xref: /openbmc/linux/arch/arm64/kvm/pmu-emul.c (revision ad89e2e3ec30f54cff34a6b9d61b18612610001c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Linaro Ltd.
4  * Author: Shannon Zhao <shannon.zhao@linaro.org>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/perf_event.h>
11 #include <linux/perf/arm_pmu.h>
12 #include <linux/uaccess.h>
13 #include <asm/kvm_emulate.h>
14 #include <kvm/arm_pmu.h>
15 #include <kvm/arm_vgic.h>
16 
17 DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
18 
19 static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx);
20 static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx);
21 static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc);
22 
23 #define PERF_ATTR_CFG1_KVM_PMU_CHAINED 0x1
24 
25 static u32 kvm_pmu_event_mask(struct kvm *kvm)
26 {
27 	switch (kvm->arch.pmuver) {
28 	case ID_AA64DFR0_PMUVER_8_0:
29 		return GENMASK(9, 0);
30 	case ID_AA64DFR0_PMUVER_8_1:
31 	case ID_AA64DFR0_PMUVER_8_4:
32 	case ID_AA64DFR0_PMUVER_8_5:
33 	case ID_AA64DFR0_PMUVER_8_7:
34 		return GENMASK(15, 0);
35 	default:		/* Shouldn't be here, just for sanity */
36 		WARN_ONCE(1, "Unknown PMU version %d\n", kvm->arch.pmuver);
37 		return 0;
38 	}
39 }
40 
41 /**
42  * kvm_pmu_idx_is_64bit - determine if select_idx is a 64bit counter
43  * @vcpu: The vcpu pointer
44  * @select_idx: The counter index
45  */
46 static bool kvm_pmu_idx_is_64bit(struct kvm_vcpu *vcpu, u64 select_idx)
47 {
48 	return (select_idx == ARMV8_PMU_CYCLE_IDX &&
49 		__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_LC);
50 }
51 
52 static struct kvm_vcpu *kvm_pmc_to_vcpu(struct kvm_pmc *pmc)
53 {
54 	struct kvm_pmu *pmu;
55 	struct kvm_vcpu_arch *vcpu_arch;
56 
57 	pmc -= pmc->idx;
58 	pmu = container_of(pmc, struct kvm_pmu, pmc[0]);
59 	vcpu_arch = container_of(pmu, struct kvm_vcpu_arch, pmu);
60 	return container_of(vcpu_arch, struct kvm_vcpu, arch);
61 }
62 
63 /**
64  * kvm_pmu_pmc_is_chained - determine if the pmc is chained
65  * @pmc: The PMU counter pointer
66  */
67 static bool kvm_pmu_pmc_is_chained(struct kvm_pmc *pmc)
68 {
69 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
70 
71 	return test_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
72 }
73 
74 /**
75  * kvm_pmu_idx_is_high_counter - determine if select_idx is a high/low counter
76  * @select_idx: The counter index
77  */
78 static bool kvm_pmu_idx_is_high_counter(u64 select_idx)
79 {
80 	return select_idx & 0x1;
81 }
82 
83 /**
84  * kvm_pmu_get_canonical_pmc - obtain the canonical pmc
85  * @pmc: The PMU counter pointer
86  *
87  * When a pair of PMCs are chained together we use the low counter (canonical)
88  * to hold the underlying perf event.
