xref: /openbmc/linux/arch/arm64/kvm/arm.c (revision 13aeb9b400c5d7c5e979fdbbf994c787487f7889)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace_arm.h"
26 
27 #include <linux/uaccess.h>
28 #include <asm/ptrace.h>
29 #include <asm/mman.h>
30 #include <asm/tlbflush.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpufeature.h>
33 #include <asm/virt.h>
34 #include <asm/kvm_arm.h>
35 #include <asm/kvm_asm.h>
36 #include <asm/kvm_mmu.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_coproc.h>
39 #include <asm/sections.h>
40 
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44 
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension	virt");
47 #endif
48 
49 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
51 
52 /* The VMID used in the VTTBR */
53 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54 static u32 kvm_next_vmid;
55 static DEFINE_SPINLOCK(kvm_vmid_lock);
56 
57 static bool vgic_present;
58 
59 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61 
62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
63 {
64 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
65 }
66 
67 int kvm_arch_hardware_setup(void *opaque)
68 {
69 	return 0;
70 }
71 
72 int kvm_arch_check_processor_compat(void *opaque)
73 {
74 	return 0;
75 }
76 
77 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
78 			    struct kvm_enable_cap *cap)
79 {
80 	int r;
81 
82 	if (cap->flags)
83 		return -EINVAL;
84 
85 	switch (cap->cap) {
86 	case KVM_CAP_ARM_NISV_TO_USER:
87 		r = 0;
88 		kvm->arch.return_nisv_io_abort_to_user = true;
89 		break;
90 	default:
91 		r = -EINVAL;
92 		break;
93 	}
94 
95 	return r;
96 }
97 
98 static int kvm_arm_default_max_vcpus(void)
99 {
100 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
101 }
102 
103 /**
104  * kvm_arch_init_vm - initializes a VM data structure
105  * @kvm:	pointer to the KVM struct
106  */
107 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
108 {
109 	int ret, cpu;
110 
111 	ret = kvm_arm_setup_stage2(kvm, type);
112 	if (ret)
113 		return ret;
114 
115 	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
116 	if (!kvm->arch.last_vcpu_ran)
117 		return -ENOMEM;
118 
119 	for_each_possible_cpu(cpu)
120 		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
121 
122 	ret = kvm_alloc_stage2_pgd(kvm);
123 	if (ret)
124 		goto out_fail_alloc;
125 
126 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 	if (ret)
128 		goto out_free_stage2_pgd;
129 
130 	kvm_vgic_early_init(kvm);
131 
132 	/* Mark the initial VMID generation invalid */
133 	kvm->arch.vmid.vmid_gen = 0;
134 
135 	/* The maximum number of VCPUs is limited by the host's GIC model */
136 	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
137 
138 	return ret;
139 out_free_stage2_pgd:
140 	kvm_free_stage2_pgd(kvm);
141 out_fail_alloc:
142 	free_percpu(kvm->arch.last_vcpu_ran);
143 	kvm->arch.last_vcpu_ran = NULL;
144 	return ret;
145 }
146 
147 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
148 {
149 	return VM_FAULT_SIGBUS;
150 }
151 
152 
153 /**
154  * kvm_arch_destroy_vm - destroy the VM data structure
155  * @kvm:	pointer to the KVM struct
156  */
157 void kvm_arch_destroy_vm(struct kvm *kvm)
158 {
159 	int i;
160 
161 	kvm_vgic_destroy(kvm);
162 
163 	free_percpu(kvm->arch.last_vcpu_ran);
164 	kvm->arch.last_vcpu_ran = NULL;
165 
166 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
167 		if (kvm->vcpus[i]) {
168 			kvm_vcpu_destroy(kvm->vcpus[i]);
169 			kvm->vcpus[i] = NULL;
170 		}
171 	}
172 	atomic_set(&kvm->online_vcpus, 0);
173 }
174 
175 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
176 {
177 	int r;
178 	switch (ext) {
179 	case KVM_CAP_IRQCHIP:
180 		r = vgic_present;
181 		break;
182 	case KVM_CAP_IOEVENTFD:
183 	case KVM_CAP_DEVICE_CTRL:
184 	case KVM_CAP_USER_MEMORY:
185 	case KVM_CAP_SYNC_MMU:
186 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
187 	case KVM_CAP_ONE_REG:
188 	case KVM_CAP_ARM_PSCI:
189 	case KVM_CAP_ARM_PSCI_0_2:
190 	case KVM_CAP_READONLY_MEM:
191 	case KVM_CAP_MP_STATE:
192 	case KVM_CAP_IMMEDIATE_EXIT:
193 	case KVM_CAP_VCPU_EVENTS:
194 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
195 	case KVM_CAP_ARM_NISV_TO_USER:
196 	case KVM_CAP_ARM_INJECT_EXT_DABT:
197 		r = 1;
198 		break;
199 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
200 		r = 1;
201 		break;
202 	case KVM_CAP_NR_VCPUS:
203 		r = num_online_cpus();
204 		break;
205 	case KVM_CAP_MAX_VCPUS:
206 	case KVM_CAP_MAX_VCPU_ID:
207 		if (kvm)
208 			r = kvm->arch.max_vcpus;
209 		else
210 			r = kvm_arm_default_max_vcpus();
211 		break;
212 	case KVM_CAP_MSI_DEVID:
213 		if (!kvm)
214 			r = -EINVAL;
215 		else
216 			r = kvm->arch.vgic.msis_require_devid;
217 		break;
218 	case KVM_CAP_ARM_USER_IRQ:
219 		/*
220 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
221 		 * (bump this number if adding more devices)
222 		 */
223 		r = 1;
224 		break;
225 	default:
226 		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
227 		break;
228 	}
229 	return r;
230 }
231 
232 long kvm_arch_dev_ioctl(struct file *filp,
233 			unsigned int ioctl, unsigned long arg)
234 {
235 	return -EINVAL;
236 }
237 
238 struct kvm *kvm_arch_alloc_vm(void)
239 {
240 	if (!has_vhe())
241 		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
242 
243 	return vzalloc(sizeof(struct kvm));
244 }
245 
246 void kvm_arch_free_vm(struct kvm *kvm)
247 {
248 	if (!has_vhe())
249 		kfree(kvm);
250 	else
251 		vfree(kvm);
252 }
253 
254 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
255 {
256 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
