xref: /openbmc/linux/arch/arm64/kernel/sdei.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2017 Arm Ltd.
3 #define pr_fmt(fmt) "sdei: " fmt
4 
5 #include <linux/arm-smccc.h>
6 #include <linux/arm_sdei.h>
7 #include <linux/hardirq.h>
8 #include <linux/irqflags.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/scs.h>
11 #include <linux/uaccess.h>
12 
13 #include <asm/alternative.h>
14 #include <asm/exception.h>
15 #include <asm/kprobes.h>
16 #include <asm/mmu.h>
17 #include <asm/ptrace.h>
18 #include <asm/sections.h>
19 #include <asm/stacktrace.h>
20 #include <asm/sysreg.h>
21 #include <asm/vmap_stack.h>
22 
23 unsigned long sdei_exit_mode;
24 
25 /*
26  * VMAP'd stacks checking for stack overflow on exception using sp as a scratch
27  * register, meaning SDEI has to switch to its own stack. We need two stacks as
28  * a critical event may interrupt a normal event that has just taken a
29  * synchronous exception, and is using sp as scratch register. For a critical
30  * event interrupting a normal event, we can't reliably tell if we were on the
31  * sdei stack.
32  * For now, we allocate stacks when the driver is probed.
33  */
34 DECLARE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
35 DECLARE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
36 
37 #ifdef CONFIG_VMAP_STACK
38 DEFINE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
39 DEFINE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
40 #endif
41 
42 DECLARE_PER_CPU(unsigned long *, sdei_shadow_call_stack_normal_ptr);
43 DECLARE_PER_CPU(unsigned long *, sdei_shadow_call_stack_critical_ptr);
44 
45 #ifdef CONFIG_SHADOW_CALL_STACK
46 DEFINE_PER_CPU(unsigned long *, sdei_shadow_call_stack_normal_ptr);
47 DEFINE_PER_CPU(unsigned long *, sdei_shadow_call_stack_critical_ptr);
48 #endif
49 
50 static void _free_sdei_stack(unsigned long * __percpu *ptr, int cpu)
51 {
52 	unsigned long *p;
53 
54 	p = per_cpu(*ptr, cpu);
55 	if (p) {
56 		per_cpu(*ptr, cpu) = NULL;
57 		vfree(p);
58 	}
59 }
60 
61 static void free_sdei_stacks(void)
62 {
63 	int cpu;
64 
65 	if (!IS_ENABLED(CONFIG_VMAP_STACK))
66 		return;
67 
68 	for_each_possible_cpu(cpu) {
69 		_free_sdei_stack(&sdei_stack_normal_ptr, cpu);
70 		_free_sdei_stack(&sdei_stack_critical_ptr, cpu);
71 	}
72 }
73 
74 static int _init_sdei_stack(unsigned long * __percpu *ptr, int cpu)
75 {
76 	unsigned long *p;
77 
78 	p = arch_alloc_vmap_stack(SDEI_STACK_SIZE, cpu_to_node(cpu));
79 	if (!p)
80 		return -ENOMEM;
81 	per_cpu(*ptr, cpu) = p;
82 
83 	return 0;
84 }
85 
86 static int init_sdei_stacks(void)
87 {
88 	int cpu;
89 	int err = 0;
90 
91 	if (!IS_ENABLED(CONFIG_VMAP_STACK))
92 		return 0;
93 
94 	for_each_possible_cpu(cpu) {
95 		err = _init_sdei_stack(&sdei_stack_normal_ptr, cpu);
96 		if (err)
97 			break;
98 		err = _init_sdei_stack(&sdei_stack_critical_ptr, cpu);
99 		if (err)
100 			break;
101 	}
102 
103 	if (err)
104 		free_sdei_stacks();
105 
106 	return err;
107 }
108 
109 static void _free_sdei_scs(unsigned long * __percpu *ptr, int cpu)
110 {
111 	void *s;
112 
113 	s = per_cpu(*ptr, cpu);
114 	if (s) {
115 		per_cpu(*ptr, cpu) = NULL;
116 		scs_free(s);