89  */
90 static struct kvm_pmc *kvm_pmu_get_canonical_pmc(struct kvm_pmc *pmc)
91 {
92 	if (kvm_pmu_pmc_is_chained(pmc) &&
93 	    kvm_pmu_idx_is_high_counter(pmc->idx))
94 		return pmc - 1;
95 
96 	return pmc;
97 }
98 static struct kvm_pmc *kvm_pmu_get_alternate_pmc(struct kvm_pmc *pmc)
99 {
100 	if (kvm_pmu_idx_is_high_counter(pmc->idx))
101 		return pmc - 1;
102 	else
103 		return pmc + 1;
104 }
105 
106 /**
107  * kvm_pmu_idx_has_chain_evtype - determine if the event type is chain
108  * @vcpu: The vcpu pointer
109  * @select_idx: The counter index
110  */
111 static bool kvm_pmu_idx_has_chain_evtype(struct kvm_vcpu *vcpu, u64 select_idx)
112 {
113 	u64 eventsel, reg;
114 
115 	select_idx |= 0x1;
116 
117 	if (select_idx == ARMV8_PMU_CYCLE_IDX)
118 		return false;
119 
120 	reg = PMEVTYPER0_EL0 + select_idx;
121 	eventsel = __vcpu_sys_reg(vcpu, reg) & kvm_pmu_event_mask(vcpu->kvm);
122 
123 	return eventsel == ARMV8_PMUV3_PERFCTR_CHAIN;
124 }
125 
126 /**
127  * kvm_pmu_get_pair_counter_value - get PMU counter value
128  * @vcpu: The vcpu pointer
129  * @pmc: The PMU counter pointer
130  */
131 static u64 kvm_pmu_get_pair_counter_value(struct kvm_vcpu *vcpu,
132 					  struct kvm_pmc *pmc)
133 {
134 	u64 counter, counter_high, reg, enabled, running;
135 
136 	if (kvm_pmu_pmc_is_chained(pmc)) {
137 		pmc = kvm_pmu_get_canonical_pmc(pmc);
138 		reg = PMEVCNTR0_EL0 + pmc->idx;
139 
140 		counter = __vcpu_sys_reg(vcpu, reg);
141 		counter_high = __vcpu_sys_reg(vcpu, reg + 1);
142 
143 		counter = lower_32_bits(counter) | (counter_high << 32);
144 	} else {
145 		reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
146 		      ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx;
147 		counter = __vcpu_sys_reg(vcpu, reg);
148 	}
149 
150 	/*
151 	 * The real counter value is equal to the value of counter register plus
152 	 * the value perf event counts.
153 	 */
154 	if (pmc->perf_event)
155 		counter += perf_event_read_value(pmc->perf_event, &enabled,
156 						 &running);
157 
158 	return counter;
159 }
160 
161 /**
162  * kvm_pmu_get_counter_value - get PMU counter value
163  * @vcpu: The vcpu pointer
164  * @select_idx: The counter index
165  */
166 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
167 {
168 	u64 counter;
169 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
170 	struct kvm_pmc *pmc = &pmu->pmc[select_idx];
171 
172 	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
173 
174 	if (kvm_pmu_pmc_is_chained(pmc) &&
175 	    kvm_pmu_idx_is_high_counter(select_idx))
176 		counter = upper_32_bits(counter);
177 	else if (select_idx != ARMV8_PMU_CYCLE_IDX)
178 		counter = lower_32_bits(counter);
179 
180 	return counter;
181 }
182 
183 /**
184  * kvm_pmu_set_counter_value - set PMU counter value
185  * @vcpu: The vcpu pointer
186  * @select_idx: The counter index
187  * @val: The counter value
188  */
189 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
190 {
191 	u64 reg;
192 
193 	reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
194 	      ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx;
195 	__vcpu_sys_reg(vcpu, reg) += (s64)val - kvm_pmu_get_counter_value(vcpu, select_idx);
196 
197 	/* Recreate the perf event to reflect the updated sample_period */
198 	kvm_pmu_create_perf_event(vcpu, select_idx);
199 }
200 
201 /**
202  * kvm_pmu_release_perf_event - remove the perf event
203  * @pmc: The PMU counter pointer
204  */
205 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
206 {
207 	pmc = kvm_pmu_get_canonical_pmc(pmc);
208 	if (pmc->perf_event) {
209 		perf_event_disable(pmc->perf_event);
210 		perf_event_release_kernel(pmc->perf_event);
211 		pmc->perf_event = NULL;
212 	}
213 }
214 
215 /**
216  * kvm_pmu_stop_counter - stop PMU counter
217  * @pmc: The PMU counter pointer
218  *
219  * If this counter has been configured to monitor some event, release it here.
