xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 5e999f10a16b90fc1d5ded8aa365e9804e894aa9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36 
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56 
57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
58 EXPORT_PER_CPU_SYMBOL(cpu_number);
59 
60 /*
61  * as from 2.5, kernels no longer have an init_tasks structure
62  * so we need some other way of telling a new secondary core
63  * where to place its SVC stack
64  */
65 struct secondary_data secondary_data;
66 /* Number of CPUs which aren't online, but looping in kernel text. */
67 static int cpus_stuck_in_kernel;
68 
69 enum ipi_msg_type {
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNC,
72 	IPI_CPU_STOP,
73 	IPI_CPU_CRASH_STOP,
74 	IPI_TIMER,
75 	IPI_IRQ_WORK,
76 	IPI_WAKEUP,
77 	NR_IPI
78 };
79 
80 static int ipi_irq_base __read_mostly;
81 static int nr_ipi __read_mostly = NR_IPI;
82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
83 
84 static void ipi_setup(int cpu);
85 
86 #ifdef CONFIG_HOTPLUG_CPU
87 static void ipi_teardown(int cpu);
88 static int op_cpu_kill(unsigned int cpu);
89 #else
90 static inline int op_cpu_kill(unsigned int cpu)
91 {
92 	return -ENOSYS;
93 }
94 #endif
95 
96 
97 /*
98  * Boot a secondary CPU, and assign it the specified idle task.
99  * This also gives us the initial stack to use for this CPU.
100  */
101 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
102 {
103 	const struct cpu_operations *ops = get_cpu_ops(cpu);
104 
105 	if (ops->cpu_boot)
106 		return ops->cpu_boot(cpu);
107 
108 	return -EOPNOTSUPP;
109 }
110 
111 static DECLARE_COMPLETION(cpu_running);
112 
113 int __cpu_up(unsigned int cpu, struct task_struct *idle)
114 {
115 	int ret;
116 	long status;
117 
118 	/*
119 	 * We need to tell the secondary core where to find its stack and the
120 	 * page tables.
121 	 */
122 	secondary_data.task = idle;
123 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
124 	update_cpu_boot_status(CPU_MMU_OFF);
125 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
126 
127 	/* Now bring the CPU into our world */
128 	ret = boot_secondary(cpu, idle);
129 	if (ret) {
130 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
131 		return ret;
132 	}
133 
134 	/*
135 	 * CPU was successfully started, wait for it to come online or
136 	 * time out.
137 	 */
138 	wait_for_completion_timeout(&cpu_running,
139 				    msecs_to_jiffies(5000));
140 	if (cpu_online(cpu))
141 		return 0;
142 
143 	pr_crit("CPU%u: failed to come online\n", cpu);
144 	secondary_data.task = NULL;
145 	secondary_data.stack = NULL;
146 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
147 	status = READ_ONCE(secondary_data.status);
148 	if (status == CPU_MMU_OFF)
149 		status = READ_ONCE(__early_cpu_boot_status);
150 
151 	switch (status & CPU_BOOT_STATUS_MASK) {
152 	default:
153 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
154 		       cpu, status);
155 		cpus_stuck_in_kernel++;
156 		break;
157 	case CPU_KILL_ME:
158 		if (!op_cpu_kill(cpu)) {
159 			pr_crit("CPU%u: died during early boot\n", cpu);
160 			break;
161 		}
162 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
163 		fallthrough;
164 	case CPU_STUCK_IN_KERNEL:
165 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
166 		if (status & CPU_STUCK_REASON_52_BIT_VA)
167 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
168 		if (status & CPU_STUCK_REASON_NO_GRAN) {
169 			pr_crit("CPU%u: does not support %luK granule\n",
170 				cpu, PAGE_SIZE / SZ_1K);
171 		}
172 		cpus_stuck_in_kernel++;
173 		break;
174 	case CPU_PANIC_KERNEL:
175 		panic("CPU%u detected unsupported configuration\n", cpu);
176 	}
177 
178 	return -EIO;
179 }
180 
181 static void init_gic_priority_masking(void)
182 {
183 	u32 cpuflags;
184 
185 	if (WARN_ON(!gic_enable_sre()))
186 		return;
187 
188 	cpuflags = read_sysreg(daif);
189 
190 	WARN_ON(!(cpuflags & PSR_I_BIT));
191 
192 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
193 }
194 
195 /*
196  * This is the secondary CPU boot entry.  We're using this CPUs
197  * idle thread stack, but a set of temporary page tables.
