202 }
1203 
1204 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1205 		      const struct kvm_one_reg *reg, void __user *uaddr)
1206 {
1207 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1208 
1209 	return __set_id_reg(vcpu, rd, uaddr, raz);
1210 }
1211 
1212 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1213 			  const struct kvm_one_reg *reg, void __user *uaddr)
1214 {
1215 	return __get_id_reg(vcpu, rd, uaddr, true);
1216 }
1217 
1218 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1219 			  const struct kvm_one_reg *reg, void __user *uaddr)
1220 {
1221 	return __set_id_reg(vcpu, rd, uaddr, true);
1222 }
1223 
1224 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1225 		       const struct sys_reg_desc *r)
1226 {
1227 	if (p->is_write)
1228 		return write_to_read_only(vcpu, p, r);
1229 
1230 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1231 	return true;
1232 }
1233 
1234 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1235 			 const struct sys_reg_desc *r)
1236 {
1237 	if (p->is_write)
1238 		return write_to_read_only(vcpu, p, r);
1239 
1240 	p->regval = read_sysreg(clidr_el1);
1241 	return true;
1242 }
1243 
1244 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1245 			  const struct sys_reg_desc *r)
1246 {
1247 	int reg = r->reg;
1248 
1249 	if (p->is_write)
1250 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1251 	else
1252 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1253 	return true;
1254 }
1255 
1256 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1257 			  const struct sys_reg_desc *r)
1258 {
1259 	u32 csselr;
1260 
1261 	if (p->is_write)
1262 		return write_to_read_only(vcpu, p, r);
1263 
1264 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1265 	p->regval = get_ccsidr(csselr);
1266 
1267 	/*
1268 	 * Guests should not be doing cache operations by set/way at all, and
1269 	 * for this reason, we trap them and attempt to infer the intent, so
1270 	 * that we can flush the entire guest's address space at the appropriate
1271 	 * time.
1272 	 * To prevent this trapping from causing performance problems, let's
1273 	 * expose the geometry of all data and unified caches (which are
1274 	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1275 	 * [If guests should attempt to infer aliasing properties from the
1276 	 * geometry (which is not permitted by the architecture), they would
1277 	 * only do so for virtually indexed caches.]
1278 	 */
1279 	if (!(csselr & 1)) // data or unified cache
1280 		p->regval &= ~GENMASK(27, 3);
1281 	return true;
1282 }
1283 
1284 /* sys_reg_desc initialiser for known cpufeature ID registers */
1285 #define ID_SANITISED(name) {			\
1286 	SYS_DESC(SYS_##name),			\
1287 	.access	= access_id_reg,		\
1288 	.get_user = get_id_reg,			\
1289 	.set_user = set_id_reg,			\
1290 	.visibility = id_visibility,		\
1291 }
1292 
1293 /*
1294  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1295  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1296  * (1 <= crm < 8, 0 <= Op2 < 8).
1297  */
1298 #define ID_UNALLOCATED(crm, op2) {			\
1299 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1300 	.access = access_raz_id_reg,			\
1301 	.get_user = get_raz_id_reg,			\
1302 	.set_user = set_raz_id_reg,			\
1303 }
1304 
1305 /*
1306  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1307  * For now, these are exposed just like unallocated ID regs: they appear
1308  * RAZ for the guest.
1309  */
1310 #define ID_HIDDEN(name) {			\
1311 	SYS_DESC(SYS_##name),			\
1312 	.access = access_raz_id_reg,		\
1313 	.get_user = get_raz_id_reg,		\
1314 	.set_user = set_raz_id_reg,		\
1315 }
1316 
1317 /*
1318  * Architected system registers.
1319  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1320  *
1321  * Debug handling: We do trap most, if not all debug related system
1322  * registers. The implementation is good enough to ensure that a guest
1323  * can use these with minimal performance degradation. The drawback is
1324  * that we don't implement any of the external debug, none of the
1325  * OSlock protocol. This should be revisited if we ever encounter a
1326  * more demanding guest...
1327  */
1328 static const struct sys_reg_desc sys_reg_descs[] = {
1329 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1330 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1331 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1332 
1333 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1334 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1335 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1336 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1337 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1338 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1339 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1340 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1341 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1342 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1343 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1344 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1345 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1346 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1347 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1348 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1349 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1350 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1351 
1352 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1353 	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1354 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1355 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1356 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1357 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1358 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1359 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1360 
1361 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1362 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1363 	// DBGDTR[TR]X_EL0 share the same encoding
1364 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1365 
1366 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1367 
1368 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1369 
1370 	/*
1371 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1372 	 * entries in arm64_ftr_regs[].