220  */
221 static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc)
222 {
223 	u64 counter, reg, val;
224 
225 	pmc = kvm_pmu_get_canonical_pmc(pmc);
226 	if (!pmc->perf_event)
227 		return;
228 
229 	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
230 
231 	if (pmc->idx == ARMV8_PMU_CYCLE_IDX) {
232 		reg = PMCCNTR_EL0;
233 		val = counter;
234 	} else {
235 		reg = PMEVCNTR0_EL0 + pmc->idx;
236 		val = lower_32_bits(counter);
237 	}
238 
239 	__vcpu_sys_reg(vcpu, reg) = val;
240 
241 	if (kvm_pmu_pmc_is_chained(pmc))
242 		__vcpu_sys_reg(vcpu, reg + 1) = upper_32_bits(counter);
243 
244 	kvm_pmu_release_perf_event(pmc);
245 }
246 
247 /**
248  * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
249  * @vcpu: The vcpu pointer
250  *
251  */
252 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
253 {
254 	int i;
255 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
256 
257 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
258 		pmu->pmc[i].idx = i;
259 }
260 
261 /**
262  * kvm_pmu_vcpu_reset - reset pmu state for cpu
263  * @vcpu: The vcpu pointer
264  *
265  */
266 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
267 {
268 	unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
269 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
270 	int i;
271 
272 	for_each_set_bit(i, &mask, 32)
273 		kvm_pmu_stop_counter(vcpu, &pmu->pmc[i]);
274 
275 	bitmap_zero(vcpu->arch.pmu.chained, ARMV8_PMU_MAX_COUNTER_PAIRS);
276 }
277 
278 /**
279  * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
280  * @vcpu: The vcpu pointer
281  *
282  */
283 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
284 {
285 	int i;
286 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
287 
288 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
289 		kvm_pmu_release_perf_event(&pmu->pmc[i]);
290 	irq_work_sync(&vcpu->arch.pmu.overflow_work);
291 }
292 
293 u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
294 {
295 	u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
296 
297 	val &= ARMV8_PMU_PMCR_N_MASK;
298 	if (val == 0)
299 		return BIT(ARMV8_PMU_CYCLE_IDX);
300 	else
301 		return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
302 }
303 
304 /**
305  * kvm_pmu_enable_counter_mask - enable selected PMU counters
306  * @vcpu: The vcpu pointer
307  * @val: the value guest writes to PMCNTENSET register
308  *
309  * Call perf_event_enable to start counting the perf event
310  */
311 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
312 {
313 	int i;
314 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
315 	struct kvm_pmc *pmc;
316 
317 	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
318 		return;
319 
320 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
321 		if (!(val & BIT(i)))
322 			continue;
323 
324 		pmc = &pmu->pmc[i];
325 
326 		/* A change in the enable state may affect the chain state */
327 		kvm_pmu_update_pmc_chained(vcpu, i);
328 		kvm_pmu_create_perf_event(vcpu, i);
329 
330 		/* At this point, pmc must be the canonical */
331 		if (pmc->perf_event) {
332 			perf_event_enable(pmc->perf_event);
333 			if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
334 				kvm_debug("fail to enable perf event\n");
335 		}
336 	}
337 }
338 
339 /**
340  * kvm_pmu_disable_counter_mask - disable selected PMU counters
341  * @vcpu: The vcpu pointer
342  * @val: the value guest writes to PMCNTENCLR register
343  *
344  * Call perf_event_disable to stop counting the perf event
345  */
346 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
347 {
348 	int i;
349 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
350 	struct kvm_pmc *pmc;
351 
352 	if (!val)
353 		return;
354 
355 	for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
356 		if (!(val & BIT(i)))
357 			continue;
358 
359 		pmc = &pmu->pmc[i];
360 
361 		/* A change in the enable state may affect the chain state */
362 		kvm_pmu_update_pmc_chained(vcpu, i);
363 		kvm_pmu_create_perf_event(vcpu, i);
364 
365 		/* At this point, pmc must be the canonical */
366 		if (pmc->perf_event)
367 			perf_event_disable(pmc->perf_event);
368 	}
369 }
370 
371 static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
372 {
373 	u64 reg = 0;
374 
375 	if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
376 		reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
377 		reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
378 		reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
379 	}
380 
381 	return reg;
382 }
383 
384 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
385 {
386 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
387 	bool overflow;
388 
389 	if (!kvm_vcpu_has_pmu(vcpu))
390 		return;
391 
392 	overflow = !!kvm_pmu_overflow_status(vcpu);
393 	if (pmu->irq_level == overflow)
394 		return;
395 
396 	pmu->irq_level = overflow;
397 
398 	if (likely(irqchip_in_kernel(vcpu->kvm))) {
399 		int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
400 					      pmu->irq_num, overflow, pmu);
401 		WARN_ON(ret);
402 	}
403 }
404 
405 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
406 {
407 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
408 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
409 	bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
410 
411 	if (likely(irqchip_in_kernel(vcpu->kvm)))
412 		return false;
413 
414 	return pmu->irq_level != run_level;
415 }
416 
417 /*
418  * Reflect the PMU overflow interrupt output level into the kvm_run structure
419  */
420 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
421 {
422 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
423 
424 	/* Populate the timer bitmap for user space */
425 	regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
426 	if (vcpu->arch.pmu.irq_level)
427 		regs->device_irq_level |= KVM_ARM_DEV_PMU;
428 }
429 
430 /**
431  * kvm_pmu_flush_hwstate - flush pmu state to cpu
432  * @vcpu: The vcpu pointer
433  *
434  * Check if the PMU has overflowed while we were running in the host, and inject
435  * an interrupt if that was the case.