117 	}
118 }
119 
120 static void free_sdei_scs(void)
121 {
122 	int cpu;
123 
124 	for_each_possible_cpu(cpu) {
125 		_free_sdei_scs(&sdei_shadow_call_stack_normal_ptr, cpu);
126 		_free_sdei_scs(&sdei_shadow_call_stack_critical_ptr, cpu);
127 	}
128 }
129 
130 static int _init_sdei_scs(unsigned long * __percpu *ptr, int cpu)
131 {
132 	void *s;
133 
134 	s = scs_alloc(cpu_to_node(cpu));
135 	if (!s)
136 		return -ENOMEM;
137 	per_cpu(*ptr, cpu) = s;
138 
139 	return 0;
140 }
141 
142 static int init_sdei_scs(void)
143 {
144 	int cpu;
145 	int err = 0;
146 
147 	if (!IS_ENABLED(CONFIG_SHADOW_CALL_STACK))
148 		return 0;
149 
150 	for_each_possible_cpu(cpu) {
151 		err = _init_sdei_scs(&sdei_shadow_call_stack_normal_ptr, cpu);
152 		if (err)
153 			break;
154 		err = _init_sdei_scs(&sdei_shadow_call_stack_critical_ptr, cpu);
155 		if (err)
156 			break;
157 	}
158 
159 	if (err)
160 		free_sdei_scs();
161 
162 	return err;
163 }
164 
165 static bool on_sdei_normal_stack(unsigned long sp, struct stack_info *info)
166 {
167 	unsigned long low = (unsigned long)raw_cpu_read(sdei_stack_normal_ptr);
168 	unsigned long high = low + SDEI_STACK_SIZE;
169 
170 	return on_stack(sp, low, high, STACK_TYPE_SDEI_NORMAL, info);
171 }
172 
173 static bool on_sdei_critical_stack(unsigned long sp, struct stack_info *info)
174 {
175 	unsigned long low = (unsigned long)raw_cpu_read(sdei_stack_critical_ptr);
176 	unsigned long high = low + SDEI_STACK_SIZE;
177 
178 	return on_stack(sp, low, high, STACK_TYPE_SDEI_CRITICAL, info);
179 }
180 
181 bool _on_sdei_stack(unsigned long sp, struct stack_info *info)
182 {
183 	if (!IS_ENABLED(CONFIG_VMAP_STACK))
184 		return false;
185 
186 	if (on_sdei_critical_stack(sp, info))
187 		return true;
188 
189 	if (on_sdei_normal_stack(sp, info))
190 		return true;
191 
192 	return false;
193 }
194 
195 unsigned long sdei_arch_get_entry_point(int conduit)
196 {
197 	/*
198 	 * SDEI works between adjacent exception levels. If we booted at EL1 we
199 	 * assume a hypervisor is marshalling events. If we booted at EL2 and
200 	 * dropped to EL1 because we don't support VHE, then we can't support
201 	 * SDEI.
202 	 */
203 	if (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
204 		pr_err("Not supported on this hardware/boot configuration\n");
205 		goto out_err;
206 	}
207 
208 	if (init_sdei_stacks())
209 		goto out_err;
210 
211 	if (init_sdei_scs())
212 		goto out_err_free_stacks;
213 
214 	sdei_exit_mode = (conduit == SMCCC_CONDUIT_HVC) ? SDEI_EXIT_HVC : SDEI_EXIT_SMC;
215 
216 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
217 	if (arm64_kernel_unmapped_at_el0()) {
218 		unsigned long offset;
219 
220 		offset = (unsigned long)__sdei_asm_entry_trampoline -
221 			 (unsigned long)__entry_tramp_text_start;
222 		return TRAMP_VALIAS + offset;
223 	} else
224 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
225 		return (unsigned long)__sdei_asm_handler;
226 
227 out_err_free_stacks:
228 	free_sdei_stacks();
229 out_err:
230 	return 0;
231 }
232 
233 /*
234  * __sdei_handler() returns one of:
235  *  SDEI_EV_HANDLED -  success, return to the interrupted context.