1373 	 */
1374 
1375 	/* AArch64 mappings of the AArch32 ID registers */
1376 	/* CRm=1 */
1377 	ID_SANITISED(ID_PFR0_EL1),
1378 	ID_SANITISED(ID_PFR1_EL1),
1379 	ID_SANITISED(ID_DFR0_EL1),
1380 	ID_HIDDEN(ID_AFR0_EL1),
1381 	ID_SANITISED(ID_MMFR0_EL1),
1382 	ID_SANITISED(ID_MMFR1_EL1),
1383 	ID_SANITISED(ID_MMFR2_EL1),
1384 	ID_SANITISED(ID_MMFR3_EL1),
1385 
1386 	/* CRm=2 */
1387 	ID_SANITISED(ID_ISAR0_EL1),
1388 	ID_SANITISED(ID_ISAR1_EL1),
1389 	ID_SANITISED(ID_ISAR2_EL1),
1390 	ID_SANITISED(ID_ISAR3_EL1),
1391 	ID_SANITISED(ID_ISAR4_EL1),
1392 	ID_SANITISED(ID_ISAR5_EL1),
1393 	ID_SANITISED(ID_MMFR4_EL1),
1394 	ID_SANITISED(ID_ISAR6_EL1),
1395 
1396 	/* CRm=3 */
1397 	ID_SANITISED(MVFR0_EL1),
1398 	ID_SANITISED(MVFR1_EL1),
1399 	ID_SANITISED(MVFR2_EL1),
1400 	ID_UNALLOCATED(3,3),
1401 	ID_SANITISED(ID_PFR2_EL1),
1402 	ID_HIDDEN(ID_DFR1_EL1),
1403 	ID_SANITISED(ID_MMFR5_EL1),
1404 	ID_UNALLOCATED(3,7),
1405 
1406 	/* AArch64 ID registers */
1407 	/* CRm=4 */
1408 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1409 	  .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1410 	ID_SANITISED(ID_AA64PFR1_EL1),
1411 	ID_UNALLOCATED(4,2),
1412 	ID_UNALLOCATED(4,3),
1413 	ID_SANITISED(ID_AA64ZFR0_EL1),
1414 	ID_UNALLOCATED(4,5),
1415 	ID_UNALLOCATED(4,6),
1416 	ID_UNALLOCATED(4,7),
1417 
1418 	/* CRm=5 */
1419 	ID_SANITISED(ID_AA64DFR0_EL1),
1420 	ID_SANITISED(ID_AA64DFR1_EL1),
1421 	ID_UNALLOCATED(5,2),
1422 	ID_UNALLOCATED(5,3),
1423 	ID_HIDDEN(ID_AA64AFR0_EL1),
1424 	ID_HIDDEN(ID_AA64AFR1_EL1),
1425 	ID_UNALLOCATED(5,6),
1426 	ID_UNALLOCATED(5,7),
1427 
1428 	/* CRm=6 */
1429 	ID_SANITISED(ID_AA64ISAR0_EL1),
1430 	ID_SANITISED(ID_AA64ISAR1_EL1),
1431 	ID_UNALLOCATED(6,2),
1432 	ID_UNALLOCATED(6,3),
1433 	ID_UNALLOCATED(6,4),
1434 	ID_UNALLOCATED(6,5),
1435 	ID_UNALLOCATED(6,6),
1436 	ID_UNALLOCATED(6,7),
1437 
1438 	/* CRm=7 */
1439 	ID_SANITISED(ID_AA64MMFR0_EL1),
1440 	ID_SANITISED(ID_AA64MMFR1_EL1),
1441 	ID_SANITISED(ID_AA64MMFR2_EL1),
1442 	ID_UNALLOCATED(7,3),
1443 	ID_UNALLOCATED(7,4),
1444 	ID_UNALLOCATED(7,5),
1445 	ID_UNALLOCATED(7,6),
1446 	ID_UNALLOCATED(7,7),
1447 
1448 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1449 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1450 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1451 
1452 	{ SYS_DESC(SYS_RGSR_EL1), undef_access },
1453 	{ SYS_DESC(SYS_GCR_EL1), undef_access },
1454 
1455 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1456 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1457 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1458 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1459 
1460 	PTRAUTH_KEY(APIA),
1461 	PTRAUTH_KEY(APIB),
1462 	PTRAUTH_KEY(APDA),
1463 	PTRAUTH_KEY(APDB),
1464 	PTRAUTH_KEY(APGA),
1465 
1466 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1467 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1468 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1469 
1470 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1471 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1472 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1473 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1474 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1475 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1476 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1477 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1478 
1479 	{ SYS_DESC(SYS_TFSR_EL1), undef_access },
1480 	{ SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1481 
1482 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1483 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1484 
1485 	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1486 	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1487 
1488 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1489 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1490 
1491 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1492 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1493 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1494 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1495 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1496 
1497 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1498 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1499 
1500 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1501 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1502 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1503 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1504 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1505 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1506 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1507 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1508 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1509 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1510 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1511 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1512 
1513 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1514 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1515 
1516 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1517 
1518 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1519 
1520 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1521 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1522 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1523 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1524 
1525 	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1526 	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1527 	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1528 	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1529 	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1530 	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1531 	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1532 	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1533 	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1534 	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1535 	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1536 	/*