436  */
437 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
438 {
439 	kvm_pmu_update_state(vcpu);
440 }
441 
442 /**
443  * kvm_pmu_sync_hwstate - sync pmu state from cpu
444  * @vcpu: The vcpu pointer
445  *
446  * Check if the PMU has overflowed while we were running in the guest, and
447  * inject an interrupt if that was the case.
448  */
449 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
450 {
451 	kvm_pmu_update_state(vcpu);
452 }
453 
454 /**
455  * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
456  * to the event.
457  * This is why we need a callback to do it once outside of the NMI context.
458  */
459 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
460 {
461 	struct kvm_vcpu *vcpu;
462 	struct kvm_pmu *pmu;
463 
464 	pmu = container_of(work, struct kvm_pmu, overflow_work);
465 	vcpu = kvm_pmc_to_vcpu(pmu->pmc);
466 
467 	kvm_vcpu_kick(vcpu);
468 }
469 
470 /**
471  * When the perf event overflows, set the overflow status and inform the vcpu.
472  */
473 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
474 				  struct perf_sample_data *data,
475 				  struct pt_regs *regs)
476 {
477 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
478 	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
479 	struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
480 	int idx = pmc->idx;
481 	u64 period;
482 
483 	cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
484 
485 	/*
486 	 * Reset the sample period to the architectural limit,
487 	 * i.e. the point where the counter overflows.
488 	 */
489 	period = -(local64_read(&perf_event->count));
490 
491 	if (!kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
492 		period &= GENMASK(31, 0);
493 
494 	local64_set(&perf_event->hw.period_left, 0);
495 	perf_event->attr.sample_period = period;
496 	perf_event->hw.sample_period = period;
497 
498 	__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
499 
500 	if (kvm_pmu_overflow_status(vcpu)) {
501 		kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
502 
503 		if (!in_nmi())
504 			kvm_vcpu_kick(vcpu);
505 		else
506 			irq_work_queue(&vcpu->arch.pmu.overflow_work);
507 	}
508 
509 	cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
510 }
511 
512 /**
513  * kvm_pmu_software_increment - do software increment
514  * @vcpu: The vcpu pointer
515  * @val: the value guest writes to PMSWINC register
516  */
517 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
518 {
519 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
520 	int i;
521 
522 	if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
523 		return;
524 
525 	/* Weed out disabled counters */
526 	val &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
527 
528 	for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++) {
529 		u64 type, reg;
530 
531 		if (!(val & BIT(i)))
532 			continue;
533 
534 		/* PMSWINC only applies to ... SW_INC! */
535 		type = __vcpu_sys_reg(vcpu, PMEVTYPER0_EL0 + i);
536 		type &= kvm_pmu_event_mask(vcpu->kvm);
537 		if (type != ARMV8_PMUV3_PERFCTR_SW_INCR)
538 			continue;
539 
540 		/* increment this even SW_INC counter */
541 		reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) + 1;
542 		reg = lower_32_bits(reg);
543 		__vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) = reg;
544 
545 		if (reg) /* no overflow on the low part */
546 			continue;
547 
548 		if (kvm_pmu_pmc_is_chained(&pmu->pmc[i])) {
549 			/* increment the high counter */
550 			reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) + 1;
551 			reg = lower_32_bits(reg);
552 			__vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) = reg;
553 			if (!reg) /* mark overflow on the high counter */
554 				__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i + 1);
555 		} else {
556 			/* mark overflow on low counter */
557 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
558 		}
559 	}
560 }
561 
562 /**
563  * kvm_pmu_handle_pmcr - handle PMCR register
564  * @vcpu: The vcpu pointer
565  * @val: the value guest writes to PMCR register
566  */
567 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
568 {
569 	int i;
570 
571 	if (val & ARMV8_PMU_PMCR_E) {
572 		kvm_pmu_enable_counter_mask(vcpu,
