xref: /openbmc/linux/arch/arm64/kernel/setup.c (revision 23cb0767f0544858169c02cec445d066d4e02e2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/setup.c
4  *
5  * Copyright (C) 1995-2001 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/initrd.h>
16 #include <linux/console.h>
17 #include <linux/cache.h>
18 #include <linux/screen_info.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/root_dev.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/fs.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/proc_fs.h>
28 #include <linux/memblock.h>
29 #include <linux/of_fdt.h>
30 #include <linux/efi.h>
31 #include <linux/psci.h>
32 #include <linux/sched/task.h>
33 #include <linux/mm.h>
34 
35 #include <asm/acpi.h>
36 #include <asm/fixmap.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/daifflags.h>
40 #include <asm/elf.h>
41 #include <asm/cpufeature.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/kasan.h>
44 #include <asm/numa.h>
45 #include <asm/sections.h>
46 #include <asm/setup.h>
47 #include <asm/smp_plat.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlbflush.h>
50 #include <asm/traps.h>
51 #include <asm/efi.h>
52 #include <asm/xen/hypervisor.h>
53 #include <asm/mmu_context.h>
54 
55 static int num_standard_resources;
56 static struct resource *standard_resources;
57 
58 phys_addr_t __fdt_pointer __initdata;
59 
60 /*
61  * Standard memory resources
62  */
63 static struct resource mem_res[] = {
64 	{
65 		.name = "Kernel code",
66 		.start = 0,
67 		.end = 0,
68 		.flags = IORESOURCE_SYSTEM_RAM
69 	},
70 	{
71 		.name = "Kernel data",
72 		.start = 0,
73 		.end = 0,
74 		.flags = IORESOURCE_SYSTEM_RAM
75 	}
76 };
77 
78 #define kernel_code mem_res[0]
79 #define kernel_data mem_res[1]
80 
81 /*
82  * The recorded values of x0 .. x3 upon kernel entry.
83  */
84 u64 __cacheline_aligned boot_args[4];
85 
86 void __init smp_setup_processor_id(void)
87 {
88 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
89 	set_cpu_logical_map(0, mpidr);
90 
91 	pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
92 		(unsigned long)mpidr, read_cpuid_id());
93 }
94 
95 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
96 {
97 	return phys_id == cpu_logical_map(cpu);
98 }
99 
100 struct mpidr_hash mpidr_hash;
101 /**
102  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
103  *			  level in order to build a linear index from an
104  *			  MPIDR value. Resulting algorithm is a collision
105  *			  free hash carried out through shifting and ORing
106  */
107 static void __init smp_build_mpidr_hash(void)
108 {
109 	u32 i, affinity, fs[4], bits[4], ls;
110 	u64 mask = 0;
111 	/*
112 	 * Pre-scan the list of MPIDRS and filter out bits that do
113 	 * not contribute to affinity levels, ie they never toggle.
114 	 */
115 	for_each_possible_cpu(i)
116 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
117 	pr_debug("mask of set bits %#llx\n", mask);
118 	/*
119 	 * Find and stash the last and first bit set at all affinity levels to
120 	 * check how many bits are required to represent them.
121 	 */
122 	for (i = 0; i < 4; i++) {
123 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
124 		/*
125 		 * Find the MSB bit and LSB bits position
126 		 * to determine how many bits are required
127 		 * to express the affinity level.
128 		 */
129 		ls = fls(affinity);
130 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
131 		bits[i] = ls - fs[i];
132 	}
133 	/*
134 	 * An index can be created from the MPIDR_EL1 by isolating the
135 	 * significant bits at each affinity level and by shifting
136 	 * them in order to compress the 32 bits values space to a
137 	 * compressed set of values. This is equivalent to hashing
138 	 * the MPIDR_EL1 through shifting and ORing. It is a collision free
139 	 * hash though not minimal since some levels might contain a number
140 	 * of CPUs that is not an exact power of 2 and their bit
141 	 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
142 	 */
143 	mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
144 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
145 	mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
146 						(bits[1] + bits[0]);
147 	mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
148 				  fs[3] - (bits[2] + bits[1] + bits[0]);
149 	mpidr_hash.mask = mask;
150 	mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
151 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
152 		mpidr_hash.shift_aff[0],
153 		mpidr_hash.shift_aff[1],
154 		mpidr_hash.shift_aff[2],
155 		mpidr_hash.shift_aff[3],
156 		mpidr_hash.mask,
157 		mpidr_hash.bits);
158 	/*
159 	 * 4x is an arbitrary value used to warn on a hash table much bigger
160 	 * than expected on most systems.