257 		return -EBUSY;
258 
259 	if (id >= kvm->arch.max_vcpus)
260 		return -EINVAL;
261 
262 	return 0;
263 }
264 
265 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
266 {
267 	int err;
268 
269 	/* Force users to call KVM_ARM_VCPU_INIT */
270 	vcpu->arch.target = -1;
271 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
272 
273 	/* Set up the timer */
274 	kvm_timer_vcpu_init(vcpu);
275 
276 	kvm_pmu_vcpu_init(vcpu);
277 
278 	kvm_arm_reset_debug_ptr(vcpu);
279 
280 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
281 
282 	err = kvm_vgic_vcpu_init(vcpu);
283 	if (err)
284 		return err;
285 
286 	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
287 }
288 
289 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
290 {
291 }
292 
293 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
294 {
295 	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
296 		static_branch_dec(&userspace_irqchip_in_use);
297 
298 	kvm_mmu_free_memory_caches(vcpu);
299 	kvm_timer_vcpu_terminate(vcpu);
300 	kvm_pmu_vcpu_destroy(vcpu);
301 
302 	kvm_arm_vcpu_destroy(vcpu);
303 }
304 
305 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
306 {
307 	return kvm_timer_is_pending(vcpu);
308 }
309 
310 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
311 {
312 	/*
313 	 * If we're about to block (most likely because we've just hit a
314 	 * WFI), we need to sync back the state of the GIC CPU interface
315 	 * so that we have the latest PMR and group enables. This ensures
316 	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
317 	 * whether we have pending interrupts.
318 	 *
319 	 * For the same reason, we want to tell GICv4 that we need
320 	 * doorbells to be signalled, should an interrupt become pending.
321 	 */
322 	preempt_disable();
323 	kvm_vgic_vmcr_sync(vcpu);
324 	vgic_v4_put(vcpu, true);
325 	preempt_enable();
326 }
327 
328 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
329 {
330 	preempt_disable();
331 	vgic_v4_load(vcpu);
332 	preempt_enable();
333 }
334 
335 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
336 {
337 	int *last_ran;
338 
339 	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
340 
341 	/*
342 	 * We might get preempted before the vCPU actually runs, but
343 	 * over-invalidation doesn't affect correctness.
344 	 */
345 	if (*last_ran != vcpu->vcpu_id) {
346 		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
347 		*last_ran = vcpu->vcpu_id;
348 	}
349 
350 	vcpu->cpu = cpu;
351 
352 	kvm_vgic_load(vcpu);
353 	kvm_timer_vcpu_load(vcpu);
354 	if (has_vhe())
355 		kvm_vcpu_load_sysregs_vhe(vcpu);
356 	kvm_arch_vcpu_load_fp(vcpu);
357 	kvm_vcpu_pmu_restore_guest(vcpu);
358 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
359 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
360 
361 	if (single_task_running())
362 		vcpu_clear_wfx_traps(vcpu);
363 	else
364 		vcpu_set_wfx_traps(vcpu);
365 
366 	if (vcpu_has_ptrauth(vcpu))
367 		vcpu_ptrauth_disable(vcpu);
368 }
369 
370 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
371 {
372 	kvm_arch_vcpu_put_fp(vcpu);
373 	if (has_vhe())
374 		kvm_vcpu_put_sysregs_vhe(vcpu);
375 	kvm_timer_vcpu_put(vcpu);
376 	kvm_vgic_put(vcpu);
377 	kvm_vcpu_pmu_restore_host(vcpu);
378 
379 	vcpu->cpu = -1;
380 }
381 
382 static void vcpu_power_off(struct kvm_vcpu *vcpu)
383 {
384 	vcpu->arch.power_off = true;
385 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
386 	kvm_vcpu_kick(vcpu);
387 }
388 
389 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
390 				    struct kvm_mp_state *mp_state)
391 {
392 	if (vcpu->arch.power_off)
393 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
394 	else
395 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
396 
397 	return 0;
398 }
399 
400 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
401 				    struct kvm_mp_state *mp_state)
402 {
403 	int ret = 0;
404 
405 	switch (mp_state->mp_state) {
406 	case KVM_MP_STATE_RUNNABLE:
407 		vcpu->arch.power_off = false;
408 		break;
409 	case KVM_MP_STATE_STOPPED:
410 		vcpu_power_off(vcpu);
411 		break;
412 	default:
413 		ret = -EINVAL;
414 	}
415 
416 	return ret;
417 }
418 
419 /**
420  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
421  * @v:		The VCPU pointer
422  *
423  * If the guest CPU is not waiting for interrupts or an interrupt line is
424  * asserted, the CPU is by definition runnable.
425  */
426 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
427 {
428 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
429 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
430 		&& !v->arch.power_off && !v->arch.pause);
431 }
432 
433 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
434 {
435 	return vcpu_mode_priv(vcpu);
436 }
437 
438 /* Just ensure a guest exit from a particular CPU */
439 static void exit_vm_noop(void *info)
440 {
441 }
442 
443 void force_vm_exit(const cpumask_t *mask)
444 {
445 	preempt_disable();
446 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
447 	preempt_enable();
448 }
449 
450 /**
451  * need_new_vmid_gen - check that the VMID is still valid
452  * @vmid: The VMID to check
453  *
454  * return true if there is a new generation of VMIDs being used
455  *
456  * The hardware supports a limited set of values with the value zero reserved
457  * for the host, so we check if an assigned value belongs to a previous
458  * generation, which requires us to assign a new value. If we're the first to
459  * use a VMID for the new generation, we must flush necessary caches and TLBs
460  * on all CPUs.
