1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/kexec.h> 35 #include <linux/kvm_host.h> 36 37 #include <asm/alternative.h> 38 #include <asm/atomic.h> 39 #include <asm/cacheflush.h> 40 #include <asm/cpu.h> 41 #include <asm/cputype.h> 42 #include <asm/cpu_ops.h> 43 #include <asm/daifflags.h> 44 #include <asm/kvm_mmu.h> 45 #include <asm/mmu_context.h> 46 #include <asm/numa.h> 47 #include <asm/processor.h> 48 #include <asm/smp_plat.h> 49 #include <asm/sections.h> 50 #include <asm/tlbflush.h> 51 #include <asm/ptrace.h> 52 #include <asm/virt.h> 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ipi.h> 56 57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 58 EXPORT_PER_CPU_SYMBOL(cpu_number); 59 60 /* 61 * as from 2.5, kernels no longer have an init_tasks structure 62 * so we need some other way of telling a new secondary core 63 * where to place its SVC stack 64 */ 65 struct secondary_data secondary_data; 66 /* Number of CPUs which aren't online, but looping in kernel text. */ 67 static int cpus_stuck_in_kernel; 68 69 enum ipi_msg_type { 70 IPI_RESCHEDULE, 71 IPI_CALL_FUNC, 72 IPI_CPU_STOP, 73 IPI_CPU_CRASH_STOP, 74 IPI_TIMER, 75 IPI_IRQ_WORK, 76 IPI_WAKEUP, 77 NR_IPI 78 }; 79 80 static int ipi_irq_base __read_mostly; 81 static int nr_ipi __read_mostly = NR_IPI; 82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly; 83 84 static void ipi_setup(int cpu); 85 86 #ifdef CONFIG_HOTPLUG_CPU 87 static void ipi_teardown(int cpu); 88 static int op_cpu_kill(unsigned int cpu); 89 #else 90 static inline int op_cpu_kill(unsigned int cpu) 91 { 92 return -ENOSYS; 93 } 94 #endif 95 96 97 /* 98 * Boot a secondary CPU, and assign it the specified idle task. 99 * This also gives us the initial stack to use for this CPU. 100 */ 101 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 102 { 103 const struct cpu_operations *ops = get_cpu_ops(cpu); 104 105 if (ops->cpu_boot) 106 return ops->cpu_boot(cpu); 107 108 return -EOPNOTSUPP; 109 } 110 111 static DECLARE_COMPLETION(cpu_running); 112 113 int __cpu_up(unsigned int cpu, struct task_struct *idle) 114 { 115 int ret; 116 long status; 117 118 /* 119 * We need to tell the secondary core where to find its stack and the 120 * page tables. 121 */ 122 secondary_data.task = idle; 123 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 124 update_cpu_boot_status(CPU_MMU_OFF); 125 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 126 127 /* Now bring the CPU into our world */ 128 ret = boot_secondary(cpu, idle); 129 if (ret) { 130 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 131 return ret; 132 } 133 134 /* 135 * CPU was successfully started, wait for it to come online or 136 * time out. 137 */ 138 wait_for_completion_timeout(&cpu_running, 139 msecs_to_jiffies(5000)); 140 if (cpu_online(cpu)) 141 return 0; 142 143 pr_crit("CPU%u: failed to come online\n", cpu); 144 secondary_data.task = NULL; 145 secondary_data.stack = NULL; 146 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 147 status = READ_ONCE(secondary_data.status); 148 if (status == CPU_MMU_OFF) 149 status = READ_ONCE(__early_cpu_boot_status); 150 151 switch (status & CPU_BOOT_STATUS_MASK) { 152 default: 153 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 154 cpu, status); 155 cpus_stuck_in_kernel++; 156 break; 157 case CPU_KILL_ME: 158 if (!op_cpu_kill(cpu)) { 159 pr_crit("CPU%u: died during early boot\n", cpu); 160 break; 161 } 162 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 163 fallthrough; 164 case CPU_STUCK_IN_KERNEL: 165 pr_crit("CPU%u: is stuck in kernel\n", cpu); 166 if (status & CPU_STUCK_REASON_52_BIT_VA) 167 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 168 if (status & CPU_STUCK_REASON_NO_GRAN) { 169 pr_crit("CPU%u: does not support %luK granule\n", 170 cpu, PAGE_SIZE / SZ_1K); 171 } 172 cpus_stuck_in_kernel++; 173 break; 174 case CPU_PANIC_KERNEL: 175 panic("CPU%u detected unsupported configuration\n", cpu); 176 } 177 178 return -EIO; 179 } 180 181 static void init_gic_priority_masking(void) 182 { 183 u32 cpuflags; 184 185 if (WARN_ON(!gic_enable_sre())) 186 return; 187 188 cpuflags = read_sysreg(daif); 189 190 WARN_ON(!