198  */
199 asmlinkage notrace void secondary_start_kernel(void)
200 {
201 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
202 	struct mm_struct *mm = &init_mm;
203 	const struct cpu_operations *ops;
204 	unsigned int cpu;
205 
206 	cpu = task_cpu(current);
207 	set_my_cpu_offset(per_cpu_offset(cpu));
208 
209 	/*
210 	 * All kernel threads share the same mm context; grab a
211 	 * reference and switch to it.
212 	 */
213 	mmgrab(mm);
214 	current->active_mm = mm;
215 
216 	/*
217 	 * TTBR0 is only used for the identity mapping at this stage. Make it
218 	 * point to zero page to avoid speculatively fetching new entries.
219 	 */
220 	cpu_uninstall_idmap();
221 
222 	if (system_uses_irq_prio_masking())
223 		init_gic_priority_masking();
224 
225 	rcu_cpu_starting(cpu);
226 	preempt_disable();
227 	trace_hardirqs_off();
228 
229 	/*
230 	 * If the system has established the capabilities, make sure
231 	 * this CPU ticks all of those. If it doesn't, the CPU will
232 	 * fail to come online.
233 	 */
234 	check_local_cpu_capabilities();
235 
236 	ops = get_cpu_ops(cpu);
237 	if (ops->cpu_postboot)
238 		ops->cpu_postboot();
239 
240 	/*
241 	 * Log the CPU info before it is marked online and might get read.
242 	 */
243 	cpuinfo_store_cpu();
244 
245 	/*
246 	 * Enable GIC and timers.
247 	 */
248 	notify_cpu_starting(cpu);
249 
250 	ipi_setup(cpu);
251 
252 	store_cpu_topology(cpu);
253 	numa_add_cpu(cpu);
254 
255 	/*
256 	 * OK, now it's safe to let the boot CPU continue.  Wait for
257 	 * the CPU migration code to notice that the CPU is online
258 	 * before we continue.
259 	 */
260 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
261 					 cpu, (unsigned long)mpidr,
262 					 read_cpuid_id());
263 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
264 	set_cpu_online(cpu, true);
265 	complete(&cpu_running);
266 
267 	local_daif_restore(DAIF_PROCCTX);
268 
269 	/*
270 	 * OK, it's off to the idle thread for us
271 	 */
272 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
273 }
274 
275 #ifdef CONFIG_HOTPLUG_CPU
276 static int op_cpu_disable(unsigned int cpu)
277 {
278 	const struct cpu_operations *ops = get_cpu_ops(cpu);
279 
280 	/*
281 	 * If we don't have a cpu_die method, abort before we reach the point
282 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
283 	 */
284 	if (!ops || !ops->cpu_die)
285 		return -EOPNOTSUPP;
286 
287 	/*
288 	 * We may need to abort a hot unplug for some other mechanism-specific
289 	 * reason.
290 	 */
291 	if (ops->cpu_disable)
292 		return ops->cpu_disable(cpu);
293 
294 	return 0;
295 }
296 
297 /*
298  * __cpu_disable runs on the processor to be shutdown.