1537 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1538 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1539 	 */
1540 	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1541 	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1542 
1543 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1544 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1545 
1546 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1547 
1548 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
1549 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1550 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1551 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1552 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1553 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1554 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1555 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1556 	AMU_AMEVCNTR0_EL0(0),
1557 	AMU_AMEVCNTR0_EL0(1),
1558 	AMU_AMEVCNTR0_EL0(2),
1559 	AMU_AMEVCNTR0_EL0(3),
1560 	AMU_AMEVCNTR0_EL0(4),
1561 	AMU_AMEVCNTR0_EL0(5),
1562 	AMU_AMEVCNTR0_EL0(6),
1563 	AMU_AMEVCNTR0_EL0(7),
1564 	AMU_AMEVCNTR0_EL0(8),
1565 	AMU_AMEVCNTR0_EL0(9),
1566 	AMU_AMEVCNTR0_EL0(10),
1567 	AMU_AMEVCNTR0_EL0(11),
1568 	AMU_AMEVCNTR0_EL0(12),
1569 	AMU_AMEVCNTR0_EL0(13),
1570 	AMU_AMEVCNTR0_EL0(14),
1571 	AMU_AMEVCNTR0_EL0(15),
1572 	AMU_AMEVTYPER0_EL0(0),
1573 	AMU_AMEVTYPER0_EL0(1),
1574 	AMU_AMEVTYPER0_EL0(2),
1575 	AMU_AMEVTYPER0_EL0(3),
1576 	AMU_AMEVTYPER0_EL0(4),
1577 	AMU_AMEVTYPER0_EL0(5),
1578 	AMU_AMEVTYPER0_EL0(6),
1579 	AMU_AMEVTYPER0_EL0(7),
1580 	AMU_AMEVTYPER0_EL0(8),
1581 	AMU_AMEVTYPER0_EL0(9),
1582 	AMU_AMEVTYPER0_EL0(10),
1583 	AMU_AMEVTYPER0_EL0(11),
1584 	AMU_AMEVTYPER0_EL0(12),
1585 	AMU_AMEVTYPER0_EL0(13),
1586 	AMU_AMEVTYPER0_EL0(14),
1587 	AMU_AMEVTYPER0_EL0(15),
1588 	AMU_AMEVCNTR1_EL0(0),
1589 	AMU_AMEVCNTR1_EL0(1),
1590 	AMU_AMEVCNTR1_EL0(2),
1591 	AMU_AMEVCNTR1_EL0(3),
1592 	AMU_AMEVCNTR1_EL0(4),
1593 	AMU_AMEVCNTR1_EL0(5),
1594 	AMU_AMEVCNTR1_EL0(6),
1595 	AMU_AMEVCNTR1_EL0(7),
1596 	AMU_AMEVCNTR1_EL0(8),
1597 	AMU_AMEVCNTR1_EL0(9),
1598 	AMU_AMEVCNTR1_EL0(10),
1599 	AMU_AMEVCNTR1_EL0(11),
1600 	AMU_AMEVCNTR1_EL0(12),
1601 	AMU_AMEVCNTR1_EL0(13),
1602 	AMU_AMEVCNTR1_EL0(14),
1603 	AMU_AMEVCNTR1_EL0(15),
1604 	AMU_AMEVTYPER1_EL0(0),
1605 	AMU_AMEVTYPER1_EL0(1),
1606 	AMU_AMEVTYPER1_EL0(2),
1607 	AMU_AMEVTYPER1_EL0(3),
1608 	AMU_AMEVTYPER1_EL0(4),
1609 	AMU_AMEVTYPER1_EL0(5),
1610 	AMU_AMEVTYPER1_EL0(6),
1611 	AMU_AMEVTYPER1_EL0(7),
1612 	AMU_AMEVTYPER1_EL0(8),
1613 	AMU_AMEVTYPER1_EL0(9),
1614 	AMU_AMEVTYPER1_EL0(10),
1615 	AMU_AMEVTYPER1_EL0(11),
1616 	AMU_AMEVTYPER1_EL0(12),
1617 	AMU_AMEVTYPER1_EL0(13),
1618 	AMU_AMEVTYPER1_EL0(14),
1619 	AMU_AMEVTYPER1_EL0(15),
1620 
1621 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1622 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1623 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1624 
1625 	/* PMEVCNTRn_EL0 */
1626 	PMU_PMEVCNTR_EL0(0),
1627 	PMU_PMEVCNTR_EL0(1),
1628 	PMU_PMEVCNTR_EL0(2),
1629 	PMU_PMEVCNTR_EL0(3),
1630 	PMU_PMEVCNTR_EL0(4),
1631 	PMU_PMEVCNTR_EL0(5),
1632 	PMU_PMEVCNTR_EL0(6),
1633 	PMU_PMEVCNTR_EL0(7),
1634 	PMU_PMEVCNTR_EL0(8),
1635 	PMU_PMEVCNTR_EL0(9),
1636 	PMU_PMEVCNTR_EL0(10),
1637 	PMU_PMEVCNTR_EL0(11),
1638 	PMU_PMEVCNTR_EL0(12),
1639 	PMU_PMEVCNTR_EL0(13),
1640 	PMU_PMEVCNTR_EL0(14),
1641 	PMU_PMEVCNTR_EL0(15),
1642 	PMU_PMEVCNTR_EL0(16),
1643 	PMU_PMEVCNTR_EL0(17),
1644 	PMU_PMEVCNTR_EL0(18),
1645 	PMU_PMEVCNTR_EL0(19),
1646 	PMU_PMEVCNTR_EL0(20),
1647 	PMU_PMEVCNTR_EL0(21),
1648 	PMU_PMEVCNTR_EL0(22),
1649 	PMU_PMEVCNTR_EL0(23),
1650 	PMU_PMEVCNTR_EL0(24),
1651 	PMU_PMEVCNTR_EL0(25),
1652 	PMU_PMEVCNTR_EL0(26),
1653 	PMU_PMEVCNTR_EL0(27),
1654 	PMU_PMEVCNTR_EL0(28),
1655 	PMU_PMEVCNTR_EL0(29),
1656 	PMU_PMEVCNTR_EL0(30),
1657 	/* PMEVTYPERn_EL0 */
1658 	PMU_PMEVTYPER_EL0(0),
1659 	PMU_PMEVTYPER_EL0(1),
1660 	PMU_PMEVTYPER_EL0(2),
1661 	PMU_PMEVTYPER_EL0(3),
1662 	PMU_PMEVTYPER_EL0(4),
1663 	PMU_PMEVTYPER_EL0(5),
1664 	PMU_PMEVTYPER_EL0(6),
1665 	PMU_PMEVTYPER_EL0(7),
1666 	PMU_PMEVTYPER_EL0(8),
1667 	PMU_PMEVTYPER_EL0(9),
1668 	PMU_PMEVTYPER_EL0(10),
1669 	PMU_PMEVTYPER_EL0(11),
1670 	PMU_PMEVTYPER_EL0(12),
1671 	PMU_PMEVTYPER_EL0(13),
1672 	PMU_PMEVTYPER_EL0(14),
1673 	PMU_PMEVTYPER_EL0(15),
1674 	PMU_PMEVTYPER_EL0(16),
1675 	PMU_PMEVTYPER_EL0(17),
1676 	PMU_PMEVTYPER_EL0(18),
1677 	PMU_PMEVTYPER_EL0(19),
1678 	PMU_PMEVTYPER_EL0(20),
1679 	PMU_PMEVTYPER_EL0(21),
1680 	PMU_PMEVTYPER_EL0(22),
1681 	PMU_PMEVTYPER_EL0(23),
1682 	PMU_PMEVTYPER_EL0(24),
1683 	PMU_PMEVTYPER_EL0(25),
1684 	PMU_PMEVTYPER_EL0(26),
1685 	PMU_PMEVTYPER_EL0(27),
1686 	PMU_PMEVTYPER_EL0(28),
1687 	PMU_PMEVTYPER_EL0(29),
1688 	PMU_PMEVTYPER_EL0(30),
1689 	/*
1690 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1691 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1692 	 */
1693 	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1694 
1695 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1696 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1697 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1698 };
1699 
1700 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1701 			struct sys_reg_params *p,
1702 			const struct sys_reg_desc *r)
1703 {
1704 	if (p->is_write) {
1705 		return ignore_write(vcpu, p);
1706 	} else {
1707 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1708 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1709 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1710 
1711 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1712 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1713 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1714 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1715 		return true;
1716 	}
1717 }
1718 
1719 /*
1720  * AArch32 debug register mappings
1721  *
1722  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1723  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1724  *
1725  * None of the other registers share their location, so treat them as
1726  * if they were 64bit.
