xref: /openbmc/linux/arch/arm64/kernel/process.c (revision 81464192839de0b5bc84c5739381101e04d94f62)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/lockdep.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/sysctl.h>
26 #include <linux/unistd.h>
27 #include <linux/user.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/interrupt.h>
31 #include <linux/init.h>
32 #include <linux/cpu.h>
33 #include <linux/elfcore.h>
34 #include <linux/pm.h>
35 #include <linux/tick.h>
36 #include <linux/utsname.h>
37 #include <linux/uaccess.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/personality.h>
41 #include <linux/notifier.h>
42 #include <trace/events/power.h>
43 #include <linux/percpu.h>
44 #include <linux/thread_info.h>
45 #include <linux/prctl.h>
46 
47 #include <asm/alternative.h>
48 #include <asm/arch_gicv3.h>
49 #include <asm/compat.h>
50 #include <asm/cpufeature.h>
51 #include <asm/cacheflush.h>
52 #include <asm/exec.h>
53 #include <asm/fpsimd.h>
54 #include <asm/mmu_context.h>
55 #include <asm/processor.h>
56 #include <asm/pointer_auth.h>
57 #include <asm/stacktrace.h>
58 
59 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
60 #include <linux/stackprotector.h>
61 unsigned long __stack_chk_guard __read_mostly;
62 EXPORT_SYMBOL(__stack_chk_guard);
63 #endif
64 
65 /*
66  * Function pointers to optional machine specific functions
67  */
68 void (*pm_power_off)(void);
69 EXPORT_SYMBOL_GPL(pm_power_off);
70 
71 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
72 
73 static void __cpu_do_idle(void)
74 {
75 	dsb(sy);
76 	wfi();
77 }
78 
79 static void __cpu_do_idle_irqprio(void)
80 {
81 	unsigned long pmr;
82 	unsigned long daif_bits;
83 
84 	daif_bits = read_sysreg(daif);
85 	write_sysreg(daif_bits | PSR_I_BIT, daif);
86 
87 	/*
88 	 * Unmask PMR before going idle to make sure interrupts can
89 	 * be raised.
90 	 */
91 	pmr = gic_read_pmr();
92 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
93 
94 	__cpu_do_idle();
95 
96 	gic_write_pmr(pmr);
97 	write_sysreg(daif_bits, daif);
98 }
99 
100 /*
101  *	cpu_do_idle()
102  *
103  *	Idle the processor (wait for interrupt).
104  *
105  *	If the CPU supports priority masking we must do additional work to
106  *	ensure that interrupts are not masked at the PMR (because the core will
107  *	not wake up if we block the wake up signal in the interrupt controller).
108  */
109 void cpu_do_idle(void)
110 {
111 	if (system_uses_irq_prio_masking())
112 		__cpu_do_idle_irqprio();
113 	else
114 		__cpu_do_idle();
115 }
116 
117 /*
118  * This is our default idle handler.
119  */
120 void arch_cpu_idle(void)
121 {
122 	/*
123 	 * This should do all the clock switching and wait for interrupt
124 	 * tricks
125 	 */
126 	trace_cpu_idle_rcuidle(1, smp_processor_id());
127 	cpu_do_idle();
128 	local_irq_enable();
129 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
130 }
131 
132 #ifdef CONFIG_HOTPLUG_CPU
133 void arch_cpu_idle_dead(void)
134 {
135        cpu_die();
136 }
137 #endif
138 
139 /*
140  * Called by kexec, immediately prior to machine_kexec().
141  *
142  * This must completely disable all secondary CPUs; simply causing those CPUs
143  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
144  * kexec'd kernel to use any and all RAM as it sees fit, without having to
145  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
146  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
147  */
148 void machine_shutdown(void)
149 {
150 	smp_shutdown_nonboot_cpus(reboot_cpu);
151 }
152 
153 /*
154  * Halting simply requires that the secondary CPUs stop performing any
155  * activity (executing tasks, handling interrupts). smp_send_stop()
156  * achieves this.