161 	 */
162 	if (mpidr_hash_size() > 4 * num_possible_cpus())
163 		pr_warn("Large number of MPIDR hash buckets detected\n");
164 }
165 
166 static void *early_fdt_ptr __initdata;
167 
168 void __init *get_early_fdt_ptr(void)
169 {
170 	return early_fdt_ptr;
171 }
172 
173 asmlinkage void __init early_fdt_map(u64 dt_phys)
174 {
175 	int fdt_size;
176 
177 	early_fixmap_init();
178 	early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
179 }
180 
181 static void __init setup_machine_fdt(phys_addr_t dt_phys)
182 {
183 	int size;
184 	void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
185 	const char *name;
186 
187 	if (dt_virt)
188 		memblock_reserve(dt_phys, size);
189 
190 	if (!dt_virt || !early_init_dt_scan(dt_virt)) {
191 		pr_crit("\n"
192 			"Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
193 			"The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
194 			"\nPlease check your bootloader.",
195 			&dt_phys, dt_virt);
196 
197 		/*
198 		 * Note that in this _really_ early stage we cannot even BUG()
199 		 * or oops, so the least terrible thing to do is cpu_relax(),
200 		 * or else we could end-up printing non-initialized data, etc.
201 		 */
202 		while (true)
203 			cpu_relax();
204 	}
205 
206 	/* Early fixups are done, map the FDT as read-only now */
207 	fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
208 
209 	name = of_flat_dt_get_machine_name();
210 	if (!name)
211 		return;
212 
213 	pr_info("Machine model: %s\n", name);
214 	dump_stack_set_arch_desc("%s (DT)", name);
215 }
216 
217 static void __init request_standard_resources(void)
218 {
219 	struct memblock_region *region;
220 	struct resource *res;
221 	unsigned long i = 0;
222 	size_t res_size;
223 
224 	kernel_code.start   = __pa_symbol(_stext);
225 	kernel_code.end     = __pa_symbol(__init_begin - 1);
226 	kernel_data.start   = __pa_symbol(_sdata);
227 	kernel_data.end     = __pa_symbol(_end - 1);
228 	insert_resource(&iomem_resource, &kernel_code);
229 	insert_resource(&iomem_resource, &kernel_data);
230 
231 	num_standard_resources = memblock.memory.cnt;
232 	res_size = num_standard_resources * sizeof(*standard_resources);
233 	standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
234 	if (!standard_resources)
235 		panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
236 
237 	for_each_mem_region(region) {
238 		res = &standard_resources[i++];
239 		if (memblock_is_nomap(region)) {
240 			res->name  = "reserved";
241 			res->flags = IORESOURCE_MEM;
242 			res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
243 			res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
244 		} else {
245 			res->name  = "System RAM";
246 			res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
247 			res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
248 			res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
249 		}
250 
251 		insert_resource(&iomem_resource, res);
252 	}
253 }
254 
255 static int __init reserve_memblock_reserved_regions(void)
256 {
257 	u64 i, j;
258 
259 	for (i = 0; i < num_standard_resources; ++i) {
260 		struct resource *mem = &standard_resources[i];
261 		phys_addr_t r_start, r_end, mem_size = resource_size(mem);
262 
263 		if (!memblock_is_region_reserved(mem->start, mem_size))
264 			continue;
265 
266 		for_each_reserved_mem_range(j, &r_start, &r_end) {
267 			resource_size_t start, end;
268 
269 			start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
270 			end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
271 
272 			if (start > mem->end || end < mem->start)
273 				continue;
274 
275 			reserve_region_with_split(mem, start, end, "reserved");
276 		}
277 	}
278 
279 	return 0;
280 }
281 arch_initcall(reserve_memblock_reserved_regions);
282 
283 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
284 
285 u64 cpu_logical_map(unsigned int cpu)
286 {
287 	return __cpu_logical_map[cpu];
288 }
289 
290 void __init __no_sanitize_address setup_arch(char **cmdline_p)
291 {
292 	setup_initial_init_mm(_stext, _etext, _edata, _end);
293 
294 	*cmdline_p = boot_command_line;
295 
296 	/*
297 	 * If know now we are going to need KPTI then use non-global
298 	 * mappings from the start, avoiding the cost of rewriting
299 	 * everything later.