1727  */
1728 #define DBG_BCR_BVR_WCR_WVR(n)						      \
1729 	/* DBGBVRn */							      \
1730 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1731 	/* DBGBCRn */							      \
1732 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
1733 	/* DBGWVRn */							      \
1734 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
1735 	/* DBGWCRn */							      \
1736 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1737 
1738 #define DBGBXVR(n)							      \
1739 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1740 
1741 /*
1742  * Trapped cp14 registers. We generally ignore most of the external
1743  * debug, on the principle that they don't really make sense to a
1744  * guest. Revisit this one day, would this principle change.
1745  */
1746 static const struct sys_reg_desc cp14_regs[] = {
1747 	/* DBGIDR */
1748 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1749 	/* DBGDTRRXext */
1750 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1751 
1752 	DBG_BCR_BVR_WCR_WVR(0),
1753 	/* DBGDSCRint */
1754 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1755 	DBG_BCR_BVR_WCR_WVR(1),
1756 	/* DBGDCCINT */
1757 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1758 	/* DBGDSCRext */
1759 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1760 	DBG_BCR_BVR_WCR_WVR(2),
1761 	/* DBGDTR[RT]Xint */
1762 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1763 	/* DBGDTR[RT]Xext */
1764 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1765 	DBG_BCR_BVR_WCR_WVR(3),
1766 	DBG_BCR_BVR_WCR_WVR(4),
1767 	DBG_BCR_BVR_WCR_WVR(5),
1768 	/* DBGWFAR */
1769 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1770 	/* DBGOSECCR */
1771 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1772 	DBG_BCR_BVR_WCR_WVR(6),
1773 	/* DBGVCR */
1774 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1775 	DBG_BCR_BVR_WCR_WVR(7),
1776 	DBG_BCR_BVR_WCR_WVR(8),
1777 	DBG_BCR_BVR_WCR_WVR(9),
1778 	DBG_BCR_BVR_WCR_WVR(10),
1779 	DBG_BCR_BVR_WCR_WVR(11),
1780 	DBG_BCR_BVR_WCR_WVR(12),
1781 	DBG_BCR_BVR_WCR_WVR(13),
1782 	DBG_BCR_BVR_WCR_WVR(14),
1783 	DBG_BCR_BVR_WCR_WVR(15),
1784 
1785 	/* DBGDRAR (32bit) */
1786 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1787 
1788 	DBGBXVR(0),
1789 	/* DBGOSLAR */
1790 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1791 	DBGBXVR(1),
1792 	/* DBGOSLSR */
1793 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1794 	DBGBXVR(2),
1795 	DBGBXVR(3),
1796 	/* DBGOSDLR */
1797 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1798 	DBGBXVR(4),
1799 	/* DBGPRCR */
1800 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1801 	DBGBXVR(5),
1802 	DBGBXVR(6),
1803 	DBGBXVR(7),
1804 	DBGBXVR(8),
1805 	DBGBXVR(9),
1806 	DBGBXVR(10),
1807 	DBGBXVR(11),
1808 	DBGBXVR(12),
1809 	DBGBXVR(13),
1810 	DBGBXVR(14),
1811 	DBGBXVR(15),
1812 
1813 	/* DBGDSAR (32bit) */
1814 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1815 
1816 	/* DBGDEVID2 */
1817 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1818 	/* DBGDEVID1 */
1819 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1820 	/* DBGDEVID */
1821 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1822 	/* DBGCLAIMSET */
1823 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1824 	/* DBGCLAIMCLR */
1825 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1826 	/* DBGAUTHSTATUS */
1827 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1828 };
1829 
1830 /* Trapped cp14 64bit registers */
1831 static const struct sys_reg_desc cp14_64_regs[] = {
1832 	/* DBGDRAR (64bit) */
1833 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1834 
1835 	/* DBGDSAR (64bit) */
1836 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1837 };
1838 
1839 /* Macro to expand the PMEVCNTRn register */
1840 #define PMU_PMEVCNTR(n)							\
1841 	/* PMEVCNTRn */							\
1842 	{ Op1(0), CRn(0b1110),						\
1843 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1844 	  access_pmu_evcntr }
1845 
1846 /* Macro to expand the PMEVTYPERn register */
1847 #define PMU_PMEVTYPER(n)						\
1848 	/* PMEVTYPERn */						\
1849 	{ Op1(0), CRn(0b1110),						\
1850 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1851 	  access_pmu_evtyper }
1852 
1853 /*
1854  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1855  * depending on the way they are accessed (as a 32bit or a 64bit
1856  * register).