(cpuflags & PSR_I_BIT)); 191 192 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 193 } 194 195 /* 196 * This is the secondary CPU boot entry. We're using this CPUs 197 * idle thread stack, but a set of temporary page tables. 198 */ 199 asmlinkage notrace void secondary_start_kernel(void) 200 { 201 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 202 struct mm_struct *mm = &init_mm; 203 const struct cpu_operations *ops; 204 unsigned int cpu; 205 206 cpu = task_cpu(current); 207 set_my_cpu_offset(per_cpu_offset(cpu)); 208 209 /* 210 * All kernel threads share the same mm context; grab a 211 * reference and switch to it. 212 */ 213 mmgrab(mm); 214 current->active_mm = mm; 215 216 /* 217 * TTBR0 is only used for the identity mapping at this stage. Make it 218 * point to zero page to avoid speculatively fetching new entries. 219 */ 220 cpu_uninstall_idmap(); 221 222 if (system_uses_irq_prio_masking()) 223 init_gic_priority_masking(); 224 225 preempt_disable(); 226 trace_hardirqs_off(); 227 228 /* 229 * If the system has established the capabilities, make sure 230 * this CPU ticks all of those. If it doesn't, the CPU will 231 * fail to come online. 232 */ 233 check_local_cpu_capabilities(); 234 235 ops = get_cpu_ops(cpu); 236 if (ops->cpu_postboot) 237 ops->cpu_postboot(); 238 239 /* 240 * Log the CPU info before it is marked online and might get read. 241 */ 242 cpuinfo_store_cpu(); 243 244 /* 245 * Enable GIC and timers. 246 */ 247 notify_cpu_starting(cpu); 248 249 ipi_setup(cpu); 250 251 store_cpu_topology(cpu); 252 numa_add_cpu(cpu); 253 254 /* 255 * OK, now it's safe to let the boot CPU continue. Wait for 256 * the CPU migration code to notice that the CPU is online 257 * before we continue. 258 */ 259 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 260 cpu, (unsigned long)mpidr, 261 read_cpuid_id()); 262 update_cpu_boot_status(CPU_BOOT_SUCCESS); 263 set_cpu_online(cpu, true); 264 complete(&cpu_running); 265 266 local_daif_restore(DAIF_PROCCTX); 267 268 /* 269 * OK, it's off to the idle thread for us 270 */ 271 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 272 } 273 274 #ifdef CONFIG_HOTPLUG_CPU 275 static int op_cpu_disable(unsigned int cpu) 276 { 277 const struct cpu_operations *ops = get_cpu_ops(cpu); 278 279 /* 280 * If we don't have a cpu_die method, abort before we reach the point 281 * of no return. CPU0 may not have an cpu_ops, so test for it. 282 */ 283 if (!ops || !ops->cpu_die) 284 return -EOPNOTSUPP; 285 286 /* 287 * We may need to abort a hot unplug for some other mechanism-specific 288 * reason. 289 */ 290 if (ops->cpu_disable) 291 return ops->cpu_disable(cpu); 292 293 return 0; 294 } 295 296 /* 297 * __cpu_disable runs on the processor to be shutdown. 298 */ 299 int __cpu_disable(void) 300 { 301 unsigned int cpu = smp_processor_id(); 302 int ret; 303 304 ret = op_cpu_disable(cpu); 305 if (ret) 306 return ret; 307 308 remove_cpu_topology(cpu); 309 numa_remove_cpu(cpu); 310 311 /* 312 * Take this CPU offline. Once we clear this, we can't return, 313 * and we must not schedule until we're ready to give up the cpu. 314 */ 315 set_cpu_online(cpu, false); 316 ipi_teardown(cpu); 317 318 /* 319 * OK - migrate IRQs away from this CPU 320 */ 321 irq_migrate_all_off_this_cpu(); 322 323 return 0; 324 } 325 326 static int op_cpu_kill(unsigned int cpu) 327 { 328 const struct cpu_operations *ops = get_cpu_ops(cpu); 329 330 /* 331 * If we have no means of synchronising with the dying CPU, then assume 332 * that it is really dead. We can only wait for an arbitrary length of 333 * time and hope that it's dead, so let's skip the wait and just hope. 334 */ 335 if (!ops->cpu_kill) 336 return 0; 337 338 return ops->cpu_kill(cpu); 339 } 340 341 /* 342 * called on the thread which is asking for a CPU to be shutdown - 343 * waits until shutdown has completed, or it is timed out. 344 */ 345 void __cpu_die(unsigned int cpu) 346 { 347 int err; 348 349 if (!cpu_wait_death(cpu, 5)) { 350 pr_crit("CPU%u: cpu didn't die\n", cpu); 351 return; 352 } 353 pr_notice("CPU%u: shutdown\n", cpu); 354 355 /* 356 * Now that the dying CPU is beyond the point of no return w.r.t. 357 * in-kernel synchronisation, try to get the firwmare to help us to 358 * verify that it has really left the kernel before we consider 359 * clobbering anything it might still be using. 