299  */
300 int __cpu_disable(void)
301 {
302 	unsigned int cpu = smp_processor_id();
303 	int ret;
304 
305 	ret = op_cpu_disable(cpu);
306 	if (ret)
307 		return ret;
308 
309 	remove_cpu_topology(cpu);
310 	numa_remove_cpu(cpu);
311 
312 	/*
313 	 * Take this CPU offline.  Once we clear this, we can't return,
314 	 * and we must not schedule until we're ready to give up the cpu.
315 	 */
316 	set_cpu_online(cpu, false);
317 	ipi_teardown(cpu);
318 
319 	/*
320 	 * OK - migrate IRQs away from this CPU
321 	 */
322 	irq_migrate_all_off_this_cpu();
323 
324 	return 0;
325 }
326 
327 static int op_cpu_kill(unsigned int cpu)
328 {
329 	const struct cpu_operations *ops = get_cpu_ops(cpu);
330 
331 	/*
332 	 * If we have no means of synchronising with the dying CPU, then assume
333 	 * that it is really dead. We can only wait for an arbitrary length of
334 	 * time and hope that it's dead, so let's skip the wait and just hope.
335 	 */
336 	if (!ops->cpu_kill)
337 		return 0;
338 
339 	return ops->cpu_kill(cpu);
340 }
341 
342 /*
343  * called on the thread which is asking for a CPU to be shutdown -
344  * waits until shutdown has completed, or it is timed out.
345  */
346 void __cpu_die(unsigned int cpu)
347 {
348 	int err;
349 
350 	if (!cpu_wait_death(cpu, 5)) {
351 		pr_crit("CPU%u: cpu didn't die\n", cpu);
352 		return;
353 	}
354 	pr_notice("CPU%u: shutdown\n", cpu);
355 
356 	/*
357 	 * Now that the dying CPU is beyond the point of no return w.r.t.
358 	 * in-kernel synchronisation, try to get the firwmare to help us to
359 	 * verify that it has really left the kernel before we consider
360 	 * clobbering anything it might still be using.
361 	 */
362 	err = op_cpu_kill(cpu);
363 	if (err)
364 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
365 }
366 
367 /*
368  * Called from the idle thread for the CPU which has been shutdown.
369  *
370  */
371 void cpu_die(void)
372 {
373 	unsigned int cpu = smp_processor_id();
374 	const struct cpu_operations *ops = get_cpu_ops(cpu);
375 
376 	idle_task_exit();
377 
378 	local_daif_mask();
379 
380 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
381 	(void)cpu_report_death();
382 
383 	/*
384 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
385 	 * mechanism must perform all required cache maintenance to ensure that
386 	 * no dirty lines are lost in the process of shutting down the CPU.
387 	 */
388 	ops->cpu_die(cpu);
389 
390 	BUG();
391 }
392 #endif
393 
394 static void __cpu_try_die(int cpu)
395 {
396 #ifdef CONFIG_HOTPLUG_CPU
397 	const struct cpu_operations *ops = get_cpu_ops(cpu);
398 
399 	if (ops && ops->cpu_die)
400 		ops->cpu_die(cpu);
401 #endif
402 }
403 
404 /*
405  * Kill the calling secondary CPU, early in bringup before it is turned
406  * online.
407  */
408 void cpu_die_early(void)
409 {
410 	int cpu = smp_processor_id();
411 
412 	pr_crit("CPU%d: will not boot\n", cpu);
413 
414 	/* Mark this CPU absent */
415 	set_cpu_present(cpu, 0);
416 
417 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
418 		update_cpu_boot_status(CPU_KILL_ME);
419 		__cpu_try_die(cpu);
420 	}
421 
422 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
423 
424 	cpu_park_loop();
425 }
426 
427 static void __init hyp_mode_check(void)
428 {
429 	if (is_hyp_mode_available())
430 		pr_info("CPU: All CPU(s) started at EL2\n");
431 	else if (is_hyp_mode_mismatched())
432 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
433 			   "CPU: CPUs started in inconsistent modes");
434 	else
435 		pr_info("CPU: All CPU(s) started at EL1\n");
436 	if (IS_ENABLED(CONFIG_KVM))
437 		kvm_compute_layout();
438 }
439 
440 void __init smp_cpus_done(unsigned int max_cpus)
441 {
442 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
443 	setup_cpu_features();
444 	hyp_mode_check();
445 	apply_alternatives_all();
446 	mark_linear_text_alias_ro();
447 }
448 
449 void __init smp_prepare_boot_cpu(void)
450 {
451 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
452 	cpuinfo_store_boot_cpu();
453 
454 	/*
455 	 * We now know enough about the boot CPU to apply the
456 	 * alternatives that cannot wait until interrupt handling
457 	 * and/or scheduling is enabled.