1857  */
1858 static const struct sys_reg_desc cp15_regs[] = {
1859 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1860 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1861 	/* ACTLR */
1862 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1863 	/* ACTLR2 */
1864 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1865 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1866 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1867 	/* TTBCR */
1868 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1869 	/* TTBCR2 */
1870 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1871 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1872 	/* DFSR */
1873 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1874 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1875 	/* ADFSR */
1876 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1877 	/* AIFSR */
1878 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
1879 	/* DFAR */
1880 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
1881 	/* IFAR */
1882 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
1883 
1884 	/*
1885 	 * DC{C,I,CI}SW operations:
1886 	 */
1887 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1888 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1889 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1890 
1891 	/* PMU */
1892 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1893 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1894 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1895 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1896 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1897 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1898 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1899 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1900 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1901 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1902 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1903 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1904 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1905 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1906 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1907 
1908 	/* PRRR/MAIR0 */
1909 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
1910 	/* NMRR/MAIR1 */
1911 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
1912 	/* AMAIR0 */
1913 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
1914 	/* AMAIR1 */
1915 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
1916 
1917 	/* ICC_SRE */
1918 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1919 
1920 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
1921 
1922 	/* Arch Tmers */
1923 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1924 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1925 
1926 	/* PMEVCNTRn */
1927 	PMU_PMEVCNTR(0),
1928 	PMU_PMEVCNTR(1),
1929 	PMU_PMEVCNTR(2),
1930 	PMU_PMEVCNTR(3),
1931 	PMU_PMEVCNTR(4),
1932 	PMU_PMEVCNTR(5),
1933 	PMU_PMEVCNTR(6),
1934 	PMU_PMEVCNTR(7),
1935 	PMU_PMEVCNTR(8),
1936 	PMU_PMEVCNTR(9),
1937 	PMU_PMEVCNTR(10),
1938 	PMU_PMEVCNTR(11),
1939 	PMU_PMEVCNTR(12),
1940 	PMU_PMEVCNTR(13),
1941 	PMU_PMEVCNTR(14),
1942 	PMU_PMEVCNTR(15),
1943 	PMU_PMEVCNTR(16),
1944 	PMU_PMEVCNTR(17),
1945 	PMU_PMEVCNTR(18),
1946 	PMU_PMEVCNTR(19),
1947 	PMU_PMEVCNTR(20),
1948 	PMU_PMEVCNTR(21),
1949 	PMU_PMEVCNTR(22),
1950 	PMU_PMEVCNTR(23),
1951 	PMU_PMEVCNTR(24),
1952 	PMU_PMEVCNTR(25),
1953 	PMU_PMEVCNTR(26),
1954 	PMU_PMEVCNTR(27),
1955 	PMU_PMEVCNTR(28),
1956 	PMU_PMEVCNTR(29),
1957 	PMU_PMEVCNTR(30),
1958 	/* PMEVTYPERn */
1959 	PMU_PMEVTYPER(0),
1960 	PMU_PMEVTYPER(1),
1961 	PMU_PMEVTYPER(2),
1962 	PMU_PMEVTYPER(3),
1963 	PMU_PMEVTYPER(4),
1964 	PMU_PMEVTYPER(5),
1965 	PMU_PMEVTYPER(6),
1966 	PMU_PMEVTYPER(7),
1967 	PMU_PMEVTYPER(8),
1968 	PMU_PMEVTYPER(9),
1969 	PMU_PMEVTYPER(10),
1970 	PMU_PMEVTYPER(11),
1971 	PMU_PMEVTYPER(12),
1972 	PMU_PMEVTYPER(13),
1973 	PMU_PMEVTYPER(14),
1974 	PMU_PMEVTYPER(15),
1975 	PMU_PMEVTYPER(16),
1976 	PMU_PMEVTYPER(17),
1977 	PMU_PMEVTYPER(18),
1978 	PMU_PMEVTYPER(19),
1979 	PMU_PMEVTYPER(20),
1980 	PMU_PMEVTYPER(21),
1981 	PMU_PMEVTYPER(22),
1982 	PMU_PMEVTYPER(23),
1983 	PMU_PMEVTYPER(24),
1984 	PMU_PMEVTYPER(25),
1985 	PMU_PMEVTYPER(26),
1986 	PMU_PMEVTYPER(27),
1987 	PMU_PMEVTYPER(28),
1988 	PMU_PMEVTYPER(29),
1989 	PMU_PMEVTYPER(30),
1990 	/* PMCCFILTR */
1991 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1992 
1993 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1994 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1995 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
1996 };
1997 
1998 static const struct sys_reg_desc cp15_64_regs[] = {
1999 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2000 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2001 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2002 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2003 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2004 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2005 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2006 };
2007 
2008 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2009 			      bool is_32)
2010 {
2011 	unsigned int i;
2012 
2013 	for (i = 0; i < n; i++) {
2014 		if (!is_32 && table[i].reg && !table[i].reset) {
2015 			kvm_err("sys_reg table %p entry %d has lacks reset\n",
2016 				table, i);
2017 			return 1;
2018 		}
2019 
2020 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2021 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2022 			return 1;
2023 		}
2024 	}
2025 
2026 	return 0;
2027 }
2028 
2029 static int match_sys_reg(const void *key, const void *elt)
2030 {
2031 	const unsigned long pval = (unsigned long)key;
2032 	const struct sys_reg_desc *r = elt;
2033 
2034 	return pval - reg_to_encoding(r);
2035 }
2036 
2037 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2038 					 const struct sys_reg_desc table[],
2039 					 unsigned int num)
2040 {
2041 	unsigned long pval = reg_to_encoding(params);
2042 
2043 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2044 }
2045 
2046 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2047 {
2048 	kvm_inject_undefined(vcpu);
2049 	return 1;
2050 }
2051 
2052 static void perform_access(struct kvm_vcpu *vcpu,
2053 			   struct sys_reg_params *params,
2054 			   const struct sys_reg_desc *r)
2055 {
2056 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2057 
2058 	/* Check for regs disabled by runtime config */
2059 	if (sysreg_hidden(vcpu, r)) {
2060 		kvm_inject_undefined(vcpu);
2061 		return;
2062 	}
2063 
2064 	/*
2065 	 * Not having an accessor means that we have configured a trap
2066 	 * that we don't know how to handle. This certainly qualifies
2067 	 * as a gross bug that should be fixed right away.
2068 	 */
2069 	BUG_ON(!r->access);
2070 
2071 	/* Skip instruction if instructed so */
2072 	if (likely(r->access(vcpu, params, r)))
2073 		kvm_incr_pc(vcpu);
2074 }
2075 
2076 /*
2077  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2078  *                call the corresponding trap handler.