360 */ 361 err = op_cpu_kill(cpu); 362 if (err) 363 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 364 } 365 366 /* 367 * Called from the idle thread for the CPU which has been shutdown. 368 * 369 */ 370 void cpu_die(void) 371 { 372 unsigned int cpu = smp_processor_id(); 373 const struct cpu_operations *ops = get_cpu_ops(cpu); 374 375 idle_task_exit(); 376 377 local_daif_mask(); 378 379 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 380 (void)cpu_report_death(); 381 382 /* 383 * Actually shutdown the CPU. This must never fail. The specific hotplug 384 * mechanism must perform all required cache maintenance to ensure that 385 * no dirty lines are lost in the process of shutting down the CPU. 386 */ 387 ops->cpu_die(cpu); 388 389 BUG(); 390 } 391 #endif 392 393 static void __cpu_try_die(int cpu) 394 { 395 #ifdef CONFIG_HOTPLUG_CPU 396 const struct cpu_operations *ops = get_cpu_ops(cpu); 397 398 if (ops && ops->cpu_die) 399 ops->cpu_die(cpu); 400 #endif 401 } 402 403 /* 404 * Kill the calling secondary CPU, early in bringup before it is turned 405 * online. 406 */ 407 void cpu_die_early(void) 408 { 409 int cpu = smp_processor_id(); 410 411 pr_crit("CPU%d: will not boot\n", cpu); 412 413 /* Mark this CPU absent */ 414 set_cpu_present(cpu, 0); 415 416 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 417 update_cpu_boot_status(CPU_KILL_ME); 418 __cpu_try_die(cpu); 419 } 420 421 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 422 423 cpu_park_loop(); 424 } 425 426 static void __init hyp_mode_check(void) 427 { 428 if (is_hyp_mode_available()) 429 pr_info("CPU: All CPU(s) started at EL2\n"); 430 else if (is_hyp_mode_mismatched()) 431 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 432 "CPU: CPUs started in inconsistent modes"); 433 else 434 pr_info("CPU: All CPU(s) started at EL1\n"); 435 if (IS_ENABLED(CONFIG_KVM)) 436 kvm_compute_layout(); 437 } 438 439 void __init smp_cpus_done(unsigned int max_cpus) 440 { 441 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 442 setup_cpu_features(); 443 hyp_mode_check(); 444 apply_alternatives_all(); 445 mark_linear_text_alias_ro(); 446 } 447 448 void __init smp_prepare_boot_cpu(void) 449 { 450 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 451 cpuinfo_store_boot_cpu(); 452 453 /* 454 * We now know enough about the boot CPU to apply the 455 * alternatives that cannot wait until interrupt handling 456 * and/or scheduling is enabled. 457 */ 458 apply_boot_alternatives(); 459 460 /* Conditionally switch to GIC PMR for interrupt masking */ 461 if (system_uses_irq_prio_masking()) 462 init_gic_priority_masking(); 463 } 464 465 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 466 { 467 const __be32 *cell; 468 u64 hwid; 469 470 /* 471 * A cpu node with missing "reg" property is 472 * considered invalid to build a cpu_logical_map 473 * entry. 474 */ 475 cell = of_get_property(dn, "reg", NULL); 476 if (!cell) { 477 pr_err("%pOF: missing reg property\n", dn); 478 return INVALID_HWID; 479 } 480 481 hwid = of_read_number(cell, of_n_addr_cells(dn)); 482 /* 483 * Non affinity bits must be set to 0 in the DT 484 */ 485 if (hwid & ~MPIDR_HWID_BITMASK) { 486 pr_err("%pOF: invalid reg property\n", dn); 487 return INVALID_HWID; 488 } 489 return hwid; 490 } 491 492 /* 493 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 494 * entries and check for duplicates. If any is found just ignore the 495 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 496 * matching valid MPIDR values. 