1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/errno.h> 10 #include <linux/err.h> 11 #include <linux/kvm_host.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/vmalloc.h> 15 #include <linux/fs.h> 16 #include <linux/mman.h> 17 #include <linux/sched.h> 18 #include <linux/kvm.h> 19 #include <linux/kvm_irqfd.h> 20 #include <linux/irqbypass.h> 21 #include <linux/sched/stat.h> 22 #include <trace/events/kvm.h> 23 24 #define CREATE_TRACE_POINTS 25 #include "trace_arm.h" 26 27 #include <linux/uaccess.h> 28 #include <asm/ptrace.h> 29 #include <asm/mman.h> 30 #include <asm/tlbflush.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpufeature.h> 33 #include <asm/virt.h> 34 #include <asm/kvm_arm.h> 35 #include <asm/kvm_asm.h> 36 #include <asm/kvm_mmu.h> 37 #include <asm/kvm_emulate.h> 38 #include <asm/kvm_coproc.h> 39 #include <asm/sections.h> 40 41 #include <kvm/arm_hypercalls.h> 42 #include <kvm/arm_pmu.h> 43 #include <kvm/arm_psci.h> 44 45 #ifdef REQUIRES_VIRT 46 __asm__(".arch_extension virt"); 47 #endif 48 49 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data); 50 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 51 52 /* The VMID used in the VTTBR */ 53 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); 54 static u32 kvm_next_vmid; 55 static DEFINE_SPINLOCK(kvm_vmid_lock); 56 57 static bool vgic_present; 58 59 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); 60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 61 62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 63 { 64 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 65 } 66 67 int kvm_arch_hardware_setup(void *opaque) 68 { 69 return 0; 70 } 71 72 int kvm_arch_check_processor_compat(void *opaque) 73 { 74 return 0; 75 } 76 77 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 78 struct kvm_enable_cap *cap) 79 { 80 int r; 81 82 if (cap->flags) 83 return -EINVAL; 84 85 switch (cap->cap) { 86 case KVM_CAP_ARM_NISV_TO_USER: 87 r = 0; 88 kvm->arch.return_nisv_io_abort_to_user = true; 89 break; 90 default: 91 r = -EINVAL; 92 break; 93 } 94 95 return r; 96 } 97 98 static int kvm_arm_default_max_vcpus(void) 99 { 100 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 101 } 102 103 /** 104 * kvm_arch_init_vm - initializes a VM data structure 105 * @kvm: pointer to the KVM struct 106 */ 107 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 108 { 109 int ret, cpu; 110 111 ret = kvm_arm_setup_stage2(kvm, type); 112 if (ret) 113 return ret; 114 115 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran)); 116 if (!kvm->arch.last_vcpu_ran) 117 return -ENOMEM; 118 119 for_each_possible_cpu(cpu) 120 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1; 121 122 ret = kvm_alloc_stage2_pgd(kvm); 123 if (ret) 124 goto out_fail_alloc; 125 126 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); 127 if (ret) 128 goto out_free_stage2_pgd; 129 130 kvm_vgic_early_init(kvm); 131 132 /* Mark the initial VMID generation invalid */ 133 kvm->arch.vmid.vmid_gen = 0; 134 135 /* The maximum number of VCPUs is limited by the host's GIC model */ 136 kvm->arch.max_vcpus = kvm_arm_default_max_vcpus(); 137 138 return ret; 139 out_free_stage2_pgd: 140 kvm_free_stage2_pgd(kvm); 141 out_fail_alloc: 142 free_percpu(kvm->arch.last_vcpu_ran); 143 kvm->arch.last_vcpu_ran = NULL; 144 return ret; 145 } 146 147 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 148 { 149 return VM_FAULT_SIGBUS; 150 } 151 152 153 /** 154 * kvm_arch_destroy_vm - destroy the VM data structure 155 * @kvm: pointer to the KVM struct 156 */ 157 void kvm_arch_destroy_vm(struct kvm *kvm) 158 { 159 int i; 160 161 kvm_vgic_destroy(kvm); 162 163 free_percpu(kvm->arch.last_vcpu_ran); 164 kvm->arch.last_vcpu_ran = NULL; 165 166 for (i = 0; i < KVM_MAX_VCPUS; ++i) { 167 if (kvm->vcpus[i]) { 168 kvm_vcpu_destroy(kvm->vcpus[i]); 169 kvm->vcpus[i] = NULL; 170 } 171 } 172 atomic_set(&kvm->online_vcpus, 0); 173 } 174 175 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 176 { 177 int r; 178 switch (ext) { 179 case KVM_CAP_IRQCHIP: 180 r = vgic_present; 181 break; 182 case KVM_CAP_IOEVENTFD: 183 case KVM_CAP_DEVICE_CTRL: 184 case KVM_CAP_USER_MEMORY: 185 case KVM_CAP_SYNC_MMU: 186 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 187 case KVM_CAP_ONE_REG: 188 case KVM_CAP_ARM_PSCI: 189 case KVM_CAP_ARM_PSCI_0_2: 190 case KVM_CAP_READONLY_MEM: 191 case KVM_CAP_MP_STATE: 192 case KVM_CAP_IMMEDIATE_EXIT: 193 case KVM_CAP_VCPU_EVENTS: 194 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 195 case KVM_CAP_ARM_NISV_TO_USER: 196 case KVM_CAP_ARM_INJECT_EXT_DABT: 197 r = 1; 198 break; 199 case KVM_CAP_ARM_SET_DEVICE_ADDR: 200 r = 1; 201 break; 202 case KVM_CAP_NR_VCPUS: 203 r = num_online_cpus(); 204 break; 205 case KVM_CAP_MAX_VCPUS: 206 case KVM_CAP_MAX_VCPU_ID: 207 if (kvm) 208 r = kvm->arch.max_vcpus; 209 else 210 r = kvm_arm_default_max_vcpus(); 211 break; 212 case KVM_CAP_MSI_DEVID: 213 if (!kvm) 214 r = -EINVAL; 215 else 216 r = kvm->arch.vgic.msis_require_devid; 217 break; 218 case KVM_CAP_ARM_USER_IRQ: 219 /* 220 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 221 * (bump this number if adding more devices) 222 */ 223 r = 1; 224 break; 225 default: 226 r = kvm_arch_vm_ioctl_check_extension(kvm, ext); 227 break; 228 } 229 return r; 230 } 231 232 long kvm_arch_dev_ioctl(struct file *filp, 233 unsigned int ioctl, unsigned long arg) 234 { 235 return -EINVAL; 236 } 237 238 struct kvm *kvm_arch_alloc_vm(void) 239 { 240 if (!has_vhe()) 241 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 242 243 return vzalloc(sizeof(struct kvm)); 244 } 245 246 void kvm_arch_free_vm(struct kvm *kvm) 247 { 248 if (!has_vhe()) 249 kfree(kvm); 250 else 251 vfree(kvm); 252 } 253 254 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 255 { 256 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 257 return -EBUSY; 258 259 if (id >= kvm->arch.max_vcpus) 260 return -EINVAL; 261 262 return 0; 263 } 264 265 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 266 { 267 int err; 268 269 /* Force users to call KVM_ARM_VCPU_INIT */ 270 vcpu->arch.target = -1; 271 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 272 273 /* Set up the timer */ 274 kvm_timer_vcpu_init(vcpu); 275 276 kvm_pmu_vcpu_init(vcpu); 277 278 kvm_arm_reset_debug_ptr(vcpu); 279 280 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 281 282 err = kvm_vgic_vcpu_init(vcpu); 283 if (err) 284 return err; 285 286 return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); 287 } 288 289 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 290 { 291 } 292 293 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 294 { 295 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm))) 296 static_branch_dec(&userspace_irqchip_in_use); 297 298 kvm_mmu_free_memory_caches(vcpu); 299 kvm_timer_vcpu_terminate(vcpu); 300 kvm_pmu_vcpu_destroy(vcpu); 301 302 kvm_arm_vcpu_destroy(vcpu); 303 } 304 305 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 306 { 307 return kvm_timer_is_pending(vcpu); 308 } 309 310 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 311 { 312 /* 313 * If we're about to block (most likely because we've just hit a 314 * WFI), we need to sync back the state of the GIC CPU interface 315 * so that we have the latest PMR and group enables. This ensures 316 * that kvm_arch_vcpu_runnable has up-to-date data to decide 317 * whether we have pending interrupts. 318 * 319 * For the same reason, we want to tell GICv4 that we need 320 * doorbells to be signalled, should an interrupt become pending. 321 */ 322 preempt_disable(); 323 kvm_vgic_vmcr_sync(vcpu); 324 vgic_v4_put(vcpu, true); 325 preempt_enable(); 326 } 327 328 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 329 { 330 preempt_disable(); 331 vgic_v4_load(vcpu); 332 preempt_enable(); 333 } 334 335 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 336 { 337 int *last_ran; 338 339 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran); 340 341 /* 342 * We might get preempted before the vCPU actually runs, but 343 * over-invalidation doesn't affect correctness. 344 */ 345 if (*last_ran != vcpu->vcpu_id) { 346 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu); 347 *last_ran = vcpu->vcpu_id; 348 } 349 350 vcpu->cpu = cpu; 351 352 kvm_vgic_load(vcpu); 353 kvm_timer_vcpu_load(vcpu); 354 if (has_vhe()) 355 kvm_vcpu_load_sysregs_vhe(vcpu); 356 kvm_arch_vcpu_load_fp(vcpu); 357 kvm_vcpu_pmu_restore_guest(vcpu); 358 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 359 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 360 361 if (single_task_running()) 362 vcpu_clear_wfx_traps(vcpu); 363 else 364 vcpu_set_wfx_traps(vcpu); 365 366 if (vcpu_has_ptrauth(vcpu)) 367 vcpu_ptrauth_disable(vcpu); 368 } 369 370 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 371 { 372 kvm_arch_vcpu_put_fp(vcpu); 373 if (has_vhe()) 374 kvm_vcpu_put_sysregs_vhe(vcpu); 375 kvm_timer_vcpu_put(vcpu); 376 kvm_vgic_put(vcpu); 377 kvm_vcpu_pmu_restore_host(vcpu); 378 379 vcpu->cpu = -1; 380 } 381 382 static void vcpu_power_off(struct kvm_vcpu *vcpu) 383 { 384 vcpu->arch.power_off = true; 385 kvm_make_request(KVM_REQ_SLEEP, vcpu); 386 kvm_vcpu_kick(vcpu); 387 } 388 389 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 390 struct kvm_mp_state *mp_state) 391 { 392 if (vcpu->arch.power_off) 393 mp_state->mp_state = KVM_MP_STATE_STOPPED; 394 else 395 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 396 397 return 0; 398 } 399 400 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 401 struct kvm_mp_state *mp_state) 402 { 403 int ret = 0; 404 405 switch (mp_state->mp_state) { 406 case KVM_MP_STATE_RUNNABLE: 407 vcpu->arch.power_off = false; 408 break; 409 case KVM_MP_STATE_STOPPED: 410 vcpu_power_off(vcpu); 411 break; 412 default: 413 ret = -EINVAL; 414 } 415 416 return ret; 417 } 418 419 /** 420 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 421 * @v: The VCPU pointer 422 * 423 * If the guest CPU is not waiting for interrupts or an interrupt line is 424 * asserted, the CPU is by definition runnable. 