458 	 */
459 	apply_boot_alternatives();
460 
461 	/* Conditionally switch to GIC PMR for interrupt masking */
462 	if (system_uses_irq_prio_masking())
463 		init_gic_priority_masking();
464 }
465 
466 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
467 {
468 	const __be32 *cell;
469 	u64 hwid;
470 
471 	/*
472 	 * A cpu node with missing "reg" property is
473 	 * considered invalid to build a cpu_logical_map
474 	 * entry.
475 	 */
476 	cell = of_get_property(dn, "reg", NULL);
477 	if (!cell) {
478 		pr_err("%pOF: missing reg property\n", dn);
479 		return INVALID_HWID;
480 	}
481 
482 	hwid = of_read_number(cell, of_n_addr_cells(dn));
483 	/*
484 	 * Non affinity bits must be set to 0 in the DT
485 	 */
486 	if (hwid & ~MPIDR_HWID_BITMASK) {
487 		pr_err("%pOF: invalid reg property\n", dn);
488 		return INVALID_HWID;
489 	}
490 	return hwid;
491 }
492 
493 /*
494  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
495  * entries and check for duplicates. If any is found just ignore the
496  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
497  * matching valid MPIDR values.
498  */
499 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
500 {
501 	unsigned int i;
502 
503 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
504 		if (cpu_logical_map(i) == hwid)
505 			return true;
506 	return false;
507 }
508 
509 /*
510  * Initialize cpu operations for a logical cpu and
511  * set it in the possible mask on success
512  */
513 static int __init smp_cpu_setup(int cpu)
514 {
515 	const struct cpu_operations *ops;
516 
517 	if (init_cpu_ops(cpu))
518 		return -ENODEV;
519 
520 	ops = get_cpu_ops(cpu);
521 	if (ops->cpu_init(cpu))
522 		return -ENODEV;
523 
524 	set_cpu_possible(cpu, true);
525 
526 	return 0;
527 }
528 
529 static bool bootcpu_valid __initdata;
530 static unsigned int cpu_count = 1;
531 
532 #ifdef CONFIG_ACPI
533 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
534 
535 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
536 {
537 	return &cpu_madt_gicc[cpu];
538 }
539 
540 /*
541  * acpi_map_gic_cpu_interface - parse processor MADT entry
542  *
543  * Carry out sanity checks on MADT processor entry and initialize
544  * cpu_logical_map on success
545  */
546 static void __init
547 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
548 {
549 	u64 hwid = processor->arm_mpidr;
550 
551 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
552 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
553 		return;
554 	}
555 
556 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
557 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
558 		return;
559 	}
560 
561 	if (is_mpidr_duplicate(cpu_count, hwid)) {
562 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
563 		return;
564 	}
565 
566 	/* Check if GICC structure of boot CPU is available in the MADT */
567 	if (cpu_logical_map(0) == hwid) {
568 		if (bootcpu_valid) {
569 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
570 			       hwid);
571 			return;
572 		}
573 		bootcpu_valid = true;
574 		cpu_madt_gicc[0] = *processor;
575 		return;
576 	}
577 
578 	if (cpu_count >= NR_CPUS)
579 		return;
580 
581 	/* map the logical cpu id to cpu MPIDR */
582 	set_cpu_logical_map(cpu_count, hwid);
583 
584 	cpu_madt_gicc[cpu_count] = *processor;
585 
586 	/*
587 	 * Set-up the ACPI parking protocol cpu entries
588 	 * while initializing the cpu_logical_map to
589 	 * avoid parsing MADT entries multiple times for
590 	 * nothing (ie a valid cpu_logical_map entry should
591 	 * contain a valid parking protocol data set to
592 	 * initialize the cpu if the parking protocol is
593 	 * the only available enable method).