497 */ 498 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 499 { 500 unsigned int i; 501 502 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 503 if (cpu_logical_map(i) == hwid) 504 return true; 505 return false; 506 } 507 508 /* 509 * Initialize cpu operations for a logical cpu and 510 * set it in the possible mask on success 511 */ 512 static int __init smp_cpu_setup(int cpu) 513 { 514 const struct cpu_operations *ops; 515 516 if (init_cpu_ops(cpu)) 517 return -ENODEV; 518 519 ops = get_cpu_ops(cpu); 520 if (ops->cpu_init(cpu)) 521 return -ENODEV; 522 523 set_cpu_possible(cpu, true); 524 525 return 0; 526 } 527 528 static bool bootcpu_valid __initdata; 529 static unsigned int cpu_count = 1; 530 531 #ifdef CONFIG_ACPI 532 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 533 534 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 535 { 536 return &cpu_madt_gicc[cpu]; 537 } 538 539 /* 540 * acpi_map_gic_cpu_interface - parse processor MADT entry 541 * 542 * Carry out sanity checks on MADT processor entry and initialize 543 * cpu_logical_map on success 544 */ 545 static void __init 546 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 547 { 548 u64 hwid = processor->arm_mpidr; 549 550 if (!(processor->flags & ACPI_MADT_ENABLED)) { 551 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 552 return; 553 } 554 555 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 556 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 557 return; 558 } 559 560 if (is_mpidr_duplicate(cpu_count, hwid)) { 561 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 562 return; 563 } 564 565 /* Check if GICC structure of boot CPU is available in the MADT */ 566 if (cpu_logical_map(0) == hwid) { 567 if (bootcpu_valid) { 568 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 569 hwid); 570 return; 571 } 572 bootcpu_valid = true; 573 cpu_madt_gicc[0] = *processor; 574 return; 575 } 576 577 if (cpu_count >= NR_CPUS) 578 return; 579 580 /* map the logical cpu id to cpu MPIDR */ 581 set_cpu_logical_map(cpu_count, hwid); 582 583 cpu_madt_gicc[cpu_count] = *processor; 584 585 /* 586 * Set-up the ACPI parking protocol cpu entries 587 * while initializing the cpu_logical_map to 588 * avoid parsing MADT entries multiple times for 589 * nothing (ie a valid cpu_logical_map entry should 590 * contain a valid parking protocol data set to 591 * initialize the cpu if the parking protocol is 592 * the only available enable method). 593 */ 594 acpi_set_mailbox_entry(cpu_count, processor); 595 596 cpu_count++; 597 } 598 599 static int __init 600 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 601 const unsigned long end) 602 { 603 struct acpi_madt_generic_interrupt *processor; 604 605 processor = (struct acpi_madt_generic_interrupt *)header; 606 if (BAD_MADT_GICC_ENTRY(processor, end)) 607 return -EINVAL; 608 609 acpi_table_print_madt_entry(&header->common); 610 611 acpi_map_gic_cpu_interface(processor); 612 613 return 0; 614 } 615 616 static void __init acpi_parse_and_init_cpus(void) 617 { 618 int i; 619 620 /* 621 * do a walk of MADT to determine how many CPUs 622 * we have including disabled CPUs, and get information 623 * we need for SMP init. 624 */ 625 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 626 acpi_parse_gic_cpu_interface, 0); 627 628 /* 629 * In ACPI, SMP and CPU NUMA information is provided in separate 630 * static tables, namely the MADT and the SRAT. 631 * 632 * Thus, it is simpler to first create the cpu logical map through 633 * an MADT walk and then map the logical cpus to their node ids 634 * as separate steps. 