425 */ 426 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 427 { 428 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 429 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 430 && !v->arch.power_off && !v->arch.pause); 431 } 432 433 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 434 { 435 return vcpu_mode_priv(vcpu); 436 } 437 438 /* Just ensure a guest exit from a particular CPU */ 439 static void exit_vm_noop(void *info) 440 { 441 } 442 443 void force_vm_exit(const cpumask_t *mask) 444 { 445 preempt_disable(); 446 smp_call_function_many(mask, exit_vm_noop, NULL, true); 447 preempt_enable(); 448 } 449 450 /** 451 * need_new_vmid_gen - check that the VMID is still valid 452 * @vmid: The VMID to check 453 * 454 * return true if there is a new generation of VMIDs being used 455 * 456 * The hardware supports a limited set of values with the value zero reserved 457 * for the host, so we check if an assigned value belongs to a previous 458 * generation, which requires us to assign a new value. If we're the first to 459 * use a VMID for the new generation, we must flush necessary caches and TLBs 460 * on all CPUs. 461 */ 462 static bool need_new_vmid_gen(struct kvm_vmid *vmid) 463 { 464 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen); 465 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */ 466 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen); 467 } 468 469 /** 470 * update_vmid - Update the vmid with a valid VMID for the current generation 471 * @kvm: The guest that struct vmid belongs to 472 * @vmid: The stage-2 VMID information struct 473 */ 474 static void update_vmid(struct kvm_vmid *vmid) 475 { 476 if (!need_new_vmid_gen(vmid)) 477 return; 478 479 spin_lock(&kvm_vmid_lock); 480 481 /* 482 * We need to re-check the vmid_gen here to ensure that if another vcpu 483 * already allocated a valid vmid for this vm, then this vcpu should 484 * use the same vmid. 485 */ 486 if (!need_new_vmid_gen(vmid)) { 487 spin_unlock(&kvm_vmid_lock); 488 return; 489 } 490 491 /* First user of a new VMID generation? */ 492 if (unlikely(kvm_next_vmid == 0)) { 493 atomic64_inc(&kvm_vmid_gen); 494 kvm_next_vmid = 1; 495 496 /* 497 * On SMP we know no other CPUs can use this CPU's or each 498 * other's VMID after force_vm_exit returns since the 499 * kvm_vmid_lock blocks them from reentry to the guest. 500 */ 501 force_vm_exit(cpu_all_mask); 502 /* 503 * Now broadcast TLB + ICACHE invalidation over the inner 504 * shareable domain to make sure all data structures are 505 * clean. 506 */ 507 kvm_call_hyp(__kvm_flush_vm_context); 508 } 509 510 vmid->vmid = kvm_next_vmid; 511 kvm_next_vmid++; 512 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1; 513 514 smp_wmb(); 515 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen)); 516 517 spin_unlock(&kvm_vmid_lock); 518 } 519 520 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) 521 { 522 struct kvm *kvm = vcpu->kvm; 523 int ret = 0; 524 525 if (likely(vcpu->arch.has_run_once)) 526 return 0; 527 528 if (!kvm_arm_vcpu_is_finalized(vcpu)) 529 return -EPERM; 530 531 vcpu->arch.has_run_once = true; 532 533 if (likely(irqchip_in_kernel(kvm))) { 534 /* 535 * Map the VGIC hardware resources before running a vcpu the 536 * first time on this VM. 537 */ 538 if (unlikely(!vgic_ready(kvm))) { 539 ret = kvm_vgic_map_resources(kvm); 540 if (ret) 541 return ret; 542 } 543 } else { 544 /* 545 * Tell the rest of the code that there are userspace irqchip 546 * VMs in the wild. 547 */ 548 static_branch_inc(&userspace_irqchip_in_use); 549 } 550 551 ret = kvm_timer_enable(vcpu); 552 if (ret) 553 return ret; 554 555 ret = kvm_arm_pmu_v3_enable(vcpu); 556 557 return ret; 558 } 559 560 bool kvm_arch_intc_initialized(struct kvm *kvm) 561 { 562 return vgic_initialized(kvm); 563 } 564 565 void kvm_arm_halt_guest(struct kvm *kvm) 566 { 567 int i; 568 struct kvm_vcpu *vcpu; 569 570 kvm_for_each_vcpu(i, vcpu, kvm) 571 vcpu->arch.pause = true; 572 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 573 } 574 575 void kvm_arm_resume_guest(struct kvm *kvm) 576 { 577 int i; 578 struct kvm_vcpu *vcpu; 579 580 kvm_for_each_vcpu(i, vcpu, kvm) { 581 vcpu->arch.pause = false; 582 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 583 } 584 } 585 586 static void vcpu_req_sleep(struct kvm_vcpu *vcpu) 587 { 588 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 589 590 rcuwait_wait_event(wait, 591 (!vcpu->arch.power_off) &&(!vcpu->arch.pause), 592 TASK_INTERRUPTIBLE); 593 594 if (vcpu->arch.power_off || vcpu->arch.pause) { 595 /* Awaken to handle a signal, request we sleep again later. */ 596 kvm_make_request(KVM_REQ_SLEEP, vcpu); 597 } 598 599 /* 600 * Make sure we will observe a potential reset request if we've 601 * observed a change to the power state. Pairs with the smp_wmb() in 602 * kvm_psci_vcpu_on(). 603 */ 604 smp_rmb(); 605 } 606 607 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 608 { 609 return vcpu->arch.target >= 0; 610 } 611 612 static void check_vcpu_requests(struct kvm_vcpu *vcpu) 613 { 614 if (kvm_request_pending(vcpu)) { 615 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 616 vcpu_req_sleep(vcpu); 617 618 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 619 kvm_reset_vcpu(vcpu); 620 621 /* 622 * Clear IRQ_PENDING requests that were made to guarantee 623 * that a VCPU sees new virtual interrupts. 624 */ 625 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 626 627 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 628 kvm_update_stolen_time(vcpu); 629 630 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 631 /* The distributor enable bits were changed */ 632 preempt_disable(); 633 vgic_v4_put(vcpu, false); 634 vgic_v4_load(vcpu); 635 preempt_enable(); 636 } 637 } 638 } 639 640 /** 641 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 642 * @vcpu: The VCPU pointer 643 * 644 * This function is called through the VCPU_RUN ioctl called from user space. It 645 * will execute VM code in a loop until the time slice for the process is used 646 * or some emulation is needed from user space in which case the function will 647 * return with return value 0 and with the kvm_run structure filled in with the 648 * required data for the requested emulation. 