157  */
158 void machine_halt(void)
159 {
160 	local_irq_disable();
161 	smp_send_stop();
162 	while (1);
163 }
164 
165 /*
166  * Power-off simply requires that the secondary CPUs stop performing any
167  * activity (executing tasks, handling interrupts). smp_send_stop()
168  * achieves this. When the system power is turned off, it will take all CPUs
169  * with it.
170  */
171 void machine_power_off(void)
172 {
173 	local_irq_disable();
174 	smp_send_stop();
175 	if (pm_power_off)
176 		pm_power_off();
177 }
178 
179 /*
180  * Restart requires that the secondary CPUs stop performing any activity
181  * while the primary CPU resets the system. Systems with multiple CPUs must
182  * provide a HW restart implementation, to ensure that all CPUs reset at once.
183  * This is required so that any code running after reset on the primary CPU
184  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
185  * executing pre-reset code, and using RAM that the primary CPU's code wishes
186  * to use. Implementing such co-ordination would be essentially impossible.
187  */
188 void machine_restart(char *cmd)
189 {
190 	/* Disable interrupts first */
191 	local_irq_disable();
192 	smp_send_stop();
193 
194 	/*
195 	 * UpdateCapsule() depends on the system being reset via
196 	 * ResetSystem().
197 	 */
198 	if (efi_enabled(EFI_RUNTIME_SERVICES))
199 		efi_reboot(reboot_mode, NULL);
200 
201 	/* Now call the architecture specific reboot code. */
202 	if (arm_pm_restart)
203 		arm_pm_restart(reboot_mode, cmd);
204 	else
205 		do_kernel_restart(cmd);
206 
207 	/*
208 	 * Whoops - the architecture was unable to reboot.
209 	 */
210 	printk("Reboot failed -- System halted\n");
211 	while (1);
212 }
213 
214 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
215 static const char *const btypes[] = {
216 	bstr(NONE, "--"),
217 	bstr(  JC, "jc"),
218 	bstr(   C, "-c"),
219 	bstr(  J , "j-")
220 };
221 #undef bstr
222 
223 static void print_pstate(struct pt_regs *regs)
224 {
225 	u64 pstate = regs->pstate;
226 
227 	if (compat_user_mode(regs)) {
228 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
229 			pstate,
230 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
231 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
232 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
233 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
234 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
235 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
236 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
237 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
238 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
239 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
240 	} else {
241 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
242 					       PSR_BTYPE_SHIFT];
243 
244 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO BTYPE=%s)\n",
245 			pstate,
246 			pstate & PSR_N_BIT ? 'N' : 'n',
247 			pstate & PSR_Z_BIT ? 'Z' : 'z',
248 			pstate & PSR_C_BIT ? 'C' : 'c',
249 			pstate & PSR_V_BIT ? 'V' : 'v',
250 			pstate & PSR_D_BIT ? 'D' : 'd',
251 			pstate & PSR_A_BIT ? 'A' : 'a',
252 			pstate & PSR_I_BIT ? 'I' : 'i',
253 			pstate & PSR_F_BIT ? 'F' : 'f',
254 			pstate & PSR_PAN_BIT ? '+' : '-',
255 			pstate & PSR_UAO_BIT ? '+' : '-',
256 			btype_str);
257 	}
258 }
259 
260 void __show_regs(struct pt_regs *regs)
261 {
262 	int i, top_reg;
263 	u64 lr, sp;
264 
265 	if (compat_user_mode(regs)) {
266 		lr = regs->compat_lr;
267 		sp = regs->compat_sp;
268 		top_reg = 12;
269 	} else {
270 		lr = regs->regs[30];
271 		sp = regs->sp;
272 		top_reg = 29;