2079  *
2080  * @params: pointer to the descriptor of the access
2081  * @table: array of trap descriptors
2082  * @num: size of the trap descriptor array
2083  *
2084  * Return 0 if the access has been handled, and -1 if not.
2085  */
2086 static int emulate_cp(struct kvm_vcpu *vcpu,
2087 		      struct sys_reg_params *params,
2088 		      const struct sys_reg_desc *table,
2089 		      size_t num)
2090 {
2091 	const struct sys_reg_desc *r;
2092 
2093 	if (!table)
2094 		return -1;	/* Not handled */
2095 
2096 	r = find_reg(params, table, num);
2097 
2098 	if (r) {
2099 		perform_access(vcpu, params, r);
2100 		return 0;
2101 	}
2102 
2103 	/* Not handled */
2104 	return -1;
2105 }
2106 
2107 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2108 				struct sys_reg_params *params)
2109 {
2110 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2111 	int cp = -1;
2112 
2113 	switch (esr_ec) {
2114 	case ESR_ELx_EC_CP15_32:
2115 	case ESR_ELx_EC_CP15_64:
2116 		cp = 15;
2117 		break;
2118 	case ESR_ELx_EC_CP14_MR:
2119 	case ESR_ELx_EC_CP14_64:
2120 		cp = 14;
2121 		break;
2122 	default:
2123 		WARN_ON(1);
2124 	}
2125 
2126 	print_sys_reg_msg(params,
2127 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2128 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2129 	kvm_inject_undefined(vcpu);
2130 }
2131 
2132 /**
2133  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2134  * @vcpu: The VCPU pointer
2135  * @run:  The kvm_run struct
2136  */
2137 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2138 			    const struct sys_reg_desc *global,
2139 			    size_t nr_global)
2140 {
2141 	struct sys_reg_params params;
2142 	u32 esr = kvm_vcpu_get_esr(vcpu);
2143 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2144 	int Rt2 = (esr >> 10) & 0x1f;
2145 
2146 	params.CRm = (esr >> 1) & 0xf;
2147 	params.is_write = ((esr & 1) == 0);
2148 
2149 	params.Op0 = 0;
2150 	params.Op1 = (esr >> 16) & 0xf;
2151 	params.Op2 = 0;
2152 	params.CRn = 0;
2153 
2154 	/*
2155 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2156 	 * backends between AArch32 and AArch64, we get away with it.
2157 	 */
2158 	if (params.is_write) {
2159 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2160 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2161 	}
2162 
2163 	/*
2164 	 * If the table contains a handler, handle the
2165 	 * potential register operation in the case of a read and return
2166 	 * with success.
2167 	 */
2168 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2169 		/* Split up the value between registers for the read side */
2170 		if (!params.is_write) {
2171 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2172 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2173 		}
2174 
2175 		return 1;
2176 	}
2177 
2178 	unhandled_cp_access(vcpu, &params);
2179 	return 1;
2180 }
2181 
2182 /**
2183  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2184  * @vcpu: The VCPU pointer
2185  * @run:  The kvm_run struct
2186  */
2187 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2188 			    const struct sys_reg_desc *global,
2189 			    size_t nr_global)
2190 {
2191 	struct sys_reg_params params;
2192 	u32 esr = kvm_vcpu_get_esr(vcpu);
2193 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2194 
2195 	params.CRm = (esr >> 1) & 0xf;
2196 	params.regval = vcpu_get_reg(vcpu, Rt);
2197 	params.is_write = ((esr & 1) == 0);
2198 	params.CRn = (esr >> 10) & 0xf;
2199 	params.Op0 = 0;
2200 	params.Op1 = (esr >> 14) & 0x7;
2201 	params.Op2 = (esr >> 17) & 0x7;
2202 
2203 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2204 		if (!params.is_write)
2205 			vcpu_set_reg(vcpu, Rt, params.regval);
2206 		return 1;
2207 	}
2208 
2209 	unhandled_cp_access(vcpu, &params);
2210 	return 1;
2211 }
2212 
2213 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2214 {
2215 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2216 }
2217 
2218 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2219 {
2220 	return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2221 }
2222 
2223 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2224 {
2225 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2226 }
2227 
2228 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2229 {
2230 	return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2231 }
2232 
2233 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2234 {
2235 	// See ARM DDI 0487E.a, section D12.3.2
2236 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2237 }
2238 
2239 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2240 			   struct sys_reg_params *params)
2241 {
2242 	const struct sys_reg_desc *r;
2243 
2244 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2245 
2246 	if (likely(r)) {
2247 		perform_access(vcpu, params, r);
2248 	} else if (is_imp_def_sys_reg(params)) {
2249 		kvm_inject_undefined(vcpu);
2250 	} else {
2251 		print_sys_reg_msg(params,
2252 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2253 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2254 		kvm_inject_undefined(vcpu);
2255 	}
2256 	return 1;
2257 }
2258 
2259 /**
2260  * kvm_reset_sys_regs - sets system registers to reset value
2261  * @vcpu: The VCPU pointer
2262  *
2263  * This function finds the right table above and sets the registers on the
2264  * virtual CPU struct to their architecturally defined reset values.