461  */
462 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
463 {
464 	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
465 	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
466 	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
467 }
468 
469 /**
470  * update_vmid - Update the vmid with a valid VMID for the current generation
471  * @kvm: The guest that struct vmid belongs to
472  * @vmid: The stage-2 VMID information struct
473  */
474 static void update_vmid(struct kvm_vmid *vmid)
475 {
476 	if (!need_new_vmid_gen(vmid))
477 		return;
478 
479 	spin_lock(&kvm_vmid_lock);
480 
481 	/*
482 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
483 	 * already allocated a valid vmid for this vm, then this vcpu should
484 	 * use the same vmid.
485 	 */
486 	if (!need_new_vmid_gen(vmid)) {
487 		spin_unlock(&kvm_vmid_lock);
488 		return;
489 	}
490 
491 	/* First user of a new VMID generation? */
492 	if (unlikely(kvm_next_vmid == 0)) {
493 		atomic64_inc(&kvm_vmid_gen);
494 		kvm_next_vmid = 1;
495 
496 		/*
497 		 * On SMP we know no other CPUs can use this CPU's or each
498 		 * other's VMID after force_vm_exit returns since the
499 		 * kvm_vmid_lock blocks them from reentry to the guest.
500 		 */
501 		force_vm_exit(cpu_all_mask);
502 		/*
503 		 * Now broadcast TLB + ICACHE invalidation over the inner
504 		 * shareable domain to make sure all data structures are
505 		 * clean.
506 		 */
507 		kvm_call_hyp(__kvm_flush_vm_context);
508 	}
509 
510 	vmid->vmid = kvm_next_vmid;
511 	kvm_next_vmid++;
512 	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
513 
514 	smp_wmb();
515 	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
516 
517 	spin_unlock(&kvm_vmid_lock);
518 }
519 
520 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
521 {
522 	struct kvm *kvm = vcpu->kvm;
523 	int ret = 0;
524 
525 	if (likely(vcpu->arch.has_run_once))
526 		return 0;
527 
528 	if (!kvm_arm_vcpu_is_finalized(vcpu))
529 		return -EPERM;
530 
531 	vcpu->arch.has_run_once = true;
532 
533 	if (likely(irqchip_in_kernel(kvm))) {
534 		/*
535 		 * Map the VGIC hardware resources before running a vcpu the
536 		 * first time on this VM.
537 		 */
538 		if (unlikely(!vgic_ready(kvm))) {
539 			ret = kvm_vgic_map_resources(kvm);
540 			if (ret)
541 				return ret;
542 		}
543 	} else {
544 		/*
545 		 * Tell the rest of the code that there are userspace irqchip
546 		 * VMs in the wild.
547 		 */
548 		static_branch_inc(&userspace_irqchip_in_use);
549 	}
550 
551 	ret = kvm_timer_enable(vcpu);
552 	if (ret)
553 		return ret;
554 
555 	ret = kvm_arm_pmu_v3_enable(vcpu);
556 
557 	return ret;
558 }
559 
560 bool kvm_arch_intc_initialized(struct kvm *kvm)
561 {
562 	return vgic_initialized(kvm);
563 }
564 
565 void kvm_arm_halt_guest(struct kvm *kvm)
566 {
567 	int i;
568 	struct kvm_vcpu *vcpu;
569 
570 	kvm_for_each_vcpu(i, vcpu, kvm)
571 		vcpu->arch.pause = true;
572 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
573 }
574 
575 void kvm_arm_resume_guest(struct kvm *kvm)
576 {
577 	int i;
578 	struct kvm_vcpu *vcpu;
579 
580 	kvm_for_each_vcpu(i, vcpu, kvm) {
581 		vcpu->arch.pause = false;
582 		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
583 	}
584 }
585 
586 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
587 {
588 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
589 
590 	rcuwait_wait_event(wait,
591 			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
592 			   TASK_INTERRUPTIBLE);
593 
594 	if (vcpu->arch.power_off || vcpu->arch.pause) {
595 		/* Awaken to handle a signal, request we sleep again later. */
596 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
597 	}
598 
599 	/*
600 	 * Make sure we will observe a potential reset request if we've
601 	 * observed a change to the power state. Pairs with the smp_wmb() in
602 	 * kvm_psci_vcpu_on().
603 	 */
604 	smp_rmb();
605 }
606 
607 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
608 {
609 	return vcpu->arch.target >= 0;
610 }
611 
612 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
613 {
614 	if (kvm_request_pending(vcpu)) {
615 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
616 			vcpu_req_sleep(vcpu);
617 
618 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
619 			kvm_reset_vcpu(vcpu);
620 
621 		/*
622 		 * Clear IRQ_PENDING requests that were made to guarantee
623 		 * that a VCPU sees new virtual interrupts.
624 		 */
625 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
626 
627 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
628 			kvm_update_stolen_time(vcpu);
629 
630 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
631 			/* The distributor enable bits were changed */
632 			preempt_disable();
633 			vgic_v4_put(vcpu, false);
634 			vgic_v4_load(vcpu);
635 			preempt_enable();
636 		}
637 	}
638 }
639 
640 /**
641  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
642  * @vcpu:	The VCPU pointer
643  *
644  * This function is called through the VCPU_RUN ioctl called from user space. It
645  * will execute VM code in a loop until the time slice for the process is used
646  * or some emulation is needed from user space in which case the function will
647  * return with return value 0 and with the kvm_run structure filled in with the
648  * required data for the requested emulation.