649 */ 650 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 651 { 652 struct kvm_run *run = vcpu->run; 653 int ret; 654 655 if (unlikely(!kvm_vcpu_initialized(vcpu))) 656 return -ENOEXEC; 657 658 ret = kvm_vcpu_first_run_init(vcpu); 659 if (ret) 660 return ret; 661 662 if (run->exit_reason == KVM_EXIT_MMIO) { 663 ret = kvm_handle_mmio_return(vcpu, run); 664 if (ret) 665 return ret; 666 } 667 668 if (run->immediate_exit) 669 return -EINTR; 670 671 vcpu_load(vcpu); 672 673 kvm_sigset_activate(vcpu); 674 675 ret = 1; 676 run->exit_reason = KVM_EXIT_UNKNOWN; 677 while (ret > 0) { 678 /* 679 * Check conditions before entering the guest 680 */ 681 cond_resched(); 682 683 update_vmid(&vcpu->kvm->arch.vmid); 684 685 check_vcpu_requests(vcpu); 686 687 /* 688 * Preparing the interrupts to be injected also 689 * involves poking the GIC, which must be done in a 690 * non-preemptible context. 691 */ 692 preempt_disable(); 693 694 kvm_pmu_flush_hwstate(vcpu); 695 696 local_irq_disable(); 697 698 kvm_vgic_flush_hwstate(vcpu); 699 700 /* 701 * Exit if we have a signal pending so that we can deliver the 702 * signal to user space. 703 */ 704 if (signal_pending(current)) { 705 ret = -EINTR; 706 run->exit_reason = KVM_EXIT_INTR; 707 } 708 709 /* 710 * If we're using a userspace irqchip, then check if we need 711 * to tell a userspace irqchip about timer or PMU level 712 * changes and if so, exit to userspace (the actual level 713 * state gets updated in kvm_timer_update_run and 714 * kvm_pmu_update_run below). 715 */ 716 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 717 if (kvm_timer_should_notify_user(vcpu) || 718 kvm_pmu_should_notify_user(vcpu)) { 719 ret = -EINTR; 720 run->exit_reason = KVM_EXIT_INTR; 721 } 722 } 723 724 /* 725 * Ensure we set mode to IN_GUEST_MODE after we disable 726 * interrupts and before the final VCPU requests check. 727 * See the comment in kvm_vcpu_exiting_guest_mode() and 728 * Documentation/virt/kvm/vcpu-requests.rst 729 */ 730 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 731 732 if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) || 733 kvm_request_pending(vcpu)) { 734 vcpu->mode = OUTSIDE_GUEST_MODE; 735 isb(); /* Ensure work in x_flush_hwstate is committed */ 736 kvm_pmu_sync_hwstate(vcpu); 737 if (static_branch_unlikely(&userspace_irqchip_in_use)) 738 kvm_timer_sync_hwstate(vcpu); 739 kvm_vgic_sync_hwstate(vcpu); 740 local_irq_enable(); 741 preempt_enable(); 742 continue; 743 } 744 745 kvm_arm_setup_debug(vcpu); 746 747 /************************************************************** 748 * Enter the guest 749 */ 750 trace_kvm_entry(*vcpu_pc(vcpu)); 751 guest_enter_irqoff(); 752 753 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 754 755 vcpu->mode = OUTSIDE_GUEST_MODE; 756 vcpu->stat.exits++; 757 /* 758 * Back from guest 759 *************************************************************/ 760 761 kvm_arm_clear_debug(vcpu); 762 763 /* 764 * We must sync the PMU state before the vgic state so 765 * that the vgic can properly sample the updated state of the 766 * interrupt line. 767 */ 768 kvm_pmu_sync_hwstate(vcpu); 769 770 /* 771 * Sync the vgic state before syncing the timer state because 772 * the timer code needs to know if the virtual timer 773 * interrupts are active. 774 */ 775 kvm_vgic_sync_hwstate(vcpu); 776 777 /* 778 * Sync the timer hardware state before enabling interrupts as 779 * we don't want vtimer interrupts to race with syncing the 780 * timer virtual interrupt state. 781 */ 782 if (static_branch_unlikely(&userspace_irqchip_in_use)) 783 kvm_timer_sync_hwstate(vcpu); 784 785 kvm_arch_vcpu_ctxsync_fp(vcpu); 786 787 /* 788 * We may have taken a host interrupt in HYP mode (ie 789 * while executing the guest). This interrupt is still 790 * pending, as we haven't serviced it yet! 791 * 792 * We're now back in SVC mode, with interrupts 793 * disabled. Enabling the interrupts now will have 794 * the effect of taking the interrupt again, in SVC 795 * mode this time. 796 */ 797 local_irq_enable(); 798 799 /* 800 * We do local_irq_enable() before calling guest_exit() so 801 * that if a timer interrupt hits while running the guest we 802 * account that tick as being spent in the guest. We enable 803 * preemption after calling guest_exit() so that if we get 804 * preempted we make sure ticks after that is not counted as 805 * guest time. 806 */ 807 guest_exit(); 808 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 809 810 /* Exit types that need handling before we can be preempted */ 811 handle_exit_early(vcpu, run, ret); 812 813 preempt_enable(); 814 815 ret = handle_exit(vcpu, run, ret); 816 } 817 818 /* Tell userspace about in-kernel device output levels */ 819 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 820 kvm_timer_update_run(vcpu); 821 kvm_pmu_update_run(vcpu); 822 } 823 824 kvm_sigset_deactivate(vcpu); 825 826 vcpu_put(vcpu); 827 return ret; 828 } 829 830 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 831 { 832 int bit_index; 833 bool set; 834 unsigned long *hcr; 835 836 if (number == KVM_ARM_IRQ_CPU_IRQ) 837 bit_index = __ffs(HCR_VI); 838 else /* KVM_ARM_IRQ_CPU_FIQ */ 839 bit_index = __ffs(HCR_VF); 840 841 hcr = vcpu_hcr(vcpu); 842 if (level) 843 set = test_and_set_bit(bit_index, hcr); 844 else 845 set = test_and_clear_bit(bit_index, hcr); 846 847 /* 848 * If we didn't change anything, no need to wake up or kick other CPUs 849 */ 850 if (set == level) 851 return 0; 852 853 /* 854 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 855 * trigger a world-switch round on the running physical CPU to set the 856 * virtual IRQ/FIQ fields in the HCR appropriately. 