594 	 */
595 	acpi_set_mailbox_entry(cpu_count, processor);
596 
597 	cpu_count++;
598 }
599 
600 static int __init
601 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
602 			     const unsigned long end)
603 {
604 	struct acpi_madt_generic_interrupt *processor;
605 
606 	processor = (struct acpi_madt_generic_interrupt *)header;
607 	if (BAD_MADT_GICC_ENTRY(processor, end))
608 		return -EINVAL;
609 
610 	acpi_table_print_madt_entry(&header->common);
611 
612 	acpi_map_gic_cpu_interface(processor);
613 
614 	return 0;
615 }
616 
617 static void __init acpi_parse_and_init_cpus(void)
618 {
619 	int i;
620 
621 	/*
622 	 * do a walk of MADT to determine how many CPUs
623 	 * we have including disabled CPUs, and get information
624 	 * we need for SMP init.
625 	 */
626 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
627 				      acpi_parse_gic_cpu_interface, 0);
628 
629 	/*
630 	 * In ACPI, SMP and CPU NUMA information is provided in separate
631 	 * static tables, namely the MADT and the SRAT.
632 	 *
633 	 * Thus, it is simpler to first create the cpu logical map through
634 	 * an MADT walk and then map the logical cpus to their node ids
635 	 * as separate steps.
636 	 */
637 	acpi_map_cpus_to_nodes();
638 
639 	for (i = 0; i < nr_cpu_ids; i++)
640 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
641 }
642 #else
643 #define acpi_parse_and_init_cpus(...)	do { } while (0)
644 #endif
645 
646 /*
647  * Enumerate the possible CPU set from the device tree and build the
648  * cpu logical map array containing MPIDR values related to logical
649  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
650  */
651 static void __init of_parse_and_init_cpus(void)
652 {
653 	struct device_node *dn;
654 
655 	for_each_of_cpu_node(dn) {
656 		u64 hwid = of_get_cpu_mpidr(dn);
657 
658 		if (hwid == INVALID_HWID)
659 			goto next;
660 
661 		if (is_mpidr_duplicate(cpu_count, hwid)) {
662 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
663 				dn);
664 			goto next;
665 		}
666 
667 		/*
668 		 * The numbering scheme requires that the boot CPU
669 		 * must be assigned logical id 0. Record it so that
670 		 * the logical map built from DT is validated and can
671 		 * be used.
672 		 */
673 		if (hwid == cpu_logical_map(0)) {
674 			if (bootcpu_valid) {
675 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
676 					dn);
677 				goto next;
678 			}
679 
680 			bootcpu_valid = true;
681 			early_map_cpu_to_node(0, of_node_to_nid(dn));
682 
683 			/*
684 			 * cpu_logical_map has already been
685 			 * initialized and the boot cpu doesn't need
686 			 * the enable-method so continue without
687 			 * incrementing cpu.