649  */
650 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
651 {
652 	struct kvm_run *run = vcpu->run;
653 	int ret;
654 
655 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
656 		return -ENOEXEC;
657 
658 	ret = kvm_vcpu_first_run_init(vcpu);
659 	if (ret)
660 		return ret;
661 
662 	if (run->exit_reason == KVM_EXIT_MMIO) {
663 		ret = kvm_handle_mmio_return(vcpu, run);
664 		if (ret)
665 			return ret;
666 	}
667 
668 	if (run->immediate_exit)
669 		return -EINTR;
670 
671 	vcpu_load(vcpu);
672 
673 	kvm_sigset_activate(vcpu);
674 
675 	ret = 1;
676 	run->exit_reason = KVM_EXIT_UNKNOWN;
677 	while (ret > 0) {
678 		/*
679 		 * Check conditions before entering the guest
680 		 */
681 		cond_resched();
682 
683 		update_vmid(&vcpu->kvm->arch.vmid);
684 
685 		check_vcpu_requests(vcpu);
686 
687 		/*
688 		 * Preparing the interrupts to be injected also
689 		 * involves poking the GIC, which must be done in a
690 		 * non-preemptible context.
691 		 */
692 		preempt_disable();
693 
694 		kvm_pmu_flush_hwstate(vcpu);
695 
696 		local_irq_disable();
697 
698 		kvm_vgic_flush_hwstate(vcpu);
699 
700 		/*
701 		 * Exit if we have a signal pending so that we can deliver the
702 		 * signal to user space.
703 		 */
704 		if (signal_pending(current)) {
705 			ret = -EINTR;
706 			run->exit_reason = KVM_EXIT_INTR;
707 		}
708 
709 		/*
710 		 * If we're using a userspace irqchip, then check if we need
711 		 * to tell a userspace irqchip about timer or PMU level
712 		 * changes and if so, exit to userspace (the actual level
713 		 * state gets updated in kvm_timer_update_run and
714 		 * kvm_pmu_update_run below).
715 		 */
716 		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
717 			if (kvm_timer_should_notify_user(vcpu) ||
718 			    kvm_pmu_should_notify_user(vcpu)) {
719 				ret = -EINTR;
720 				run->exit_reason = KVM_EXIT_INTR;
721 			}
722 		}
723 
724 		/*
725 		 * Ensure we set mode to IN_GUEST_MODE after we disable
726 		 * interrupts and before the final VCPU requests check.
727 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
728 		 * Documentation/virt/kvm/vcpu-requests.rst
729 		 */
730 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
731 
732 		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
733 		    kvm_request_pending(vcpu)) {
734 			vcpu->mode = OUTSIDE_GUEST_MODE;
735 			isb(); /* Ensure work in x_flush_hwstate is committed */
736 			kvm_pmu_sync_hwstate(vcpu);
737 			if (static_branch_unlikely(&userspace_irqchip_in_use))
738 				kvm_timer_sync_hwstate(vcpu);
739 			kvm_vgic_sync_hwstate(vcpu);
740 			local_irq_enable();
741 			preempt_enable();
742 			continue;
743 		}
744 
745 		kvm_arm_setup_debug(vcpu);
746 
747 		/**************************************************************
748 		 * Enter the guest
749 		 */
750 		trace_kvm_entry(*vcpu_pc(vcpu));
751 		guest_enter_irqoff();
752 
753 		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
754 
755 		vcpu->mode = OUTSIDE_GUEST_MODE;
756 		vcpu->stat.exits++;
757 		/*
758 		 * Back from guest
759 		 *************************************************************/
760 
761 		kvm_arm_clear_debug(vcpu);
762 
763 		/*
764 		 * We must sync the PMU state before the vgic state so
765 		 * that the vgic can properly sample the updated state of the
766 		 * interrupt line.
767 		 */
768 		kvm_pmu_sync_hwstate(vcpu);
769 
770 		/*
771 		 * Sync the vgic state before syncing the timer state because
772 		 * the timer code needs to know if the virtual timer
773 		 * interrupts are active.
774 		 */
775 		kvm_vgic_sync_hwstate(vcpu);
776 
777 		/*
778 		 * Sync the timer hardware state before enabling interrupts as
779 		 * we don't want vtimer interrupts to race with syncing the
780 		 * timer virtual interrupt state.
781 		 */
782 		if (static_branch_unlikely(&userspace_irqchip_in_use))
783 			kvm_timer_sync_hwstate(vcpu);
784 
785 		kvm_arch_vcpu_ctxsync_fp(vcpu);
786 
787 		/*
788 		 * We may have taken a host interrupt in HYP mode (ie
789 		 * while executing the guest). This interrupt is still
790 		 * pending, as we haven't serviced it yet!
791 		 *
792 		 * We're now back in SVC mode, with interrupts
793 		 * disabled.  Enabling the interrupts now will have
794 		 * the effect of taking the interrupt again, in SVC
795 		 * mode this time.
796 		 */
797 		local_irq_enable();
798 
799 		/*
800 		 * We do local_irq_enable() before calling guest_exit() so
801 		 * that if a timer interrupt hits while running the guest we
802 		 * account that tick as being spent in the guest.  We enable
803 		 * preemption after calling guest_exit() so that if we get
804 		 * preempted we make sure ticks after that is not counted as
805 		 * guest time.
806 		 */
807 		guest_exit();
808 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
809 
810 		/* Exit types that need handling before we can be preempted */
811 		handle_exit_early(vcpu, run, ret);
812 
813 		preempt_enable();
814 
815 		ret = handle_exit(vcpu, run, ret);
816 	}
817 
818 	/* Tell userspace about in-kernel device output levels */
819 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
820 		kvm_timer_update_run(vcpu);
821 		kvm_pmu_update_run(vcpu);
822 	}
823 
824 	kvm_sigset_deactivate(vcpu);
825 
826 	vcpu_put(vcpu);
827 	return ret;
828 }
829 
830 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
831 {
832 	int bit_index;
833 	bool set;
834 	unsigned long *hcr;
835 
836 	if (number == KVM_ARM_IRQ_CPU_IRQ)
837 		bit_index = __ffs(HCR_VI);
838 	else /* KVM_ARM_IRQ_CPU_FIQ */
839 		bit_index = __ffs(HCR_VF);
840 
841 	hcr = vcpu_hcr(vcpu);
842 	if (level)
843 		set = test_and_set_bit(bit_index, hcr);
844 	else
845 		set = test_and_clear_bit(bit_index, hcr);
846 
847 	/*
848 	 * If we didn't change anything, no need to wake up or kick other CPUs
849 	 */
850 	if (set == level)
851 		return 0;
852 
853 	/*
854 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
855 	 * trigger a world-switch round on the running physical CPU to set the
856 	 * virtual IRQ/FIQ fields in the HCR appropriately.