857 */ 858 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 859 kvm_vcpu_kick(vcpu); 860 861 return 0; 862 } 863 864 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 865 bool line_status) 866 { 867 u32 irq = irq_level->irq; 868 unsigned int irq_type, vcpu_idx, irq_num; 869 int nrcpus = atomic_read(&kvm->online_vcpus); 870 struct kvm_vcpu *vcpu = NULL; 871 bool level = irq_level->level; 872 873 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 874 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 875 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 876 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 877 878 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); 879 880 switch (irq_type) { 881 case KVM_ARM_IRQ_TYPE_CPU: 882 if (irqchip_in_kernel(kvm)) 883 return -ENXIO; 884 885 if (vcpu_idx >= nrcpus) 886 return -EINVAL; 887 888 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 889 if (!vcpu) 890 return -EINVAL; 891 892 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 893 return -EINVAL; 894 895 return vcpu_interrupt_line(vcpu, irq_num, level); 896 case KVM_ARM_IRQ_TYPE_PPI: 897 if (!irqchip_in_kernel(kvm)) 898 return -ENXIO; 899 900 if (vcpu_idx >= nrcpus) 901 return -EINVAL; 902 903 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 904 if (!vcpu) 905 return -EINVAL; 906 907 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 908 return -EINVAL; 909 910 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); 911 case KVM_ARM_IRQ_TYPE_SPI: 912 if (!irqchip_in_kernel(kvm)) 913 return -ENXIO; 914 915 if (irq_num < VGIC_NR_PRIVATE_IRQS) 916 return -EINVAL; 917 918 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); 919 } 920 921 return -EINVAL; 922 } 923 924 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 925 const struct kvm_vcpu_init *init) 926 { 927 unsigned int i, ret; 928 int phys_target = kvm_target_cpu(); 929 930 if (init->target != phys_target) 931 return -EINVAL; 932 933 /* 934 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 935 * use the same target. 936 */ 937 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) 938 return -EINVAL; 939 940 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ 941 for (i = 0; i < sizeof(init->features) * 8; i++) { 942 bool set = (init->features[i / 32] & (1 << (i % 32))); 943 944 if (set && i >= KVM_VCPU_MAX_FEATURES) 945 return -ENOENT; 946 947 /* 948 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 949 * use the same feature set. 950 */ 951 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && 952 test_bit(i, vcpu->arch.features) != set) 953 return -EINVAL; 954 955 if (set) 956 set_bit(i, vcpu->arch.features); 957 } 958 959 vcpu->arch.target = phys_target; 960 961 /* Now we know what it is, we can reset it. */ 962 ret = kvm_reset_vcpu(vcpu); 963 if (ret) { 964 vcpu->arch.target = -1; 965 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 966 } 967 968 return ret; 969 } 970 971 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 972 struct kvm_vcpu_init *init) 973 { 974 int ret; 975 976 ret = kvm_vcpu_set_target(vcpu, init); 977 if (ret) 978 return ret; 979 980 /* 981 * Ensure a rebooted VM will fault in RAM pages and detect if the 982 * guest MMU is turned off and flush the caches as needed. 983 * 984 * S2FWB enforces all memory accesses to RAM being cacheable, 985 * ensuring that the data side is always coherent. We still 986 * need to invalidate the I-cache though, as FWB does *not* 987 * imply CTR_EL0.DIC. 988 */ 989 if (vcpu->arch.has_run_once) { 990 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 991 stage2_unmap_vm(vcpu->kvm); 992 else 993 __flush_icache_all(); 994 } 995 996 vcpu_reset_hcr(vcpu); 997 998 /* 999 * Handle the "start in power-off" case. 1000 */ 1001 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) 1002 vcpu_power_off(vcpu); 1003 else 1004 vcpu->arch.power_off = false; 1005 1006 return 0; 1007 } 1008 1009 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1010 struct kvm_device_attr *attr) 1011 { 1012 int ret = -ENXIO; 1013 1014 switch (attr->group) { 1015 default: 1016 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1017 break; 1018 } 1019 1020 return ret; 1021 } 1022 1023 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1024 struct kvm_device_attr *attr) 1025 { 1026 int ret = -ENXIO; 1027 1028 switch (attr->group) { 1029 default: 1030 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1031 break; 1032 } 1033 1034 return ret; 1035 } 1036 1037 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1038 struct kvm_device_attr *attr) 1039 { 1040 int ret = -ENXIO; 1041 1042 switch (attr->group) { 1043 default: 1044 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1045 