688 			 */
689 			continue;
690 		}
691 
692 		if (cpu_count >= NR_CPUS)
693 			goto next;
694 
695 		pr_debug("cpu logical map 0x%llx\n", hwid);
696 		set_cpu_logical_map(cpu_count, hwid);
697 
698 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
699 next:
700 		cpu_count++;
701 	}
702 }
703 
704 /*
705  * Enumerate the possible CPU set from the device tree or ACPI and build the
706  * cpu logical map array containing MPIDR values related to logical
707  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
708  */
709 void __init smp_init_cpus(void)
710 {
711 	int i;
712 
713 	if (acpi_disabled)
714 		of_parse_and_init_cpus();
715 	else
716 		acpi_parse_and_init_cpus();
717 
718 	if (cpu_count > nr_cpu_ids)
719 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
720 			cpu_count, nr_cpu_ids);
721 
722 	if (!bootcpu_valid) {
723 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
724 		return;
725 	}
726 
727 	/*
728 	 * We need to set the cpu_logical_map entries before enabling
729 	 * the cpus so that cpu processor description entries (DT cpu nodes
730 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
731 	 * with entries in cpu_logical_map while initializing the cpus.
732 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
733 	 */
734 	for (i = 1; i < nr_cpu_ids; i++) {
735 		if (cpu_logical_map(i) != INVALID_HWID) {
736 			if (smp_cpu_setup(i))
737 				set_cpu_logical_map(i, INVALID_HWID);
738 		}
739 	}
740 }
741 
742 void __init smp_prepare_cpus(unsigned int max_cpus)
743 {
744 	const struct cpu_operations *ops;
745 	int err;
746 	unsigned int cpu;
747 	unsigned int this_cpu;
748 
749 	init_cpu_topology();
750 
751 	this_cpu = smp_processor_id();
752 	store_cpu_topology(this_cpu);
753 	numa_store_cpu_info(this_cpu);
754 	numa_add_cpu(this_cpu);
755 
756 	/*
757 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
758 	 * secondary CPUs present.
759 	 */
760 	if (max_cpus == 0)
761 		return;
762 
763 	/*
764 	 * Initialise the present map (which describes the set of CPUs
765 	 * actually populated at the present time) and release the
766 	 * secondaries from the bootloader.
767 	 */
768 	for_each_possible_cpu(cpu) {
769 
770 		per_cpu(cpu_number, cpu) = cpu;
771 
772 		if (cpu == smp_processor_id())
773 			continue;
774 
775 		ops = get_cpu_ops(cpu);
776 		if (!ops)
777 			continue;
778 
779 		err = ops->cpu_prepare(cpu);
780 		if (err)
781 			continue;
782 
783 		set_cpu_present(cpu, true);
784 		numa_store_cpu_info(cpu);
785 	}
786 }
787 
788 static const char *ipi_types[NR_IPI] __tracepoint_string = {
789 #define S(x,s)	[x] = s
790 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
791 	S(IPI_CALL_FUNC, "Function call interrupts"),
792 	S(IPI_CPU_STOP, "CPU stop interrupts"),
793 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
794 	S(IPI_TIMER, "Timer broadcast interrupts"),
795 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
796 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
797 };
798 
799 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
800 
801 unsigned long irq_err_count;
802 
803 int arch_show_interrupts(struct seq_file *p, int prec)
804 {
805 	unsigned int cpu, i;
806 
807 	for (i = 0; i < NR_IPI; i++) {
808 		unsigned int irq = irq_desc_get_irq(ipi_desc[i]);
809 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
810 			   prec >= 4 ? " " : "");
811 		for_each_online_cpu(cpu)
812 			seq_printf(p, "%10u ", kstat_irqs_cpu(irq, cpu));
813 		seq_printf(p, "      %s\n", ipi_types[i]);
814 	}
815 
816 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
817 	return 0;
818 }
819 
820 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
821 {
822 	smp_cross_call(mask, IPI_CALL_FUNC);
823 }
824 
825 void arch_send_call_function_single_ipi(int cpu)
826 {
827 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
828 }
829 
830 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
831 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
832 {
833 	smp_cross_call(mask, IPI_WAKEUP);
834 }
835 #endif
836 
837 #ifdef CONFIG_IRQ_WORK
838 void arch_irq_work_raise(void)
839 {
840 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
841 }
842 #endif
843 
844 static void local_cpu_stop(void)
845 {
846 	set_cpu_online(smp_processor_id(), false);
847 
848 	local_daif_mask();
849 	sdei_mask_local_cpu();
850 	cpu_park_loop();
851 }
852 
853 /*
854  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
855  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
856  * CPUs that have already stopped themselves.