857 	 */
858 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
859 	kvm_vcpu_kick(vcpu);
860 
861 	return 0;
862 }
863 
864 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
865 			  bool line_status)
866 {
867 	u32 irq = irq_level->irq;
868 	unsigned int irq_type, vcpu_idx, irq_num;
869 	int nrcpus = atomic_read(&kvm->online_vcpus);
870 	struct kvm_vcpu *vcpu = NULL;
871 	bool level = irq_level->level;
872 
873 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
874 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
875 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
876 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
877 
878 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
879 
880 	switch (irq_type) {
881 	case KVM_ARM_IRQ_TYPE_CPU:
882 		if (irqchip_in_kernel(kvm))
883 			return -ENXIO;
884 
885 		if (vcpu_idx >= nrcpus)
886 			return -EINVAL;
887 
888 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
889 		if (!vcpu)
890 			return -EINVAL;
891 
892 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
893 			return -EINVAL;
894 
895 		return vcpu_interrupt_line(vcpu, irq_num, level);
896 	case KVM_ARM_IRQ_TYPE_PPI:
897 		if (!irqchip_in_kernel(kvm))
898 			return -ENXIO;
899 
900 		if (vcpu_idx >= nrcpus)
901 			return -EINVAL;
902 
903 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
904 		if (!vcpu)
905 			return -EINVAL;
906 
907 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
908 			return -EINVAL;
909 
910 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
911 	case KVM_ARM_IRQ_TYPE_SPI:
912 		if (!irqchip_in_kernel(kvm))
913 			return -ENXIO;
914 
915 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
916 			return -EINVAL;
917 
918 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
919 	}
920 
921 	return -EINVAL;
922 }
923 
924 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
925 			       const struct kvm_vcpu_init *init)
926 {
927 	unsigned int i, ret;
928 	int phys_target = kvm_target_cpu();
929 
930 	if (init->target != phys_target)
931 		return -EINVAL;
932 
933 	/*
934 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
935 	 * use the same target.
936 	 */
937 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
938 		return -EINVAL;
939 
940 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
941 	for (i = 0; i < sizeof(init->features) * 8; i++) {
942 		bool set = (init->features[i / 32] & (1 << (i % 32)));
943 
944 		if (set && i >= KVM_VCPU_MAX_FEATURES)
945 			return -ENOENT;
946 
947 		/*
948 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
949 		 * use the same feature set.
950 		 */
951 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
952 		    test_bit(i, vcpu->arch.features) != set)
953 			return -EINVAL;
954 
955 		if (set)
956 			set_bit(i, vcpu->arch.features);
957 	}
958 
959 	vcpu->arch.target = phys_target;
960 
961 	/* Now we know what it is, we can reset it. */
962 	ret = kvm_reset_vcpu(vcpu);
963 	if (ret) {
964 		vcpu->arch.target = -1;
965 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
966 	}
967 
968 	return ret;
969 }
970 
971 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
972 					 struct kvm_vcpu_init *init)
973 {
974 	int ret;
975 
976 	ret = kvm_vcpu_set_target(vcpu, init);
977 	if (ret)
978 		return ret;
979 
980 	/*
981 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
982 	 * guest MMU is turned off and flush the caches as needed.
983 	 *
984 	 * S2FWB enforces all memory accesses to RAM being cacheable,
985 	 * ensuring that the data side is always coherent. We still
986 	 * need to invalidate the I-cache though, as FWB does *not*
987 	 * imply CTR_EL0.DIC.
988 	 */
989 	if (vcpu->arch.has_run_once) {
990 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
991 			stage2_unmap_vm(vcpu->kvm);
992 		else
993 			__flush_icache_all();
994 	}
995 
996 	vcpu_reset_hcr(vcpu);
997 
998 	/*
999 	 * Handle the "start in power-off" case.