635 */ 636 acpi_map_cpus_to_nodes(); 637 638 for (i = 0; i < nr_cpu_ids; i++) 639 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 640 } 641 #else 642 #define acpi_parse_and_init_cpus(...) do { } while (0) 643 #endif 644 645 /* 646 * Enumerate the possible CPU set from the device tree and build the 647 * cpu logical map array containing MPIDR values related to logical 648 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 649 */ 650 static void __init of_parse_and_init_cpus(void) 651 { 652 struct device_node *dn; 653 654 for_each_of_cpu_node(dn) { 655 u64 hwid = of_get_cpu_mpidr(dn); 656 657 if (hwid == INVALID_HWID) 658 goto next; 659 660 if (is_mpidr_duplicate(cpu_count, hwid)) { 661 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 662 dn); 663 goto next; 664 } 665 666 /* 667 * The numbering scheme requires that the boot CPU 668 * must be assigned logical id 0. Record it so that 669 * the logical map built from DT is validated and can 670 * be used. 671 */ 672 if (hwid == cpu_logical_map(0)) { 673 if (bootcpu_valid) { 674 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 675 dn); 676 goto next; 677 } 678 679 bootcpu_valid = true; 680 early_map_cpu_to_node(0, of_node_to_nid(dn)); 681 682 /* 683 * cpu_logical_map has already been 684 * initialized and the boot cpu doesn't need 685 * the enable-method so continue without 686 * incrementing cpu. 687 */ 688 continue; 689 } 690 691 if (cpu_count >= NR_CPUS) 692 goto next; 693 694 pr_debug("cpu logical map 0x%llx\n", hwid); 695 set_cpu_logical_map(cpu_count, hwid); 696 697 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 698 next: 699 cpu_count++; 700 } 701 } 702 703 /* 704 * Enumerate the possible CPU set from the device tree or ACPI and build the 705 * cpu logical map array containing MPIDR values related to logical 706 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 707 */ 708 void __init smp_init_cpus(void) 709 { 710 int i; 711 712 if (acpi_disabled) 713 of_parse_and_init_cpus(); 714 else 715 acpi_parse_and_init_cpus(); 716 717 if (cpu_count > nr_cpu_ids) 718 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 719 cpu_count, nr_cpu_ids); 720 721 if (!bootcpu_valid) { 722 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 723 return; 724 } 725 726 /* 727 * We need to set the cpu_logical_map entries before enabling 728 * the cpus so that cpu processor description entries (DT cpu nodes 729 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 730 * with entries in cpu_logical_map while initializing the cpus. 731 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 732 */ 733 for (i = 1; i < nr_cpu_ids; i++) { 734 if (cpu_logical_map(i) != INVALID_HWID) { 735 if (smp_cpu_setup(i)) 736 set_cpu_logical_map(i, INVALID_HWID); 737 } 738 } 739 } 740 741 void __init smp_prepare_cpus(unsigned int max_cpus) 742 { 743 const struct cpu_operations *ops; 744 int err; 745 unsigned int cpu; 746 unsigned int this_cpu; 747 748 init_cpu_topology(); 749 750 this_cpu = smp_processor_id(); 751 store_cpu_topology(this_cpu); 752 numa_store_cpu_info(this_cpu); 753 numa_add_cpu(this_cpu); 754 755 /* 756 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 757 * secondary CPUs present. 758 */ 759 if (max_cpus == 0) 760 return; 761 762 /* 763 * Initialise the present map (which describes the set of CPUs 764 * actually populated at the present time) and release the 765 * secondaries from the bootloader. 766 */ 767 for_each_possible_cpu(cpu) { 768 769 per_cpu(cpu_number, cpu) = cpu; 770 771 if (cpu == smp_processor_id()) 772 continue; 773 774 ops = get_cpu_ops(cpu); 775 if (!ops) 776 continue; 777 778 err = ops->cpu_prepare(cpu); 779 if (err) 780 continue; 781 782 set_cpu_present(cpu, true); 783 numa_store_cpu_info(cpu); 784 } 785 } 786 787 static const char *ipi_types[NR_IPI] __tracepoint_string = { 788 #define S(x,s) [x] = s 789 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 790 S(IPI_CALL_FUNC, "Function call interrupts"), 791 S(IPI_CPU_STOP, "CPU stop interrupts"), 792 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 793 S(IPI_TIMER, "Timer broadcast interrupts"), 794 S(IPI_IRQ_WORK, "IRQ work interrupts"), 795 S(IPI_WAKEUP, "CPU wake-up interrupts"), 796 }; 797 