273 	}
274 
275 	show_regs_print_info(KERN_DEFAULT);
276 	print_pstate(regs);
277 
278 	if (!user_mode(regs)) {
279 		printk("pc : %pS\n", (void *)regs->pc);
280 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
281 	} else {
282 		printk("pc : %016llx\n", regs->pc);
283 		printk("lr : %016llx\n", lr);
284 	}
285 
286 	printk("sp : %016llx\n", sp);
287 
288 	if (system_uses_irq_prio_masking())
289 		printk("pmr_save: %08llx\n", regs->pmr_save);
290 
291 	i = top_reg;
292 
293 	while (i >= 0) {
294 		printk("x%-2d: %016llx ", i, regs->regs[i]);
295 		i--;
296 
297 		if (i % 2 == 0) {
298 			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
299 			i--;
300 		}
301 
302 		pr_cont("\n");
303 	}
304 }
305 
306 void show_regs(struct pt_regs * regs)
307 {
308 	__show_regs(regs);
309 	dump_backtrace(regs, NULL, KERN_DEFAULT);
310 }
311 
312 static void tls_thread_flush(void)
313 {
314 	write_sysreg(0, tpidr_el0);
315 
316 	if (is_compat_task()) {
317 		current->thread.uw.tp_value = 0;
318 
319 		/*
320 		 * We need to ensure ordering between the shadow state and the
321 		 * hardware state, so that we don't corrupt the hardware state
322 		 * with a stale shadow state during context switch.
323 		 */
324 		barrier();
325 		write_sysreg(0, tpidrro_el0);
326 	}
327 }
328 
329 static void flush_tagged_addr_state(void)
330 {
331 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
332 		clear_thread_flag(TIF_TAGGED_ADDR);
333 }
334 
335 void flush_thread(void)
336 {
337 	fpsimd_flush_thread();
338 	tls_thread_flush();
339 	flush_ptrace_hw_breakpoint(current);
340 	flush_tagged_addr_state();
341 }
342 
343 void release_thread(struct task_struct *dead_task)
344 {
345 }
346 
347 void arch_release_task_struct(struct task_struct *tsk)
348 {
349 	fpsimd_release_task(tsk);
350 }
351 
352 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
353 {
354 	if (current->mm)
355 		fpsimd_preserve_current_state();
356 	*dst = *src;
357 
358 	/* We rely on the above assignment to initialize dst's thread_flags: */
359 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
360 
361 	/*
362 	 * Detach src's sve_state (if any) from dst so that it does not
363 	 * get erroneously used or freed prematurely.  dst's sve_state
364 	 * will be allocated on demand later on if dst uses SVE.
365 	 * For consistency, also clear TIF_SVE here: this could be done
366 	 * later in copy_process(), but to avoid tripping up future
367 	 * maintainers it is best not to leave TIF_SVE and sve_state in
368 	 * an inconsistent state, even temporarily.
369 	 */
370 	dst->thread.sve_state = NULL;
371 	clear_tsk_thread_flag(dst, TIF_SVE);
372 
373 	return 0;
374 }
375 
376 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
377 
378 int copy_thread_tls(unsigned long clone_flags, unsigned long stack_start,
379 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
380 {
381 	struct pt_regs *childregs = task_pt_regs(p);
382 
383 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
384 
385 	/*
386 	 * In case p was allocated the same task_struct pointer as some
387 	 * other recently-exited task, make sure p is disassociated from
388 	 * any cpu that may have run that now-exited task recently.
389 	 * Otherwise we could erroneously skip reloading the FPSIMD
390 	 * registers for p.
391 	 */
392 	fpsimd_flush_task_state(p);
393 
394 	ptrauth_thread_init_kernel(p);
395 
396 	if (likely(!(p->flags & PF_KTHREAD))) {
397 		*childregs = *current_pt_regs();
398 		childregs->regs[0] = 0;
399 
400 		/*
401 		 * Read the current TLS pointer from tpidr_el0 as it may be
402 		 * out-of-sync with the saved value.