2265  */
2266 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2267 {
2268 	unsigned long i;
2269 
2270 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2271 		if (sys_reg_descs[i].reset)
2272 			sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2273 }
2274 
2275 /**
2276  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2277  * @vcpu: The VCPU pointer
2278  */
2279 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2280 {
2281 	struct sys_reg_params params;
2282 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
2283 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2284 	int ret;
2285 
2286 	trace_kvm_handle_sys_reg(esr);
2287 
2288 	params.Op0 = (esr >> 20) & 3;
2289 	params.Op1 = (esr >> 14) & 0x7;
2290 	params.CRn = (esr >> 10) & 0xf;
2291 	params.CRm = (esr >> 1) & 0xf;
2292 	params.Op2 = (esr >> 17) & 0x7;
2293 	params.regval = vcpu_get_reg(vcpu, Rt);
2294 	params.is_write = !(esr & 1);
2295 
2296 	ret = emulate_sys_reg(vcpu, &params);
2297 
2298 	if (!params.is_write)
2299 		vcpu_set_reg(vcpu, Rt, params.regval);
2300 	return ret;
2301 }
2302 
2303 /******************************************************************************
2304  * Userspace API
2305  *****************************************************************************/
2306 
2307 static bool index_to_params(u64 id, struct sys_reg_params *params)
2308 {
2309 	switch (id & KVM_REG_SIZE_MASK) {
2310 	case KVM_REG_SIZE_U64:
2311 		/* Any unused index bits means it's not valid. */
2312 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2313 			      | KVM_REG_ARM_COPROC_MASK
2314 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2315 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2316 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2317 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2318 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2319 			return false;
2320 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2321 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2322 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2323 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2324 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2325 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2326 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2327 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2328 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2329 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2330 		return true;
2331 	default:
2332 		return false;
2333 	}
2334 }
2335 
2336 const struct sys_reg_desc *find_reg_by_id(u64 id,
2337 					  struct sys_reg_params *params,
2338 					  const struct sys_reg_desc table[],
2339 					  unsigned int num)
2340 {
2341 	if (!index_to_params(id, params))
2342 		return NULL;
2343 
2344 	return find_reg(params, table, num);
2345 }
2346 
2347 /* Decode an index value, and find the sys_reg_desc entry. */
2348 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2349 						    u64 id)
2350 {
2351 	const struct sys_reg_desc *r;
2352 	struct sys_reg_params params;
2353 
2354 	/* We only do sys_reg for now. */
2355 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2356 		return NULL;
2357 
2358 	if (!index_to_params(id, &params))
2359 		return NULL;
2360 
2361 	r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2362 
2363 	/* Not saved in the sys_reg array and not otherwise accessible? */
2364 	if (r && !(r->reg || r->get_user))
2365 		r = NULL;
2366 
2367 	return r;
2368 }
2369 
2370 /*
2371  * These are the invariant sys_reg registers: we let the guest see the
2372  * host versions of these, so they're part of the guest state.
2373  *
2374  * A future CPU may provide a mechanism to present different values to
2375  * the guest, or a future kvm may trap them.
2376  */
2377 
2378 #define FUNCTION_INVARIANT(reg)						\
2379 	static void get_##reg(struct kvm_vcpu *v,			\
2380 			      const struct sys_reg_desc *r)		\
2381 	{								\
2382 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2383 	}
2384 
2385 FUNCTION_INVARIANT(midr_el1)
2386 FUNCTION_INVARIANT(revidr_el1)
2387 FUNCTION_INVARIANT(clidr_el1)
2388 FUNCTION_INVARIANT(aidr_el1)
2389 
2390 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2391 {
2392 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2393 }
2394 
2395 /* ->val is filled in by kvm_sys_reg_table_init() */
2396 static struct sys_reg_desc invariant_sys_regs[] = {
2397 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2398 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2399 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2400 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2401 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2402 };
2403 
2404 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2405 {
2406 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2407 		return -EFAULT;
2408 	return 0;
2409 }
2410 
2411 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2412 {
2413 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2414 		return -EFAULT;
2415 	return 0;
2416 }
2417 
2418 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2419 {
2420 	struct sys_reg_params params;
2421 	const struct sys_reg_desc *r;
2422 
2423 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2424 			   ARRAY_SIZE(invariant_sys_regs));
2425 	if (!r)
2426 		return -ENOENT;
2427 
2428 	return reg_to_user(uaddr, &r->val, id);
2429 }
2430 
2431 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2432 {
2433 	struct sys_reg_params params;
2434 	const struct sys_reg_desc *r;
2435 	int err;
2436 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2437 
2438 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2439 			   ARRAY_SIZE(invariant_sys_regs));
2440 	if (!r)
2441 		return -ENOENT;
2442 
2443 	err = reg_from_user(&val, uaddr, id);
2444 	if (err)
2445 		return err;
2446 
2447 	/* This is what we mean by invariant: you can't change it. */
2448 	if (r->val != val)
2449 		return -EINVAL;
2450 
2451 	return 0;
2452 }
2453 
2454 static bool is_valid_cache(u32 val)
2455 {
2456 	u32 level, ctype;
2457 
2458 	if (val >= CSSELR_MAX)
2459 		return false;
2460 
2461 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2462 	level = (val >> 1);
2463 	ctype = (cache_levels >> (level * 3)) & 7;
2464 
2465 	switch (ctype) {
2466 	case 0: /* No cache */
2467 		return false;
2468 	case 1: /* Instruction cache only */
2469 		return (val & 1);
2470 	case 2: /* Data cache only */
2471 	case 4: /* Unified cache */
2472 		return !(val & 1);
2473 	case 3: /* Separate instruction and data caches */
2474 		return true;
2475 	default: /* Reserved: we can't know instruction or data. */
2476 		return false;
2477 	}
2478 }
2479 
2480 static int demux_c15_get(u64 id, void __user *uaddr)
2481 {
2482 	u32 val;
2483 	u32 __user *uval = uaddr;
2484 
2485 	/* Fail if we have unknown bits set. */
2486 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2487 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2488 		return -ENOENT;
2489 
2490 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2491 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2492 		if (KVM_REG_SIZE(id) != 4)