798 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 799 800 unsigned long irq_err_count; 801 802 int arch_show_interrupts(struct seq_file *p, int prec) 803 { 804 unsigned int cpu, i; 805 806 for (i = 0; i < NR_IPI; i++) { 807 unsigned int irq = irq_desc_get_irq(ipi_desc[i]); 808 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 809 prec >= 4 ? " " : ""); 810 for_each_online_cpu(cpu) 811 seq_printf(p, "%10u ", kstat_irqs_cpu(irq, cpu)); 812 seq_printf(p, " %s\n", ipi_types[i]); 813 } 814 815 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); 816 return 0; 817 } 818 819 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 820 { 821 smp_cross_call(mask, IPI_CALL_FUNC); 822 } 823 824 void arch_send_call_function_single_ipi(int cpu) 825 { 826 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 827 } 828 829 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 830 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 831 { 832 smp_cross_call(mask, IPI_WAKEUP); 833 } 834 #endif 835 836 #ifdef CONFIG_IRQ_WORK 837 void arch_irq_work_raise(void) 838 { 839 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 840 } 841 #endif 842 843 static void local_cpu_stop(void) 844 { 845 set_cpu_online(smp_processor_id(), false); 846 847 local_daif_mask(); 848 sdei_mask_local_cpu(); 849 cpu_park_loop(); 850 } 851 852 /* 853 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 854 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 855 * CPUs that have already stopped themselves. 856 */ 857 void panic_smp_self_stop(void) 858 { 859 local_cpu_stop(); 860 } 861 862 #ifdef CONFIG_KEXEC_CORE 863 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 864 #endif 865 866 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 867 { 868 #ifdef CONFIG_KEXEC_CORE 869 crash_save_cpu(regs, cpu); 870 871 atomic_dec(&waiting_for_crash_ipi); 872 873 local_irq_disable(); 874 sdei_mask_local_cpu(); 875 876 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 877 __cpu_try_die(cpu); 878 879 /* just in case */ 880 cpu_park_loop(); 881 #endif 882 } 883 884 /* 885 * Main handler for inter-processor interrupts 886 */ 887 static void do_handle_IPI(int ipinr) 888 { 889 unsigned int cpu = smp_processor_id(); 890 891 if ((unsigned)ipinr < NR_IPI) 892 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 893 894 switch (ipinr) { 895 case IPI_RESCHEDULE: 896 scheduler_ipi(); 897 break; 898 899 case IPI_CALL_FUNC: 900 generic_smp_call_function_interrupt(); 901 break; 902 903 case IPI_CPU_STOP: 904 local_cpu_stop(); 905 break; 906 907 case IPI_CPU_CRASH_STOP: 908 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 909 ipi_cpu_crash_stop(cpu, get_irq_regs()); 910 911 unreachable(); 912 } 913 break; 914 915 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 916 case IPI_TIMER: 917 tick_receive_broadcast(); 918 break; 919 #endif 920 921 #ifdef CONFIG_IRQ_WORK 922 case IPI_IRQ_WORK: 923 irq_work_run(); 924 break; 925 #endif 926 927 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 928 case IPI_WAKEUP: 929 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 930 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 931 cpu); 932 break; 933 #endif 934 935 default: 936 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 937 break; 938 } 939 940 if ((unsigned)ipinr < NR_IPI) 941 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 942 } 943 944 static irqreturn_t ipi_handler(int irq, void *data) 945 { 946 do_handle_IPI(irq - ipi_irq_base); 947 return IRQ_HANDLED; 948 } 949 950 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 951 { 952 trace_ipi_raise(target, ipi_types[ipinr]); 953 __ipi_send_mask(ipi_desc[ipinr], target); 954 } 955 956 static void ipi_setup(int cpu) 957 { 958 int i; 959 960 if (WARN_ON_ONCE(!ipi_irq_base)) 961 return; 962 963 for (i = 0; i < nr_ipi; i++) 964 enable_percpu_irq(ipi_irq_base + i, 0); 965 } 966 967 #ifdef CONFIG_HOTPLUG_CPU 968 static void ipi_teardown(int cpu) 969 { 970 int i; 971 