300 	 */
301 	arm64_use_ng_mappings = kaslr_requires_kpti();
302 
303 	early_fixmap_init();
304 	early_ioremap_init();
305 
306 	setup_machine_fdt(__fdt_pointer);
307 
308 	/*
309 	 * Initialise the static keys early as they may be enabled by the
310 	 * cpufeature code and early parameters.
311 	 */
312 	jump_label_init();
313 	parse_early_param();
314 
315 	/*
316 	 * Unmask asynchronous aborts and fiq after bringing up possible
317 	 * earlycon. (Report possible System Errors once we can report this
318 	 * occurred).
319 	 */
320 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
321 
322 	/*
323 	 * TTBR0 is only used for the identity mapping at this stage. Make it
324 	 * point to zero page to avoid speculatively fetching new entries.
325 	 */
326 	cpu_uninstall_idmap();
327 
328 	xen_early_init();
329 	efi_init();
330 
331 	if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0)
332 	     pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
333 
334 	arm64_memblock_init();
335 
336 	paging_init();
337 
338 	acpi_table_upgrade();
339 
340 	/* Parse the ACPI tables for possible boot-time configuration */
341 	acpi_boot_table_init();
342 
343 	if (acpi_disabled)
344 		unflatten_device_tree();
345 
346 	bootmem_init();
347 
348 	kasan_init();
349 
350 	request_standard_resources();
351 
352 	early_ioremap_reset();
353 
354 	if (acpi_disabled)
355 		psci_dt_init();
356 	else
357 		psci_acpi_init();
358 
359 	init_bootcpu_ops();
360 	smp_init_cpus();
361 	smp_build_mpidr_hash();
362 
363 	/* Init percpu seeds for random tags after cpus are set up. */
364 	kasan_init_sw_tags();
365 
366 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
367 	/*
368 	 * Make sure init_thread_info.ttbr0 always generates translation
369 	 * faults in case uaccess_enable() is inadvertently called by the init
370 	 * thread.
371 	 */
372 	init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
373 #endif
374 
375 	if (boot_args[1] || boot_args[2] || boot_args[3]) {
376 		pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
377 			"\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
378 			"This indicates a broken bootloader or old kernel\n",
379 			boot_args[1], boot_args[2], boot_args[3]);
380 	}
381 }
382 
383 static inline bool cpu_can_disable(unsigned int cpu)
384 {
385 #ifdef CONFIG_HOTPLUG_CPU
386 	const struct cpu_operations *ops = get_cpu_ops(cpu);
387 
388 	if (ops && ops->cpu_can_disable)
389 		return ops->cpu_can_disable(cpu);
390 #endif
391 	return false;
392 }
393 
394 static int __init topology_init(void)
395 {
396 	int i;
397 
398 	for_each_possible_cpu(i) {
399 		struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
400 		cpu->hotpluggable = cpu_can_disable(i);
401 		register_cpu(cpu, i);
402 	}
403 
404 	return 0;
405 }
406 subsys_initcall(topology_init);
407 
408 static void dump_kernel_offset(void)
409 {
410 	const unsigned long offset = kaslr_offset();
411 
412 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
413 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
414 			 offset, KIMAGE_VADDR);
415 		pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
416 	} else {
417 		pr_emerg("Kernel Offset: disabled\n");
418 	}
419 }
420 
421 static int arm64_panic_block_dump(struct notifier_block *self,
422 				  unsigned long v, void *p)
423 {
424 	dump_kernel_offset();
425 	dump_cpu_features();
426 	dump_mem_limit();
427 	return 0;
428 }
429 
430 static struct notifier_block arm64_panic_block = {
431 	.notifier_call = arm64_panic_block_dump
432 };
433 
434 static int __init register_arm64_panic_block(void)
435 {
436 	atomic_notifier_chain_register(&panic_notifier_list,
437 				       &arm64_panic_block);
438 	return 0;
439 }
440 device_initcall(register_arm64_panic_block);
441