break; 1046 } 1047 1048 return ret; 1049 } 1050 1051 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1052 struct kvm_vcpu_events *events) 1053 { 1054 memset(events, 0, sizeof(*events)); 1055 1056 return __kvm_arm_vcpu_get_events(vcpu, events); 1057 } 1058 1059 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1060 struct kvm_vcpu_events *events) 1061 { 1062 int i; 1063 1064 /* check whether the reserved field is zero */ 1065 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1066 if (events->reserved[i]) 1067 return -EINVAL; 1068 1069 /* check whether the pad field is zero */ 1070 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1071 if (events->exception.pad[i]) 1072 return -EINVAL; 1073 1074 return __kvm_arm_vcpu_set_events(vcpu, events); 1075 } 1076 1077 long kvm_arch_vcpu_ioctl(struct file *filp, 1078 unsigned int ioctl, unsigned long arg) 1079 { 1080 struct kvm_vcpu *vcpu = filp->private_data; 1081 void __user *argp = (void __user *)arg; 1082 struct kvm_device_attr attr; 1083 long r; 1084 1085 switch (ioctl) { 1086 case KVM_ARM_VCPU_INIT: { 1087 struct kvm_vcpu_init init; 1088 1089 r = -EFAULT; 1090 if (copy_from_user(&init, argp, sizeof(init))) 1091 break; 1092 1093 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1094 break; 1095 } 1096 case KVM_SET_ONE_REG: 1097 case KVM_GET_ONE_REG: { 1098 struct kvm_one_reg reg; 1099 1100 r = -ENOEXEC; 1101 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1102 break; 1103 1104 r = -EFAULT; 1105 if (copy_from_user(®, argp, sizeof(reg))) 1106 break; 1107 1108 if (ioctl == KVM_SET_ONE_REG) 1109 r = kvm_arm_set_reg(vcpu, ®); 1110 else 1111 r = kvm_arm_get_reg(vcpu, ®); 1112 break; 1113 } 1114 case KVM_GET_REG_LIST: { 1115 struct kvm_reg_list __user *user_list = argp; 1116 struct kvm_reg_list reg_list; 1117 unsigned n; 1118 1119 r = -ENOEXEC; 1120 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1121 break; 1122 1123 r = -EPERM; 1124 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1125 break; 1126 1127 r = -EFAULT; 1128 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1129 break; 1130 n = reg_list.n; 1131 reg_list.n = kvm_arm_num_regs(vcpu); 1132 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1133 break; 1134 r = -E2BIG; 1135 if (n < reg_list.n) 1136 break; 1137 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1138 break; 1139 } 1140 case KVM_SET_DEVICE_ATTR: { 1141 r = -EFAULT; 1142 if (copy_from_user(&attr, argp, sizeof(attr))) 1143 break; 1144 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1145 break; 1146 } 1147 case KVM_GET_DEVICE_ATTR: { 1148 r = -EFAULT; 1149 if (copy_from_user(&attr, argp, sizeof(attr))) 1150 break; 1151 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1152 break; 1153 } 1154 case KVM_HAS_DEVICE_ATTR: { 1155 r = -EFAULT; 1156 if (copy_from_user(&attr, argp, sizeof(attr))) 1157 break; 1158 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1159 break; 1160 } 1161 case KVM_GET_VCPU_EVENTS: { 1162 struct kvm_vcpu_events events; 1163 1164 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1165 return -EINVAL; 1166 1167 if (copy_to_user(argp, &events, sizeof(events))) 1168 return -EFAULT; 1169 1170 return 0; 1171 } 1172 case KVM_SET_VCPU_EVENTS: { 1173 struct kvm_vcpu_events events; 1174 1175 if (copy_from_user(&events, argp, sizeof(events))) 1176 return -EFAULT; 1177 1178 return kvm_arm_vcpu_set_events(vcpu, &events); 1179 } 1180 case KVM_ARM_VCPU_FINALIZE: { 1181 int what; 1182 1183 if (!kvm_vcpu_initialized(vcpu)) 1184 return -ENOEXEC; 1185 1186 if (get_user(what, (const int __user *)argp)) 1187 return -EFAULT; 1188 1189 return kvm_arm_vcpu_finalize(vcpu, what); 1190 } 1191 default: 1192 r = -EINVAL; 1193 } 1194 1195 return r; 1196 } 1197 1198 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1199 { 1200 1201 } 1202 1203 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1204 struct kvm_memory_slot *memslot) 1205 { 1206 kvm_flush_remote_tlbs(kvm); 1207 } 1208 1209 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1210 struct kvm_arm_device_addr *dev_addr) 1211 { 1212 unsigned long dev_id, type; 1213 1214 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> 1215 KVM_ARM_DEVICE_ID_SHIFT; 1216 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> 1217 KVM_ARM_DEVICE_TYPE_SHIFT; 1218 1219 switch (dev_id) { 1220 case KVM_ARM_DEVICE_VGIC_V2: 1221 if (!vgic_present) 1222 return -ENXIO; 1223 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); 1224 default: 1225 return -ENODEV; 1226 } 1227 } 1228 1229 long kvm_arch_vm_ioctl(struct file *filp, 1230 unsigned int ioctl, unsigned long arg) 1231 { 1232 struct kvm *kvm = filp->private_data; 1233 void __user *argp = (void __user *)arg; 1234 1235 switch (ioctl) { 1236 case KVM_CREATE_IRQCHIP: { 1237 int ret; 1238 if (!vgic_present) 1239 return -ENXIO; 1240 mutex_lock(&kvm->lock); 1241 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1242 mutex_unlock(&kvm->lock); 1243 return ret; 1244 } 1245 case KVM_ARM_SET_DEVICE_ADDR: { 1246 struct kvm_arm_device_addr dev_addr; 1247 1248 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1249 return -EFAULT; 1250 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1251 } 1252 case KVM_ARM_PREFERRED_TARGET: { 1253 int err; 1254 struct kvm_vcpu_init init; 1255 1256 err = kvm_vcpu_preferred_target(&init); 1257 if (err) 1258 return err; 1259 1260 if (copy_to_user(argp, &init, sizeof(init))) 1261 return -EFAULT; 1262 1263 return 0; 1264 } 1265 default: 1266 return -EINVAL; 1267 } 1268 } 1269 1270 static void cpu_init_hyp_mode(void) 1271 { 1272 phys_addr_t pgd_ptr; 1273 unsigned long hyp_stack_ptr; 1274 unsigned long vector_ptr; 1275 unsigned long tpidr_el2; 1276 1277 /* Switch from the HYP stub to our own HYP init vector */ 1278 __hyp_set_vectors(kvm_get_idmap_vector()); 1279 1280 /* 1281 * Calculate the raw per-cpu offset without a translation from the 1282 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1283 * so that we can use adr_l to access per-cpu variables in EL2. 