573 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
574 	} else {
575 		kvm_pmu_disable_counter_mask(vcpu,
576 		       __vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
577 	}
578 
579 	if (val & ARMV8_PMU_PMCR_C)
580 		kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
581 
582 	if (val & ARMV8_PMU_PMCR_P) {
583 		unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
584 		mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
585 		for_each_set_bit(i, &mask, 32)
586 			kvm_pmu_set_counter_value(vcpu, i, 0);
587 	}
588 }
589 
590 static bool kvm_pmu_counter_is_enabled(struct kvm_vcpu *vcpu, u64 select_idx)
591 {
592 	return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
593 	       (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(select_idx));
594 }
595 
596 /**
597  * kvm_pmu_create_perf_event - create a perf event for a counter
598  * @vcpu: The vcpu pointer
599  * @select_idx: The number of selected counter
600  */
601 static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx)
602 {
603 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
604 	struct kvm_pmc *pmc;
605 	struct perf_event *event;
606 	struct perf_event_attr attr;
607 	u64 eventsel, counter, reg, data;
608 
609 	/*
610 	 * For chained counters the event type and filtering attributes are
611 	 * obtained from the low/even counter. We also use this counter to
612 	 * determine if the event is enabled/disabled.
613 	 */
614 	pmc = kvm_pmu_get_canonical_pmc(&pmu->pmc[select_idx]);
615 
616 	reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
617 	      ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + pmc->idx;
618 	data = __vcpu_sys_reg(vcpu, reg);
619 
620 	kvm_pmu_stop_counter(vcpu, pmc);
621 	if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
622 		eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
623 	else
624 		eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
625 
626 	/* Software increment event doesn't need to be backed by a perf event */
627 	if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR)
628 		return;
629 
630 	/*
631 	 * If we have a filter in place and that the event isn't allowed, do
632 	 * not install a perf event either.
633 	 */
634 	if (vcpu->kvm->arch.pmu_filter &&
635 	    !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
636 		return;
637 
638 	memset(&attr, 0, sizeof(struct perf_event_attr));
639 	attr.type = PERF_TYPE_RAW;
640 	attr.size = sizeof(attr);
641 	attr.pinned = 1;
642 	attr.disabled = !kvm_pmu_counter_is_enabled(vcpu, pmc->idx);
643 	attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
644 	attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
645 	attr.exclude_hv = 1; /* Don't count EL2 events */
646 	attr.exclude_host = 1; /* Don't count host events */
647 	attr.config = eventsel;
648 
649 	counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
650 
651 	if (kvm_pmu_pmc_is_chained(pmc)) {
652 		/**
653 		 * The initial sample period (overflow count) of an event. For
654 		 * chained counters we only support overflow interrupts on the
655 		 * high counter.
656 		 */
657 		attr.sample_period = (-counter) & GENMASK(63, 0);
658 		attr.config1 |= PERF_ATTR_CFG1_KVM_PMU_CHAINED;
659 
660 		event = perf_event_create_kernel_counter(&attr, -1, current,
661 							 kvm_pmu_perf_overflow,
662 							 pmc + 1);
663 	} else {
664 		/* The initial sample period (overflow count) of an event. */
665 		if (kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
666 			attr.sample_period = (-counter) & GENMASK(63, 0);
667 		else
668 			attr.sample_period = (-counter) & GENMASK(31, 0);
669 
670 		event = perf_event_create_kernel_counter(&attr, -1, current,
671 						 kvm_pmu_perf_overflow, pmc);
672 	}
673 
674 	if (IS_ERR(event)) {
675 		pr_err_once("kvm: pmu event creation failed %ld\n",
676 			    PTR_ERR(event));
677 		return;
678 	}
679 
680 	pmc->perf_event = event;
681 }
682 
683 /**
684  * kvm_pmu_update_pmc_chained - update chained bitmap
685  * @vcpu: The vcpu pointer
686  * @select_idx: The number of selected counter
687  *
688  * Update the chained bitmap based on the event type written in the
689  * typer register and the enable state of the odd register.