972 if (WARN_ON_ONCE(!ipi_irq_base)) 973 return; 974 975 for (i = 0; i < nr_ipi; i++) 976 disable_percpu_irq(ipi_irq_base + i); 977 } 978 #endif 979 980 void __init set_smp_ipi_range(int ipi_base, int n) 981 { 982 int i; 983 984 WARN_ON(n < NR_IPI); 985 nr_ipi = min(n, NR_IPI); 986 987 for (i = 0; i < nr_ipi; i++) { 988 int err; 989 990 err = request_percpu_irq(ipi_base + i, ipi_handler, 991 "IPI", &cpu_number); 992 WARN_ON(err); 993 994 ipi_desc[i] = irq_to_desc(ipi_base + i); 995 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 996 } 997 998 ipi_irq_base = ipi_base; 999 1000 /* Setup the boot CPU immediately */ 1001 ipi_setup(smp_processor_id()); 1002 } 1003 1004 void smp_send_reschedule(int cpu) 1005 { 1006 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 1007 } 1008 1009 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 1010 void tick_broadcast(const struct cpumask *mask) 1011 { 1012 smp_cross_call(mask, IPI_TIMER); 1013 } 1014 #endif 1015 1016 /* 1017 * The number of CPUs online, not counting this CPU (which may not be 1018 * fully online and so not counted in num_online_cpus()). 1019 */ 1020 static inline unsigned int num_other_online_cpus(void) 1021 { 1022 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 1023 1024 return num_online_cpus() - this_cpu_online; 1025 } 1026 1027 void smp_send_stop(void) 1028 { 1029 unsigned long timeout; 1030 1031 if (num_other_online_cpus()) { 1032 cpumask_t mask; 1033 1034 cpumask_copy(&mask, cpu_online_mask); 1035 cpumask_clear_cpu(smp_processor_id(), &mask); 1036 1037 if (system_state <= SYSTEM_RUNNING) 1038 pr_crit("SMP: stopping secondary CPUs\n"); 1039 smp_cross_call(&mask, IPI_CPU_STOP); 1040 } 1041 1042 /* Wait up to one second for other CPUs to stop */ 1043 timeout = USEC_PER_SEC; 1044 while (num_other_online_cpus() && timeout--) 1045 udelay(1); 1046 1047 if (num_other_online_cpus()) 1048 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1049 cpumask_pr_args(cpu_online_mask)); 1050 1051 sdei_mask_local_cpu(); 1052 } 1053 1054 #ifdef CONFIG_KEXEC_CORE 1055 void crash_smp_send_stop(void) 1056 { 1057 static int cpus_stopped; 1058 cpumask_t mask; 1059 unsigned long timeout; 1060 1061 /* 1062 * This function can be called twice in panic path, but obviously 1063 * we execute this only once. 1064 */ 1065 if (cpus_stopped) 1066 return; 1067 1068 cpus_stopped = 1; 1069 1070 /* 1071 * If this cpu is the only one alive at this point in time, online or 1072 * not, there are no stop messages to be sent around, so just back out. 1073 */ 1074 if (num_other_online_cpus() == 0) { 1075 sdei_mask_local_cpu(); 1076 return; 1077 } 1078 1079 cpumask_copy(&mask, cpu_online_mask); 1080 cpumask_clear_cpu(smp_processor_id(), &mask); 1081 1082 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1083 1084 pr_crit("SMP: stopping secondary CPUs\n"); 1085 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1086 1087 /* Wait up to one second for other CPUs to stop */ 1088 timeout = USEC_PER_SEC; 1089 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1090 udelay(1); 1091 1092 if (atomic_read(&waiting_for_crash_ipi) > 0) 1093 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1094 cpumask_pr_args(&mask)); 1095 1096 sdei_mask_local_cpu(); 1097 } 1098 1099 bool smp_crash_stop_failed(void) 1100 { 1101 return (atomic_read(&waiting_for_crash_ipi) > 0); 1102 } 1103 #endif 1104 1105 /* 1106 * not supported here 1107 */ 1108 int setup_profiling_timer(unsigned int multiplier) 1109 { 1110 return -EINVAL; 1111 } 1112 1113 static bool have_cpu_die(void) 1114 { 1115 #ifdef CONFIG_HOTPLUG_CPU 1116 int any_cpu = raw_smp_processor_id(); 1117 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1118 1119 if (ops && ops->cpu_die) 1120 return true; 1121 #endif 1122 return false; 1123 } 1124 1125 bool cpus_are_stuck_in_kernel(void) 1126 { 1127 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1128 1129 return !!cpus_stuck_in_kernel || smp_spin_tables; 1130 } 1131