1000 	 */
1001 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1002 		vcpu_power_off(vcpu);
1003 	else
1004 		vcpu->arch.power_off = false;
1005 
1006 	return 0;
1007 }
1008 
1009 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1010 				 struct kvm_device_attr *attr)
1011 {
1012 	int ret = -ENXIO;
1013 
1014 	switch (attr->group) {
1015 	default:
1016 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1017 		break;
1018 	}
1019 
1020 	return ret;
1021 }
1022 
1023 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1024 				 struct kvm_device_attr *attr)
1025 {
1026 	int ret = -ENXIO;
1027 
1028 	switch (attr->group) {
1029 	default:
1030 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1031 		break;
1032 	}
1033 
1034 	return ret;
1035 }
1036 
1037 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1038 				 struct kvm_device_attr *attr)
1039 {
1040 	int ret = -ENXIO;
1041 
1042 	switch (attr->group) {
1043 	default:
1044 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1045 		break;
1046 	}
1047 
1048 	return ret;
1049 }
1050 
1051 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1052 				   struct kvm_vcpu_events *events)
1053 {
1054 	memset(events, 0, sizeof(*events));
1055 
1056 	return __kvm_arm_vcpu_get_events(vcpu, events);
1057 }
1058 
1059 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1060 				   struct kvm_vcpu_events *events)
1061 {
1062 	int i;
1063 
1064 	/* check whether the reserved field is zero */
1065 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1066 		if (events->reserved[i])
1067 			return -EINVAL;
1068 
1069 	/* check whether the pad field is zero */
1070 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1071 		if (events->exception.pad[i])
1072 			return -EINVAL;
1073 
1074 	return __kvm_arm_vcpu_set_events(vcpu, events);
1075 }
1076 
1077 long kvm_arch_vcpu_ioctl(struct file *filp,
1078 			 unsigned int ioctl, unsigned long arg)
1079 {
1080 	struct kvm_vcpu *vcpu = filp->private_data;
1081 	void __user *argp = (void __user *)arg;
1082 	struct kvm_device_attr attr;
1083 	long r;
1084 
1085 	switch (ioctl) {
1086 	case KVM_ARM_VCPU_INIT: {
1087 		struct kvm_vcpu_init init;
1088 
1089 		r = -EFAULT;
1090 		if (copy_from_user(&init, argp, sizeof(init)))
1091 			break;
1092 
1093 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1094 		break;
1095 	}
1096 	case KVM_SET_ONE_REG:
1097 	case KVM_GET_ONE_REG: {
1098 		struct kvm_one_reg reg;
1099 
1100 		r = -ENOEXEC;
1101 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1102 			break;
1103 
1104 		r = -EFAULT;
1105 		if (copy_from_user(&reg, argp, sizeof(reg)))
1106 			break;
1107 
1108 		if (ioctl == KVM_SET_ONE_REG)
1109 			r = kvm_arm_set_reg(vcpu, &reg);
1110 		else
1111 			r = kvm_arm_get_reg(vcpu, &reg);
1112 		break;
1113 	}
1114 	case KVM_GET_REG_LIST: {
1115 		struct kvm_reg_list __user *user_list = argp;
1116 		struct kvm_reg_list reg_list;
1117 		unsigned n;
1118 
1119 		r = -ENOEXEC;
1120 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1121 			break;
1122 
1123 		r = -EPERM;
1124 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1125 			break;
1126 
1127 		r = -EFAULT;
1128 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1129 			break;
1130 		n = reg_list.n;
1131 		reg_list.n = kvm_arm_num_regs(vcpu);
1132 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1133 			break;
1134 		r = -E2BIG;
1135 		if (n < reg_list.n)
1136 			break;
1137 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1138 		break;
1139 	}
1140 	case KVM_SET_DEVICE_ATTR: {
1141 		r = -EFAULT;
1142 		if (copy_from_user(&attr, argp, sizeof(attr)))
1143 			break;
1144 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1145 		break;
1146 	}
1147 	case KVM_GET_DEVICE_ATTR: {
1148 		r = -EFAULT;
1149 		if (copy_from_user(&attr, argp, sizeof(attr)))
1150 			break;
1151 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1152 		break;
1153 	}
1154 	case KVM_HAS_DEVICE_ATTR: {
1155 		r = -EFAULT;
1156 		if (copy_from_user(&attr, argp, sizeof(attr)))
1157 			break;
1158 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1159 		break;
1160 	}
1161 	case KVM_GET_VCPU_EVENTS: {
1162 		struct kvm_vcpu_events events;
1163 
1164 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1165 			return -EINVAL;
1166 
1167 		if (copy_to_user(argp, &events, sizeof(events)))
1168 			return -EFAULT;
1169 
1170 		return 0;
1171 	}
1172 	case KVM_SET_VCPU_EVENTS: {
1173 		struct kvm_vcpu_events events;
1174 
1175 		if (copy_from_user(&events, argp, sizeof(events)))
1176 			return -EFAULT;
1177 
1178 		return kvm_arm_vcpu_set_events(vcpu, &events);
1179 	}
1180 	case KVM_ARM_VCPU_FINALIZE: {
1181 		int what;
1182 
1183 		if (!kvm_vcpu_initialized(vcpu))
1184 			return -ENOEXEC;
1185 
1186 		if (get_user(what, (const int __user *)argp))
1187 			return -EFAULT;
1188 
1189 		return kvm_arm_vcpu_finalize(vcpu, what);
1190 	}
1191 	default:
1192 		r = -EINVAL;
1193 	}
1194 
1195 	return r;
1196 }
1197 
1198 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1199 {
1200 
1201 }
1202 
1203 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1204 					struct kvm_memory_slot *memslot)
1205 {
1206 	kvm_flush_remote_tlbs(kvm);
1207 }
1208 
1209 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1210 					struct kvm_arm_device_addr *dev_addr)
1211 {
1212 	unsigned long dev_id, type;
1213 
1214 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1215 		KVM_ARM_DEVICE_ID_SHIFT;
1216 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1217 		KVM_ARM_DEVICE_TYPE_SHIFT;
1218 
1219 	switch (dev_id) {
1220 	case KVM_ARM_DEVICE_VGIC_V2:
1221 		if (!vgic_present)
1222 			return -ENXIO;
1223 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1224 	default:
1225 		return -ENODEV;
1226 	}
1227 }
1228 
1229 long kvm_arch_vm_ioctl(struct file *filp,
1230 		       unsigned int ioctl, unsigned long arg)
1231 {
1232 	struct kvm *kvm = filp->private_data;
1233 	void __user *argp = (void __user *)arg;
1234 
1235 	switch (ioctl) {
1236 	case KVM_CREATE_IRQCHIP: {
1237 		int ret;
1238 		if (!vgic_present)
1239 			return -ENXIO;
1240 		mutex_lock(&kvm->lock);
1241 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1242 		mutex_unlock(&kvm->lock);
1243 		return ret;
1244 	}
1245 	case KVM_ARM_SET_DEVICE_ADDR: {
1246 		struct kvm_arm_device_addr dev_addr;
1247 
1248 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1249 			return -EFAULT;
1250 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1251 	}
1252 	case KVM_ARM_PREFERRED_TARGET: {
1253 		int err;
1254 		struct kvm_vcpu_init init;
1255 
1256 		err = kvm_vcpu_preferred_target(&init);
1257 		if (err)
1258 			return err;
1259 
1260 		if (copy_to_user(argp, &init, sizeof(init)))
1261 			return -EFAULT;
1262 
1263 		return 0;
1264 	}
1265 	default:
1266 		return -EINVAL;
1267 	}
1268 }
1269 
1270 static void cpu_init_hyp_mode(void)
1271 {
1272 	phys_addr_t pgd_ptr;
1273 	unsigned long hyp_stack_ptr;
1274 	unsigned long vector_ptr;
1275 	unsigned long tpidr_el2;
1276 
1277 	/* Switch from the HYP stub to our own HYP init vector */
1278 	__hyp_set_vectors(kvm_get_idmap_vector());
1279 
1280 	/*
1281 	 * Calculate the raw per-cpu offset without a translation from the
1282 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1283 	 * so that we can use adr_l to access per-cpu variables in EL2.