857  */
858 void panic_smp_self_stop(void)
859 {
860 	local_cpu_stop();
861 }
862 
863 #ifdef CONFIG_KEXEC_CORE
864 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
865 #endif
866 
867 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
868 {
869 #ifdef CONFIG_KEXEC_CORE
870 	crash_save_cpu(regs, cpu);
871 
872 	atomic_dec(&waiting_for_crash_ipi);
873 
874 	local_irq_disable();
875 	sdei_mask_local_cpu();
876 
877 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
878 		__cpu_try_die(cpu);
879 
880 	/* just in case */
881 	cpu_park_loop();
882 #endif
883 }
884 
885 /*
886  * Main handler for inter-processor interrupts
887  */
888 static void do_handle_IPI(int ipinr)
889 {
890 	unsigned int cpu = smp_processor_id();
891 
892 	if ((unsigned)ipinr < NR_IPI)
893 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
894 
895 	switch (ipinr) {
896 	case IPI_RESCHEDULE:
897 		scheduler_ipi();
898 		break;
899 
900 	case IPI_CALL_FUNC:
901 		generic_smp_call_function_interrupt();
902 		break;
903 
904 	case IPI_CPU_STOP:
905 		local_cpu_stop();
906 		break;
907 
908 	case IPI_CPU_CRASH_STOP:
909 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
910 			ipi_cpu_crash_stop(cpu, get_irq_regs());
911 
912 			unreachable();
913 		}
914 		break;
915 
916 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
917 	case IPI_TIMER:
918 		tick_receive_broadcast();
919 		break;
920 #endif
921 
922 #ifdef CONFIG_IRQ_WORK
923 	case IPI_IRQ_WORK:
924 		irq_work_run();
925 		break;
926 #endif
927 
928 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
929 	case IPI_WAKEUP:
930 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
931 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
932 			  cpu);
933 		break;
934 #endif
935 
936 	default:
937 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
938 		break;
939 	}
940 
941 	if ((unsigned)ipinr < NR_IPI)
942 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
943 }
944 
945 static irqreturn_t ipi_handler(int irq, void *data)
946 {
947 	do_handle_IPI(irq - ipi_irq_base);
948 	return IRQ_HANDLED;
949 }
950 
951 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
952 {
953 	trace_ipi_raise(target, ipi_types[ipinr]);
954 	__ipi_send_mask(ipi_desc[ipinr], target);
955 }
956 
957 static void ipi_setup(int cpu)
958 {
959 	int i;
960 
961 	if (WARN_ON_ONCE(!ipi_irq_base))
962 		return;
963 
964 	for (i = 0; i < nr_ipi; i++)
965 		enable_percpu_irq(ipi_irq_base + i, 0);
966 }
967 
968 #ifdef CONFIG_HOTPLUG_CPU
969 static void ipi_teardown(int cpu)
970 {
971 	int i;
972 
973 	if (WARN_ON_ONCE(!ipi_irq_base))
974 		return;
975 
976 	for (i = 0; i < nr_ipi; i++)
977 		disable_percpu_irq(ipi_irq_base + i);
978 }
979 #endif
980 
981 void __init set_smp_ipi_range(int ipi_base, int n)
982 {
983 	int i;
984 
985 	WARN_ON(n < NR_IPI);
986 	nr_ipi = min(n, NR_IPI);
987 
988 	for (i = 0; i < nr_ipi; i++) {
989 		int err;
990 
991 		err = request_percpu_irq(ipi_base + i, ipi_handler,
992 					 "IPI", &cpu_number);
993 		WARN_ON(err);
994 
995 		ipi_desc[i] = irq_to_desc(ipi_base + i);
996 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
997 	}
998 
999 	ipi_irq_base = ipi_base;
1000 
1001 	/* Setup the boot CPU immediately */
1002 	ipi_setup(smp_processor_id());
1003 }
1004 
1005 void smp_send_reschedule(int cpu)
1006 {
1007 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1008 }
1009 
1010 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1011 void tick_broadcast(const struct cpumask *mask)
1012 {
1013 	smp_cross_call(mask, IPI_TIMER);
1014 }
1015 #endif
1016 
1017 /*
1018  * The number of CPUs online, not counting this CPU (which may not be
1019  * fully online and so not counted in num_online_cpus()).