1284 */ 1285 tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) - 1286 (unsigned long)kvm_ksym_ref(&kvm_host_data)); 1287 1288 pgd_ptr = kvm_mmu_get_httbr(); 1289 hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE; 1290 vector_ptr = (unsigned long)kvm_get_hyp_vector(); 1291 1292 /* 1293 * Call initialization code, and switch to the full blown HYP code. 1294 * If the cpucaps haven't been finalized yet, something has gone very 1295 * wrong, and hyp will crash and burn when it uses any 1296 * cpus_have_const_cap() wrapper. 1297 */ 1298 BUG_ON(!system_capabilities_finalized()); 1299 __kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2); 1300 1301 /* 1302 * Disabling SSBD on a non-VHE system requires us to enable SSBS 1303 * at EL2. 1304 */ 1305 if (this_cpu_has_cap(ARM64_SSBS) && 1306 arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) { 1307 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 1308 } 1309 } 1310 1311 static void cpu_hyp_reset(void) 1312 { 1313 if (!is_kernel_in_hyp_mode()) 1314 __hyp_reset_vectors(); 1315 } 1316 1317 static void cpu_hyp_reinit(void) 1318 { 1319 kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt); 1320 1321 cpu_hyp_reset(); 1322 1323 if (is_kernel_in_hyp_mode()) 1324 kvm_timer_init_vhe(); 1325 else 1326 cpu_init_hyp_mode(); 1327 1328 kvm_arm_init_debug(); 1329 1330 if (vgic_present) 1331 kvm_vgic_init_cpu_hardware(); 1332 } 1333 1334 static void _kvm_arch_hardware_enable(void *discard) 1335 { 1336 if (!__this_cpu_read(kvm_arm_hardware_enabled)) { 1337 cpu_hyp_reinit(); 1338 __this_cpu_write(kvm_arm_hardware_enabled, 1); 1339 } 1340 } 1341 1342 int kvm_arch_hardware_enable(void) 1343 { 1344 _kvm_arch_hardware_enable(NULL); 1345 return 0; 1346 } 1347 1348 static void _kvm_arch_hardware_disable(void *discard) 1349 { 1350 if (__this_cpu_read(kvm_arm_hardware_enabled)) { 1351 cpu_hyp_reset(); 1352 __this_cpu_write(kvm_arm_hardware_enabled, 0); 1353 } 1354 } 1355 1356 void kvm_arch_hardware_disable(void) 1357 { 1358 _kvm_arch_hardware_disable(NULL); 1359 } 1360 1361 #ifdef CONFIG_CPU_PM 1362 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 1363 unsigned long cmd, 1364 void *v) 1365 { 1366 /* 1367 * kvm_arm_hardware_enabled is left with its old value over 1368 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 1369 * re-enable hyp. 1370 */ 1371 switch (cmd) { 1372 case CPU_PM_ENTER: 1373 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1374 /* 1375 * don't update kvm_arm_hardware_enabled here 1376 * so that the hardware will be re-enabled 1377 * when we resume. See below. 1378 */ 1379 cpu_hyp_reset(); 1380 1381 return NOTIFY_OK; 1382 case CPU_PM_ENTER_FAILED: 1383 case CPU_PM_EXIT: 1384 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1385 /* The hardware was enabled before suspend. */ 1386 cpu_hyp_reinit(); 1387 1388 return NOTIFY_OK; 1389 1390 default: 1391 return NOTIFY_DONE; 1392 } 1393 } 1394 1395 static struct notifier_block hyp_init_cpu_pm_nb = { 1396 .notifier_call = hyp_init_cpu_pm_notifier, 1397 }; 1398 1399 static void __init hyp_cpu_pm_init(void) 1400 { 1401 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 1402 } 1403 static void __init hyp_cpu_pm_exit(void) 1404 { 1405 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 1406 } 1407 #else 1408 static inline void hyp_cpu_pm_init(void) 1409 { 1410 } 1411 static inline void hyp_cpu_pm_exit(void) 1412 { 1413 } 1414 #endif 1415 1416 static int init_common_resources(void) 1417 { 1418 return kvm_set_ipa_limit(); 1419 } 1420 1421 static int init_subsystems(void) 1422 { 1423 int err = 0; 1424 1425 /* 1426 * Enable hardware so that subsystem initialisation can access EL2. 1427 */ 1428 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); 1429 1430 /* 1431 * Register CPU lower-power notifier 1432 */ 1433 hyp_cpu_pm_init(); 1434 1435 /* 1436 * Init HYP view of VGIC 1437 */ 1438 err = kvm_vgic_hyp_init(); 1439 switch (err) { 1440 case 0: 1441 vgic_present = true; 1442 break; 1443 case -ENODEV: 1444 case -ENXIO: 1445 vgic_present = false; 1446 err = 0; 1447 break; 1448 default: 1449 goto out; 1450 } 1451 1452 /* 1453 * Init HYP architected timer support 1454 */ 1455 err = kvm_timer_hyp_init(vgic_present); 1456 if (err) 1457 goto out; 1458 1459 kvm_perf_init(); 1460 kvm_coproc_table_init(); 1461 1462 out: 1463 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); 1464 1465 return err; 1466 } 1467 1468 static void teardown_hyp_mode(void) 1469 { 1470 int cpu; 1471 1472 free_hyp_pgds(); 1473 for_each_possible_cpu(cpu) 1474 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 1475 } 1476 1477 /** 1478 * Inits Hyp-mode on all online CPUs 1479 */ 