403 		 */
404 		*task_user_tls(p) = read_sysreg(tpidr_el0);
405 
406 		if (stack_start) {
407 			if (is_compat_thread(task_thread_info(p)))
408 				childregs->compat_sp = stack_start;
409 			else
410 				childregs->sp = stack_start;
411 		}
412 
413 		/*
414 		 * If a TLS pointer was passed to clone, use it for the new
415 		 * thread.
416 		 */
417 		if (clone_flags & CLONE_SETTLS)
418 			p->thread.uw.tp_value = tls;
419 	} else {
420 		memset(childregs, 0, sizeof(struct pt_regs));
421 		childregs->pstate = PSR_MODE_EL1h;
422 		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
423 		    cpus_have_const_cap(ARM64_HAS_UAO))
424 			childregs->pstate |= PSR_UAO_BIT;
425 
426 		if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
427 			set_ssbs_bit(childregs);
428 
429 		if (system_uses_irq_prio_masking())
430 			childregs->pmr_save = GIC_PRIO_IRQON;
431 
432 		p->thread.cpu_context.x19 = stack_start;
433 		p->thread.cpu_context.x20 = stk_sz;
434 	}
435 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
436 	p->thread.cpu_context.sp = (unsigned long)childregs;
437 
438 	ptrace_hw_copy_thread(p);
439 
440 	return 0;
441 }
442 
443 void tls_preserve_current_state(void)
444 {
445 	*task_user_tls(current) = read_sysreg(tpidr_el0);
446 }
447 
448 static void tls_thread_switch(struct task_struct *next)
449 {
450 	tls_preserve_current_state();
451 
452 	if (is_compat_thread(task_thread_info(next)))
453 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
454 	else if (!arm64_kernel_unmapped_at_el0())
455 		write_sysreg(0, tpidrro_el0);
456 
457 	write_sysreg(*task_user_tls(next), tpidr_el0);
458 }
459 
460 /* Restore the UAO state depending on next's addr_limit */
461 void uao_thread_switch(struct task_struct *next)
462 {
463 	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
464 		if (task_thread_info(next)->addr_limit == KERNEL_DS)
465 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
466 		else
467 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
468 	}
469 }
470 
471 /*
472  * Force SSBS state on context-switch, since it may be lost after migrating
473  * from a CPU which treats the bit as RES0 in a heterogeneous system.
474  */
475 static void ssbs_thread_switch(struct task_struct *next)
476 {
477 	struct pt_regs *regs = task_pt_regs(next);
478 
479 	/*
480 	 * Nothing to do for kernel threads, but 'regs' may be junk
481 	 * (e.g. idle task) so check the flags and bail early.
482 	 */
483 	if (unlikely(next->flags & PF_KTHREAD))
484 		return;
485 
486 	/*
487 	 * If all CPUs implement the SSBS extension, then we just need to
488 	 * context-switch the PSTATE field.
489 	 */
490 	if (cpu_have_feature(cpu_feature(SSBS)))
491 		return;
492 
493 	/* If the mitigation is enabled, then we leave SSBS clear. */
494 	if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
495 	    test_tsk_thread_flag(next, TIF_SSBD))
496 		return;
497 
498 	if (compat_user_mode(regs))
499 		set_compat_ssbs_bit(regs);
500 	else if (user_mode(regs))
501 		set_ssbs_bit(regs);
502 }
503 
504 /*
505  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
506  * shadow copy so that we can restore this upon entry from userspace.
507  *
508  * This is *only* for exception entry from EL0, and is not valid until we
509  * __switch_to() a user task.
510  */
511 DEFINE_PER_CPU(struct task_struct *, __entry_task);
512 
513 static void entry_task_switch(struct task_struct *next)
514 {
515 	__this_cpu_write(__entry_task, next);
516 }
517 
518 /*
519  * Thread switching.