1020  */
1021 static inline unsigned int num_other_online_cpus(void)
1022 {
1023 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1024 
1025 	return num_online_cpus() - this_cpu_online;
1026 }
1027 
1028 void smp_send_stop(void)
1029 {
1030 	unsigned long timeout;
1031 
1032 	if (num_other_online_cpus()) {
1033 		cpumask_t mask;
1034 
1035 		cpumask_copy(&mask, cpu_online_mask);
1036 		cpumask_clear_cpu(smp_processor_id(), &mask);
1037 
1038 		if (system_state <= SYSTEM_RUNNING)
1039 			pr_crit("SMP: stopping secondary CPUs\n");
1040 		smp_cross_call(&mask, IPI_CPU_STOP);
1041 	}
1042 
1043 	/* Wait up to one second for other CPUs to stop */
1044 	timeout = USEC_PER_SEC;
1045 	while (num_other_online_cpus() && timeout--)
1046 		udelay(1);
1047 
1048 	if (num_other_online_cpus())
1049 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1050 			cpumask_pr_args(cpu_online_mask));
1051 
1052 	sdei_mask_local_cpu();
1053 }
1054 
1055 #ifdef CONFIG_KEXEC_CORE
1056 void crash_smp_send_stop(void)
1057 {
1058 	static int cpus_stopped;
1059 	cpumask_t mask;
1060 	unsigned long timeout;
1061 
1062 	/*
1063 	 * This function can be called twice in panic path, but obviously
1064 	 * we execute this only once.
1065 	 */
1066 	if (cpus_stopped)
1067 		return;
1068 
1069 	cpus_stopped = 1;
1070 
1071 	/*
1072 	 * If this cpu is the only one alive at this point in time, online or
1073 	 * not, there are no stop messages to be sent around, so just back out.
1074 	 */
1075 	if (num_other_online_cpus() == 0) {
1076 		sdei_mask_local_cpu();
1077 		return;
1078 	}
1079 
1080 	cpumask_copy(&mask, cpu_online_mask);
1081 	cpumask_clear_cpu(smp_processor_id(), &mask);
1082 
1083 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1084 
1085 	pr_crit("SMP: stopping secondary CPUs\n");
1086 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1087 
1088 	/* Wait up to one second for other CPUs to stop */
1089 	timeout = USEC_PER_SEC;
1090 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1091 		udelay(1);
1092 
1093 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1094 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1095 			cpumask_pr_args(&mask));
1096 
1097 	sdei_mask_local_cpu();
1098 }
1099 
1100 bool smp_crash_stop_failed(void)
1101 {
1102 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1103 }
1104 #endif
1105 
1106 /*
1107  * not supported here
1108  */
1109 int setup_profiling_timer(unsigned int multiplier)
1110 {
1111 	return -EINVAL;
1112 }
1113 
1114 static bool have_cpu_die(void)
1115 {
1116 #ifdef CONFIG_HOTPLUG_CPU
1117 	int any_cpu = raw_smp_processor_id();
1118 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1119 
1120 	if (ops && ops->cpu_die)
1121 		return true;
1122 #endif
1123 	return false;
1124 }
1125 
1126 bool cpus_are_stuck_in_kernel(void)
1127 {
1128 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1129 
1130 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1131 }
1132