1284 	 */
1285 	tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
1286 		     (unsigned long)kvm_ksym_ref(&kvm_host_data));
1287 
1288 	pgd_ptr = kvm_mmu_get_httbr();
1289 	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1290 	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1291 
1292 	/*
1293 	 * Call initialization code, and switch to the full blown HYP code.
1294 	 * If the cpucaps haven't been finalized yet, something has gone very
1295 	 * wrong, and hyp will crash and burn when it uses any
1296 	 * cpus_have_const_cap() wrapper.
1297 	 */
1298 	BUG_ON(!system_capabilities_finalized());
1299 	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
1300 
1301 	/*
1302 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1303 	 * at EL2.
1304 	 */
1305 	if (this_cpu_has_cap(ARM64_SSBS) &&
1306 	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1307 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1308 	}
1309 }
1310 
1311 static void cpu_hyp_reset(void)
1312 {
1313 	if (!is_kernel_in_hyp_mode())
1314 		__hyp_reset_vectors();
1315 }
1316 
1317 static void cpu_hyp_reinit(void)
1318 {
1319 	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1320 
1321 	cpu_hyp_reset();
1322 
1323 	if (is_kernel_in_hyp_mode())
1324 		kvm_timer_init_vhe();
1325 	else
1326 		cpu_init_hyp_mode();
1327 
1328 	kvm_arm_init_debug();
1329 
1330 	if (vgic_present)
1331 		kvm_vgic_init_cpu_hardware();
1332 }
1333 
1334 static void _kvm_arch_hardware_enable(void *discard)
1335 {
1336 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1337 		cpu_hyp_reinit();
1338 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1339 	}
1340 }
1341 
1342 int kvm_arch_hardware_enable(void)
1343 {
1344 	_kvm_arch_hardware_enable(NULL);
1345 	return 0;
1346 }
1347 
1348 static void _kvm_arch_hardware_disable(void *discard)
1349 {
1350 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1351 		cpu_hyp_reset();
1352 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1353 	}
1354 }
1355 
1356 void kvm_arch_hardware_disable(void)
1357 {
1358 	_kvm_arch_hardware_disable(NULL);
1359 }
1360 
1361 #ifdef CONFIG_CPU_PM
1362 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1363 				    unsigned long cmd,
1364 				    void *v)
1365 {
1366 	/*
1367 	 * kvm_arm_hardware_enabled is left with its old value over
1368 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1369 	 * re-enable hyp.
1370 	 */
1371 	switch (cmd) {
1372 	case CPU_PM_ENTER:
1373 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1374 			/*
1375 			 * don't update kvm_arm_hardware_enabled here
1376 			 * so that the hardware will be re-enabled
1377 			 * when we resume. See below.
1378 			 */
1379 			cpu_hyp_reset();
1380 
1381 		return NOTIFY_OK;
1382 	case CPU_PM_ENTER_FAILED:
1383 	case CPU_PM_EXIT:
1384 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1385 			/* The hardware was enabled before suspend. */
1386 			cpu_hyp_reinit();
1387 
1388 		return NOTIFY_OK;
1389 
1390 	default:
1391 		return NOTIFY_DONE;
1392 	}
1393 }
1394 
1395 static struct notifier_block hyp_init_cpu_pm_nb = {
1396 	.notifier_call = hyp_init_cpu_pm_notifier,
1397 };
1398 
1399 static void __init hyp_cpu_pm_init(void)
1400 {
1401 	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1402 }
1403 static void __init hyp_cpu_pm_exit(void)
1404 {
1405 	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1406 }
1407 #else
1408 static inline void hyp_cpu_pm_init(void)
1409 {
1410 }
1411 static inline void hyp_cpu_pm_exit(void)
1412 {
1413 }
1414 #endif
1415 
1416 static int init_common_resources(void)
1417 {
1418 	return kvm_set_ipa_limit();
1419 }
1420 
1421 static int init_subsystems(void)
1422 {
1423 	int err = 0;
1424 
1425 	/*
1426 	 * Enable hardware so that subsystem initialisation can access EL2.