1480 static int init_hyp_mode(void) 1481 { 1482 int cpu; 1483 int err = 0; 1484 1485 /* 1486 * Allocate Hyp PGD and setup Hyp identity mapping 1487 */ 1488 err = kvm_mmu_init(); 1489 if (err) 1490 goto out_err; 1491 1492 /* 1493 * Allocate stack pages for Hypervisor-mode 1494 */ 1495 for_each_possible_cpu(cpu) { 1496 unsigned long stack_page; 1497 1498 stack_page = __get_free_page(GFP_KERNEL); 1499 if (!stack_page) { 1500 err = -ENOMEM; 1501 goto out_err; 1502 } 1503 1504 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 1505 } 1506 1507 /* 1508 * Map the Hyp-code called directly from the host 1509 */ 1510 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 1511 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 1512 if (err) { 1513 kvm_err("Cannot map world-switch code\n"); 1514 goto out_err; 1515 } 1516 1517 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 1518 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 1519 if (err) { 1520 kvm_err("Cannot map rodata section\n"); 1521 goto out_err; 1522 } 1523 1524 err = create_hyp_mappings(kvm_ksym_ref(__bss_start), 1525 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 1526 if (err) { 1527 kvm_err("Cannot map bss section\n"); 1528 goto out_err; 1529 } 1530 1531 err = kvm_map_vectors(); 1532 if (err) { 1533 kvm_err("Cannot map vectors\n"); 1534 goto out_err; 1535 } 1536 1537 /* 1538 * Map the Hyp stack pages 1539 */ 1540 for_each_possible_cpu(cpu) { 1541 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 1542 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, 1543 PAGE_HYP); 1544 1545 if (err) { 1546 kvm_err("Cannot map hyp stack\n"); 1547 goto out_err; 1548 } 1549 } 1550 1551 for_each_possible_cpu(cpu) { 1552 kvm_host_data_t *cpu_data; 1553 1554 cpu_data = per_cpu_ptr(&kvm_host_data, cpu); 1555 err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP); 1556 1557 if (err) { 1558 kvm_err("Cannot map host CPU state: %d\n", err); 1559 goto out_err; 1560 } 1561 } 1562 1563 err = hyp_map_aux_data(); 1564 if (err) 1565 kvm_err("Cannot map host auxiliary data: %d\n", err); 1566 1567 return 0; 1568 1569 out_err: 1570 teardown_hyp_mode(); 1571 kvm_err("error initializing Hyp mode: %d\n", err); 1572 return err; 1573 } 1574 1575 static void check_kvm_target_cpu(void *ret) 1576 { 1577 *(int *)ret = kvm_target_cpu(); 1578 } 1579 1580 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 1581 { 1582 struct kvm_vcpu *vcpu; 1583 int i; 1584 1585 mpidr &= MPIDR_HWID_BITMASK; 1586 kvm_for_each_vcpu(i, vcpu, kvm) { 1587 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 1588 return vcpu; 1589 } 1590 return NULL; 1591 } 1592 1593 bool kvm_arch_has_irq_bypass(void) 1594 { 1595 return true; 1596 } 1597 1598 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 1599 struct irq_bypass_producer *prod) 1600 { 1601 struct kvm_kernel_irqfd *irqfd = 1602 container_of(cons, struct kvm_kernel_irqfd, consumer); 1603 1604 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 1605 &irqfd->irq_entry); 1606 } 1607 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 1608 struct irq_bypass_producer *prod) 1609 { 1610 struct kvm_kernel_irqfd *irqfd = 1611 container_of(cons, struct kvm_kernel_irqfd, consumer); 1612 1613 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 1614 &irqfd->irq_entry); 1615 } 1616 1617 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 1618 { 1619 struct kvm_kernel_irqfd *irqfd = 1620 container_of(cons, struct kvm_kernel_irqfd, consumer); 1621 1622 kvm_arm_halt_guest(irqfd->kvm); 1623 } 1624 1625 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 1626 { 1627 struct kvm_kernel_irqfd *irqfd = 1628 container_of(cons, struct kvm_kernel_irqfd, consumer); 1629 1630 kvm_arm_resume_guest(irqfd->kvm); 1631 } 1632 1633 /** 1634 * Initialize Hyp-mode and memory mappings on all CPUs. 1635 */ 1636 int kvm_arch_init(void *opaque) 1637 { 1638 int err; 1639 int ret, cpu; 1640 bool in_hyp_mode; 1641 1642 if (!is_hyp_mode_available()) { 1643 kvm_info("HYP mode not available\n"); 1644 return -ENODEV; 1645 } 1646 1647 in_hyp_mode = is_kernel_in_hyp_mode(); 1648 1649 if (!in_hyp_mode && kvm_arch_requires_vhe()) { 1650 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n"); 1651 return -ENODEV; 1652 } 1653 1654 for_each_online_cpu(cpu) { 1655 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); 1656 if (ret < 0) { 1657 kvm_err("Error, CPU %d not supported!\n", cpu); 1658 return -ENODEV; 1659 } 1660 } 1661 1662 err = init_common_resources(); 1663 if (err) 1664 return err; 1665 1666 err = kvm_arm_init_sve(); 1667 if (err) 1668 return err; 1669 1670 if (!in_hyp_mode) { 1671 err = init_hyp_mode(); 1672 if (err) 1673 goto out_err; 1674 } 1675 1676 err = init_subsystems(); 1677 if (err) 1678 goto out_hyp; 1679 1680 if (in_hyp_mode) 1681 kvm_info("VHE mode initialized successfully\n"); 1682 else 1683 kvm_info("Hyp mode initialized successfully\n"); 1684 1685 return 0; 1686 1687 out_hyp: 1688 hyp_cpu_pm_exit(); 1689 if (!in_hyp_mode) 1690 teardown_hyp_mode(); 1691 out_err: 1692 return err; 1693 } 1694 1695 /* NOP: Compiling as a module not supported */ 1696 void kvm_arch_exit(void) 1697 { 1698 kvm_perf_teardown(); 1699 } 1700 1701 static int arm_init(void) 1702 { 1703 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1704 return rc; 1705 } 1706 1707 module_init(arm_init); 1708