236  *  SDEI_EV_FAILED  -  failure, return this error code to firmare.
237  *  virtual-address -  success, return to this address.
238  */
239 static __kprobes unsigned long _sdei_handler(struct pt_regs *regs,
240 					     struct sdei_registered_event *arg)
241 {
242 	u32 mode;
243 	int i, err = 0;
244 	int clobbered_registers = 4;
245 	u64 elr = read_sysreg(elr_el1);
246 	u32 kernel_mode = read_sysreg(CurrentEL) | 1;	/* +SPSel */
247 	unsigned long vbar = read_sysreg(vbar_el1);
248 
249 	if (arm64_kernel_unmapped_at_el0())
250 		clobbered_registers++;
251 
252 	/* Retrieve the missing registers values */
253 	for (i = 0; i < clobbered_registers; i++) {
254 		/* from within the handler, this call always succeeds */
255 		sdei_api_event_context(i, &regs->regs[i]);
256 	}
257 
258 	err = sdei_event_handler(regs, arg);
259 	if (err)
260 		return SDEI_EV_FAILED;
261 
262 	if (elr != read_sysreg(elr_el1)) {
263 		/*
264 		 * We took a synchronous exception from the SDEI handler.
265 		 * This could deadlock, and if you interrupt KVM it will
266 		 * hyp-panic instead.
267 		 */
268 		pr_warn("unsafe: exception during handler\n");
269 	}
270 
271 	mode = regs->pstate & (PSR_MODE32_BIT | PSR_MODE_MASK);
272 
273 	/*
274 	 * If we interrupted the kernel with interrupts masked, we always go
275 	 * back to wherever we came from.
276 	 */
277 	if (mode == kernel_mode && !interrupts_enabled(regs))
278 		return SDEI_EV_HANDLED;
279 
280 	/*
281 	 * Otherwise, we pretend this was an IRQ. This lets user space tasks
282 	 * receive signals before we return to them, and KVM to invoke it's
283 	 * world switch to do the same.
284 	 *
285 	 * See DDI0487B.a Table D1-7 'Vector offsets from vector table base
286 	 * address'.
287 	 */
288 	if (mode == kernel_mode)
289 		return vbar + 0x280;
290 	else if (mode & PSR_MODE32_BIT)
291 		return vbar + 0x680;
292 
293 	return vbar + 0x480;
294 }
295 
296 static void __kprobes notrace __sdei_pstate_entry(void)
297 {
298 	/*
299 	 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
300 	 * whether PSTATE bits are inherited unchanged or generated from
301 	 * scratch, and the TF-A implementation always clears PAN and always
302 	 * clears UAO. There are no other known implementations.
303 	 *
304 	 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
305 	 * PSTATE is modified upon architectural exceptions, and so PAN is
306 	 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always
307 	 * cleared.
308 	 *
309 	 * We must explicitly reset PAN to the expected state, including
310 	 * clearing it when the host isn't using it, in case a VM had it set.
311 	 */
312 	if (system_uses_hw_pan())
313 		set_pstate_pan(1);
314 	else if (cpu_has_pan())
315 		set_pstate_pan(0);
316 }
317 
318 asmlinkage noinstr unsigned long
319 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
320 {
321 	unsigned long ret;
322 
323 	/*
324 	 * We didn't take an exception to get here, so the HW hasn't
325 	 * set/cleared bits in PSTATE that we may rely on. Initialize PAN.
326 	 */
327 	__sdei_pstate_entry();
328 
329 	arm64_enter_nmi(regs);
330 
331 	ret = _sdei_handler(regs, arg);
332 
333 	arm64_exit_nmi(regs);
334 
335 	return ret;
336 }
337