690  */
691 static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx)
692 {
693 	struct kvm_pmu *pmu = &vcpu->arch.pmu;
694 	struct kvm_pmc *pmc = &pmu->pmc[select_idx], *canonical_pmc;
695 	bool new_state, old_state;
696 
697 	old_state = kvm_pmu_pmc_is_chained(pmc);
698 	new_state = kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx) &&
699 		    kvm_pmu_counter_is_enabled(vcpu, pmc->idx | 0x1);
700 
701 	if (old_state == new_state)
702 		return;
703 
704 	canonical_pmc = kvm_pmu_get_canonical_pmc(pmc);
705 	kvm_pmu_stop_counter(vcpu, canonical_pmc);
706 	if (new_state) {
707 		/*
708 		 * During promotion from !chained to chained we must ensure
709 		 * the adjacent counter is stopped and its event destroyed
710 		 */
711 		kvm_pmu_stop_counter(vcpu, kvm_pmu_get_alternate_pmc(pmc));
712 		set_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
713 		return;
714 	}
715 	clear_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
716 }
717 
718 /**
719  * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
720  * @vcpu: The vcpu pointer
721  * @data: The data guest writes to PMXEVTYPER_EL0
722  * @select_idx: The number of selected counter
723  *
724  * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
725  * event with given hardware event number. Here we call perf_event API to
726  * emulate this action and create a kernel perf event for it.
727  */
728 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
729 				    u64 select_idx)
730 {
731 	u64 reg, mask;
732 
733 	mask  =  ARMV8_PMU_EVTYPE_MASK;
734 	mask &= ~ARMV8_PMU_EVTYPE_EVENT;
735 	mask |= kvm_pmu_event_mask(vcpu->kvm);
736 
737 	reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
738 	      ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + select_idx;
739 
740 	__vcpu_sys_reg(vcpu, reg) = data & mask;
741 
742 	kvm_pmu_update_pmc_chained(vcpu, select_idx);
743 	kvm_pmu_create_perf_event(vcpu, select_idx);
744 }
745 
746 void kvm_host_pmu_init(struct arm_pmu *pmu)
747 {
748 	if (pmu->pmuver != 0 && pmu->pmuver != ID_AA64DFR0_PMUVER_IMP_DEF &&
749 	    !kvm_arm_support_pmu_v3() && !is_protected_kvm_enabled())
750 		static_branch_enable(&kvm_arm_pmu_available);
751 }
752 
753 static int kvm_pmu_probe_pmuver(void)
754 {
755 	struct perf_event_attr attr = { };
756 	struct perf_event *event;
757 	struct arm_pmu *pmu;
758 	int pmuver = ID_AA64DFR0_PMUVER_IMP_DEF;
759 
760 	/*
761 	 * Create a dummy event that only counts user cycles. As we'll never
762 	 * leave this function with the event being live, it will never
763 	 * count anything. But it allows us to probe some of the PMU
764 	 * details. Yes, this is terrible.