2493 			return -ENOENT;
2494 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2495 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2496 		if (!is_valid_cache(val))
2497 			return -ENOENT;
2498 
2499 		return put_user(get_ccsidr(val), uval);
2500 	default:
2501 		return -ENOENT;
2502 	}
2503 }
2504 
2505 static int demux_c15_set(u64 id, void __user *uaddr)
2506 {
2507 	u32 val, newval;
2508 	u32 __user *uval = uaddr;
2509 
2510 	/* Fail if we have unknown bits set. */
2511 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2512 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2513 		return -ENOENT;
2514 
2515 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2516 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2517 		if (KVM_REG_SIZE(id) != 4)
2518 			return -ENOENT;
2519 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2520 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2521 		if (!is_valid_cache(val))
2522 			return -ENOENT;
2523 
2524 		if (get_user(newval, uval))
2525 			return -EFAULT;
2526 
2527 		/* This is also invariant: you can't change it. */
2528 		if (newval != get_ccsidr(val))
2529 			return -EINVAL;
2530 		return 0;
2531 	default:
2532 		return -ENOENT;
2533 	}
2534 }
2535 
2536 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2537 {
2538 	const struct sys_reg_desc *r;
2539 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2540 
2541 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2542 		return demux_c15_get(reg->id, uaddr);
2543 
2544 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2545 		return -ENOENT;
2546 
2547 	r = index_to_sys_reg_desc(vcpu, reg->id);
2548 	if (!r)
2549 		return get_invariant_sys_reg(reg->id, uaddr);
2550 
2551 	/* Check for regs disabled by runtime config */
2552 	if (sysreg_hidden(vcpu, r))
2553 		return -ENOENT;
2554 
2555 	if (r->get_user)
2556 		return (r->get_user)(vcpu, r, reg, uaddr);
2557 
2558 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2559 }
2560 
2561 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2562 {
2563 	const struct sys_reg_desc *r;
2564 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2565 
2566 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2567 		return demux_c15_set(reg->id, uaddr);
2568 
2569 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2570 		return -ENOENT;
2571 
2572 	r = index_to_sys_reg_desc(vcpu, reg->id);
2573 	if (!r)
2574 		return set_invariant_sys_reg(reg->id, uaddr);
2575 
2576 	/* Check for regs disabled by runtime config */
2577 	if (sysreg_hidden(vcpu, r))
2578 		return -ENOENT;
2579 
2580 	if (r->set_user)
2581 		return (r->set_user)(vcpu, r, reg, uaddr);
2582 
2583 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2584 }
2585 
2586 static unsigned int num_demux_regs(void)
2587 {
2588 	unsigned int i, count = 0;
2589 
2590 	for (i = 0; i < CSSELR_MAX; i++)
2591 		if (is_valid_cache(i))
2592 			count++;
2593 
2594 	return count;
2595 }
2596 
2597 static int write_demux_regids(u64 __user *uindices)
2598 {
2599 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2600 	unsigned int i;
2601 
2602 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2603 	for (i = 0; i < CSSELR_MAX; i++) {
2604 		if (!is_valid_cache(i))
2605 			continue;
2606 		if (put_user(val | i, uindices))
2607 			return -EFAULT;
2608 		uindices++;
2609 	}
2610 	return 0;
2611 }
2612 
2613 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2614 {
2615 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2616 		KVM_REG_ARM64_SYSREG |
2617 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2618 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2619 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2620 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2621 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2622 }
2623 
2624 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2625 {
2626 	if (!*uind)
2627 		return true;
2628 
2629 	if (put_user(sys_reg_to_index(reg), *uind))
2630 		return false;
2631 
2632 	(*uind)++;
2633 	return true;
2634 }
2635 
2636 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2637 			    const struct sys_reg_desc *rd,
2638 			    u64 __user **uind,
2639 			    unsigned int *total)
2640 {
2641 	/*
2642 	 * Ignore registers we trap but don't save,
2643 	 * and for which no custom user accessor is provided.
2644 	 */
2645 	if (!(rd->reg || rd->get_user))
2646 		return 0;
2647 
2648 	if (sysreg_hidden(vcpu, rd))
2649 		return 0;
2650 
2651 	if (!copy_reg_to_user(rd, uind))
2652 		return -EFAULT;
2653 
2654 	(*total)++;
2655 	return 0;
2656 }
2657 
2658 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2659 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2660 {
2661 	const struct sys_reg_desc *i2, *end2;
2662 	unsigned int total = 0;
2663 	int err;
2664 
2665 	i2 = sys_reg_descs;
2666 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2667 
2668 	while (i2 != end2) {
2669 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2670 		if (err)
2671 			return err;
2672 	}
2673 	return total;
2674 }
2675 
2676 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2677 {
2678 	return ARRAY_SIZE(invariant_sys_regs)
2679 		+ num_demux_regs()
2680 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2681 }
2682 
2683 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2684 {
2685 	unsigned int i;
2686 	int err;
2687 
2688 	/* Then give them all the invariant registers' indices. */
2689 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2690 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2691 			return -EFAULT;
2692 		uindices++;
2693 	}
2694 
2695 	err = walk_sys_regs(vcpu, uindices);
2696 	if (err < 0)
2697 		return err;
2698 	uindices += err;
2699 
2700 	return write_demux_regids(uindices);
2701 }
2702 
2703 void kvm_sys_reg_table_init(void)
2704 {
2705 	unsigned int i;
2706 	struct sys_reg_desc clidr;
2707 
2708 	/* Make sure tables are unique and in order. */
2709 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2710 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2711 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2712 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2713 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2714 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2715 
2716 	/* We abuse the reset function to overwrite the table itself. */
2717 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2718 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2719 
2720 	/*
2721 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2722 	 *
2723 	 *   If software reads the Cache Type fields from Ctype1
2724 	 *   upwards, once it has seen a value of 0b000, no caches
2725 	 *   exist at further-out levels of the hierarchy. So, for
2726 	 *   example, if Ctype3 is the first Cache Type field with a
2727 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2728 	 *   ignored.
2729 	 */
2730 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2731 	cache_levels = clidr.val;
2732 	for (i = 0; i < 7; i++)
2733 		if (((cache_levels >> (i*3)) & 7) == 0)
2734 			break;
2735 	/* Clear all higher bits. */
2736 	cache_levels &= (1 << (i*3))-1;
2737 }
2738