1427 	 */
1428 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1429 
1430 	/*
1431 	 * Register CPU lower-power notifier
1432 	 */
1433 	hyp_cpu_pm_init();
1434 
1435 	/*
1436 	 * Init HYP view of VGIC
1437 	 */
1438 	err = kvm_vgic_hyp_init();
1439 	switch (err) {
1440 	case 0:
1441 		vgic_present = true;
1442 		break;
1443 	case -ENODEV:
1444 	case -ENXIO:
1445 		vgic_present = false;
1446 		err = 0;
1447 		break;
1448 	default:
1449 		goto out;
1450 	}
1451 
1452 	/*
1453 	 * Init HYP architected timer support
1454 	 */
1455 	err = kvm_timer_hyp_init(vgic_present);
1456 	if (err)
1457 		goto out;
1458 
1459 	kvm_perf_init();
1460 	kvm_coproc_table_init();
1461 
1462 out:
1463 	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1464 
1465 	return err;
1466 }
1467 
1468 static void teardown_hyp_mode(void)
1469 {
1470 	int cpu;
1471 
1472 	free_hyp_pgds();
1473 	for_each_possible_cpu(cpu)
1474 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1475 }
1476 
1477 /**
1478  * Inits Hyp-mode on all online CPUs
1479  */
1480 static int init_hyp_mode(void)
1481 {
1482 	int cpu;
1483 	int err = 0;
1484 
1485 	/*
1486 	 * Allocate Hyp PGD and setup Hyp identity mapping
1487 	 */
1488 	err = kvm_mmu_init();
1489 	if (err)
1490 		goto out_err;
1491 
1492 	/*
1493 	 * Allocate stack pages for Hypervisor-mode
1494 	 */
1495 	for_each_possible_cpu(cpu) {
1496 		unsigned long stack_page;
1497 
1498 		stack_page = __get_free_page(GFP_KERNEL);
1499 		if (!stack_page) {
1500 			err = -ENOMEM;
1501 			goto out_err;
1502 		}
1503 
1504 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1505 	}
1506 
1507 	/*
1508 	 * Map the Hyp-code called directly from the host
1509 	 */
1510 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1511 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1512 	if (err) {
1513 		kvm_err("Cannot map world-switch code\n");
1514 		goto out_err;
1515 	}
1516 
1517 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1518 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1519 	if (err) {
1520 		kvm_err("Cannot map rodata section\n");
1521 		goto out_err;
1522 	}
1523 
1524 	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1525 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1526 	if (err) {
1527 		kvm_err("Cannot map bss section\n");
1528 		goto out_err;
1529 	}
1530 
1531 	err = kvm_map_vectors();
1532 	if (err) {
1533 		kvm_err("Cannot map vectors\n");
1534 		goto out_err;
1535 	}
1536 
1537 	/*
1538 	 * Map the Hyp stack pages
1539 	 */
1540 	for_each_possible_cpu(cpu) {
1541 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1542 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1543 					  PAGE_HYP);
1544 
1545 		if (err) {
1546 			kvm_err("Cannot map hyp stack\n");
1547 			goto out_err;
1548 		}
1549 	}
1550 
1551 	for_each_possible_cpu(cpu) {
1552 		kvm_host_data_t *cpu_data;
1553 
1554 		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1555 		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1556 
1557 		if (err) {
1558 			kvm_err("Cannot map host CPU state: %d\n", err);
1559 			goto out_err;
1560 		}
1561 	}
1562 
1563 	err = hyp_map_aux_data();
1564 	if (err)
1565 		kvm_err("Cannot map host auxiliary data: %d\n", err);
1566 
1567 	return 0;
1568 
1569 out_err:
1570 	teardown_hyp_mode();
1571 	kvm_err("error initializing Hyp mode: %d\n", err);
1572 	return err;
1573 }
1574 
1575 static void check_kvm_target_cpu(void *ret)
1576 {
1577 	*(int *)ret = kvm_target_cpu();
1578 }
1579 
1580 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1581 {
1582 	struct kvm_vcpu *vcpu;
1583 	int i;
1584 
1585 	mpidr &= MPIDR_HWID_BITMASK;
1586 	kvm_for_each_vcpu(i, vcpu, kvm) {
1587 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1588 			return vcpu;
1589 	}
1590 	return NULL;
1591 }
1592 
1593 bool kvm_arch_has_irq_bypass(void)
1594 {
1595 	return true;
1596 }
1597 
1598 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1599 				      struct irq_bypass_producer *prod)
1600 {
1601 	struct kvm_kernel_irqfd *irqfd =
1602 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1603 
1604 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1605 					  &irqfd->irq_entry);
1606 }
1607 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1608 				      struct irq_bypass_producer *prod)
1609 {
1610 	struct kvm_kernel_irqfd *irqfd =
1611 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1612 
1613 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1614 				     &irqfd->irq_entry);
1615 }
1616 
1617 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1618 {
1619 	struct kvm_kernel_irqfd *irqfd =
1620 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1621 
1622 	kvm_arm_halt_guest(irqfd->kvm);
1623 }
1624 
1625 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1626 {
1627 	struct kvm_kernel_irqfd *irqfd =
1628 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1629 
1630 	kvm_arm_resume_guest(irqfd->kvm);
1631 }
1632 
1633 /**
1634  * Initialize Hyp-mode and memory mappings on all CPUs.
1635  */
1636 int kvm_arch_init(void *opaque)
1637 {
1638 	int err;
1639 	int ret, cpu;
1640 	bool in_hyp_mode;
1641 
1642 	if (!is_hyp_mode_available()) {
1643 		kvm_info("HYP mode not available\n");
1644 		return -ENODEV;
1645 	}
1646 
1647 	in_hyp_mode = is_kernel_in_hyp_mode();
1648 
1649 	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1650 		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1651 		return -ENODEV;
1652 	}
1653 
1654 	for_each_online_cpu(cpu) {
1655 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1656 		if (ret < 0) {
1657 			kvm_err("Error, CPU %d not supported!\n", cpu);
1658 			return -ENODEV;
1659 		}
1660 	}
1661 
1662 	err = init_common_resources();
1663 	if (err)
1664 		return err;
1665 
1666 	err = kvm_arm_init_sve();
1667 	if (err)
1668 		return err;
1669 
1670 	if (!in_hyp_mode) {
1671 		err = init_hyp_mode();
1672 		if (err)
1673 			goto out_err;
1674 	}
1675 
1676 	err = init_subsystems();
1677 	if (err)
1678 		goto out_hyp;
1679 
1680 	if (in_hyp_mode)
1681 		kvm_info("VHE mode initialized successfully\n");
1682 	else
1683 		kvm_info("Hyp mode initialized successfully\n");
1684 
1685 	return 0;
1686 
1687 out_hyp:
1688 	hyp_cpu_pm_exit();
1689 	if (!in_hyp_mode)
1690 		teardown_hyp_mode();
1691 out_err:
1692 	return err;
1693 }
1694 
1695 /* NOP: Compiling as a module not supported */
1696 void kvm_arch_exit(void)
1697 {
1698 	kvm_perf_teardown();
1699 }
1700 
1701 static int arm_init(void)
1702 {
1703 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1704 	return rc;
1705 }
1706 
1707 module_init(arm_init);
1708