765 	 */
766 	attr.type = PERF_TYPE_RAW;
767 	attr.size = sizeof(attr);
768 	attr.pinned = 1;
769 	attr.disabled = 0;
770 	attr.exclude_user = 0;
771 	attr.exclude_kernel = 1;
772 	attr.exclude_hv = 1;
773 	attr.exclude_host = 1;
774 	attr.config = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
775 	attr.sample_period = GENMASK(63, 0);
776 
777 	event = perf_event_create_kernel_counter(&attr, -1, current,
778 						 kvm_pmu_perf_overflow, &attr);
779 
780 	if (IS_ERR(event)) {
781 		pr_err_once("kvm: pmu event creation failed %ld\n",
782 			    PTR_ERR(event));
783 		return ID_AA64DFR0_PMUVER_IMP_DEF;
784 	}
785 
786 	if (event->pmu) {
787 		pmu = to_arm_pmu(event->pmu);
788 		if (pmu->pmuver)
789 			pmuver = pmu->pmuver;
790 	}
791 
792 	perf_event_disable(event);
793 	perf_event_release_kernel(event);
794 
795 	return pmuver;
796 }
797 
798 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
799 {
800 	unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
801 	u64 val, mask = 0;
802 	int base, i, nr_events;
803 
804 	if (!pmceid1) {
805 		val = read_sysreg(pmceid0_el0);
806 		base = 0;
807 	} else {
808 		val = read_sysreg(pmceid1_el0);
809 		/*
810 		 * Don't advertise STALL_SLOT, as PMMIR_EL0 is handled
811 		 * as RAZ
812 		 */
813 		if (vcpu->kvm->arch.pmuver >= ID_AA64DFR0_PMUVER_8_4)
814 			val &= ~BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32);
815 		base = 32;
816 	}
817 
818 	if (!bmap)
819 		return val;
820 
821 	nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
822 
823 	for (i = 0; i < 32; i += 8) {
824 		u64 byte;
825 
826 		byte = bitmap_get_value8(bmap, base + i);
827 		mask |= byte << i;
828 		if (nr_events >= (0x4000 + base + 32)) {
829 			byte = bitmap_get_value8(bmap, 0x4000 + base + i);
830 			mask |= byte << (32 + i);
831 		}
832 	}
833 
834 	return val & mask;
835 }
836 
837 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
838 {
839 	if (!kvm_vcpu_has_pmu(vcpu))
840 		return 0;
841 
842 	if (!vcpu->arch.pmu.created)
843 		return -EINVAL;
844 
845 	/*
846 	 * A valid interrupt configuration for the PMU is either to have a
847 	 * properly configured interrupt number and using an in-kernel
848 	 * irqchip, or to not have an in-kernel GIC and not set an IRQ.
849 	 */
850 	if (irqchip_in_kernel(vcpu->kvm)) {
851 		int irq = vcpu->arch.pmu.irq_num;
852 		/*
853 		 * If we are using an in-kernel vgic, at this point we know
854 		 * the vgic will be initialized, so we can check the PMU irq
855 		 * number against the dimensions of the vgic and make sure
856 		 * it's valid.
857 		 */
858 		if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
859 			return -EINVAL;
860 	} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
861 		   return -EINVAL;
862 	}
863 
864 	/* One-off reload of the PMU on first run */
865 	kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
866 
867 	return 0;
868 }
869 
870 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
871 {
872 	if (irqchip_in_kernel(vcpu->kvm)) {
873 		int ret;
874 
875 		/*
876 		 * If using the PMU with an in-kernel virtual GIC
877 		 * implementation, we require the GIC to be already
878 		 * initialized when initializing the PMU.
879 		 */
880 		if (!vgic_initialized(vcpu->kvm))
881 			return -ENODEV;
882 
883 		if (!kvm_arm_pmu_irq_initialized(vcpu))
884 			return -ENXIO;
885 
886 		ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
887 					 &vcpu->arch.pmu);
888 		if (ret)
889 			return ret;
890 	}
891 
892 	init_irq_work(&vcpu->arch.pmu.overflow_work,
893 		      kvm_pmu_perf_overflow_notify_vcpu);
894 
895 	vcpu->arch.pmu.created = true;
896 	return 0;
897 }
898 
899 /*
900  * For one VM the interrupt type must be same for each vcpu.
901  * As a PPI, the interrupt number is the same for all vcpus,
902  * while as an SPI it must be a separate number per vcpu.
903  */
904 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
905 {
906 	unsigned long i;
907 	struct kvm_vcpu *vcpu;
908 
909 	kvm_for_each_vcpu(i, vcpu, kvm) {
910 		if (!kvm_arm_pmu_irq_initialized(vcpu))
911 			continue;
912 
913 		if (irq_is_ppi(irq)) {
914 			if (vcpu->arch.pmu.irq_num != irq)
915 				return false;
916 		} else {
917 			if (vcpu->arch.pmu.irq_num == irq)
918 				return false;
919 		}
920 	}
921 
922 	return true;
923 }
924 
925 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
926 {
927 	if (!kvm_vcpu_has_pmu(vcpu))
928 		return -ENODEV;
929 
930 	if (vcpu->arch.pmu.created)
931 		return -EBUSY;
932 
933 	if (!vcpu->kvm->arch.pmuver)
934 		vcpu->kvm->arch.pmuver = kvm_pmu_probe_pmuver();
935 
936 	if (vcpu->kvm->arch.pmuver == ID_AA64DFR0_PMUVER_IMP_DEF)
937 		return -ENODEV;
938 
939 	switch (attr->attr) {
940 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
941 		int __user *uaddr = (int __user *)(long)attr->addr;
942 		int irq;
943 
944 		if (!irqchip_in_kernel(vcpu->kvm))
945 			return -EINVAL;
946 
947 		if (get_user(irq, uaddr))
948 			return -EFAULT;
949 
950 		/* The PMU overflow interrupt can be a PPI or a valid SPI. */
951 		if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
952 			return -EINVAL;
953 
954 		if (!pmu_irq_is_valid(vcpu->kvm, irq))
955 			return -EINVAL;
956 
957 		if (kvm_arm_pmu_irq_initialized(vcpu))
958 			return -EBUSY;
959 
960 		kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
961 		vcpu->arch.pmu.irq_num = irq;
962 		return 0;
963 	}
964 	case KVM_ARM_VCPU_PMU_V3_FILTER: {
965 		struct kvm_pmu_event_filter __user *uaddr;
966 		struct kvm_pmu_event_filter filter;
967 		int nr_events;
968 
969 		nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
970 
971 		uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
972 
973 		if (copy_from_user(&filter, uaddr, sizeof(filter)))
974 			return -EFAULT;
975 
976 		if (((u32)filter.base_event + filter.nevents) > nr_events ||
977 		    (filter.action != KVM_PMU_EVENT_ALLOW &&
978 		     filter.action != KVM_PMU_EVENT_DENY))
979 			return -EINVAL;
980 
981 		mutex_lock(&vcpu->kvm->lock);
982 
983 		if (!vcpu->kvm->arch.pmu_filter) {
984 			vcpu->kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
985 			if (!vcpu->kvm->arch.pmu_filter) {
986 				mutex_unlock(&vcpu->kvm->lock);
987 				return -ENOMEM;
988 			}
989 
990 			/*
991 			 * The default depends on the first applied filter.
992 			 * If it allows events, the default is to deny.
993 			 * Conversely, if the first filter denies a set of
994 			 * events, the default is to allow.
995 			 */
996 			if (filter.action == KVM_PMU_EVENT_ALLOW)
997 				bitmap_zero(vcpu->kvm->arch.pmu_filter, nr_events);
998 			else
999 				bitmap_fill(vcpu->kvm->arch.pmu_filter, nr_events);
1000 		}
1001 
1002 		if (filter.action == KVM_PMU_EVENT_ALLOW)
1003 			bitmap_set(vcpu->kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1004 		else
1005 			bitmap_clear(vcpu->kvm->arch.pmu_filter, filter.base_event, filter.nevents);
1006 
1007 		mutex_unlock(&vcpu->kvm->lock);
1008 
1009 		return 0;
1010 	}
1011 	case KVM_ARM_VCPU_PMU_V3_INIT:
1012 		return kvm_arm_pmu_v3_init(vcpu);
1013 	}
1014 
1015 	return -ENXIO;
1016 }
1017 
1018 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1019 {
1020 	switch (attr->attr) {
1021 	case KVM_ARM_VCPU_PMU_V3_IRQ: {
1022 		int __user *uaddr = (int __user *)(long)attr->addr;
1023 		int irq;
1024 
1025 		if (!irqchip_in_kernel(vcpu->kvm))
1026 			return -EINVAL;
1027 
1028 		if (!kvm_vcpu_has_pmu(vcpu))
1029 			return -ENODEV;
1030 
1031 		if (!kvm_arm_pmu_irq_initialized(vcpu))
1032 			return -ENXIO;
1033 
1034 		irq = vcpu->arch.pmu.irq_num;
1035 		return put_user(irq, uaddr);
1036 	}
1037 	}
1038 
1039 	return -ENXIO;
1040 }
1041 
1042 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1043 {
1044 	switch (attr->attr) {
1045 	case KVM_ARM_VCPU_PMU_V3_IRQ:
1046 	case KVM_ARM_VCPU_PMU_V3_INIT:
1047 	case KVM_ARM_VCPU_PMU_V3_FILTER:
1048 		if (kvm_vcpu_has_pmu(vcpu))
1049 			return 0;
1050 	}
1051 
1052 	return -ENXIO;
1053 }
1054