520  */
521 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
522 				struct task_struct *next)
523 {
524 	struct task_struct *last;
525 
526 	fpsimd_thread_switch(next);
527 	tls_thread_switch(next);
528 	hw_breakpoint_thread_switch(next);
529 	contextidr_thread_switch(next);
530 	entry_task_switch(next);
531 	uao_thread_switch(next);
532 	ssbs_thread_switch(next);
533 
534 	/*
535 	 * Complete any pending TLB or cache maintenance on this CPU in case
536 	 * the thread migrates to a different CPU.
537 	 * This full barrier is also required by the membarrier system
538 	 * call.
539 	 */
540 	dsb(ish);
541 
542 	/* the actual thread switch */
543 	last = cpu_switch_to(prev, next);
544 
545 	return last;
546 }
547 
548 unsigned long get_wchan(struct task_struct *p)
549 {
550 	struct stackframe frame;
551 	unsigned long stack_page, ret = 0;
552 	int count = 0;
553 	if (!p || p == current || p->state == TASK_RUNNING)
554 		return 0;
555 
556 	stack_page = (unsigned long)try_get_task_stack(p);
557 	if (!stack_page)
558 		return 0;
559 
560 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
561 
562 	do {
563 		if (unwind_frame(p, &frame))
564 			goto out;
565 		if (!in_sched_functions(frame.pc)) {
566 			ret = frame.pc;
567 			goto out;
568 		}
569 	} while (count ++ < 16);
570 
571 out:
572 	put_task_stack(p);
573 	return ret;
574 }
575 
576 unsigned long arch_align_stack(unsigned long sp)
577 {
578 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
579 		sp -= get_random_int() & ~PAGE_MASK;
580 	return sp & ~0xf;
581 }
582 
583 /*
584  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
585  */
586 void arch_setup_new_exec(void)
587 {
588 	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
589 
590 	ptrauth_thread_init_user(current);
591 }
592 
593 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
594 /*
595  * Control the relaxed ABI allowing tagged user addresses into the kernel.
596  */
597 static unsigned int tagged_addr_disabled;
598 
599 long set_tagged_addr_ctrl(unsigned long arg)
600 {
601 	if (is_compat_task())
602 		return -EINVAL;
603 	if (arg & ~PR_TAGGED_ADDR_ENABLE)
604 		return -EINVAL;
605 
606 	/*
607 	 * Do not allow the enabling of the tagged address ABI if globally
608 	 * disabled via sysctl abi.tagged_addr_disabled.
609 	 */
610 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
611 		return -EINVAL;
612 
613 	update_thread_flag(TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
614 
615 	return 0;
616 }
617 
618 long get_tagged_addr_ctrl(void)
619 {
620 	if (is_compat_task())
621 		return -EINVAL;
622 
623 	if (test_thread_flag(TIF_TAGGED_ADDR))
624 		return PR_TAGGED_ADDR_ENABLE;
625 
626 	return 0;
627 }
628 
629 /*
630  * Global sysctl to disable the tagged user addresses support. This control
631  * only prevents the tagged address ABI enabling via prctl() and does not
632  * disable it for tasks that already opted in to the relaxed ABI.
633  */
634 
635 static struct ctl_table tagged_addr_sysctl_table[] = {
636 	{
637 		.procname	= "tagged_addr_disabled",
638 		.mode		= 0644,
639 		.data		= &tagged_addr_disabled,
640 		.maxlen		= sizeof(int),
641 		.proc_handler	= proc_dointvec_minmax,
642 		.extra1		= SYSCTL_ZERO,
643 		.extra2		= SYSCTL_ONE,
644 	},
645 	{ }
646 };
647 
648 static int __init tagged_addr_init(void)
649 {
650 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
651 		return -EINVAL;
652 	return 0;
653 }
654 
655 core_initcall(tagged_addr_init);
656 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
657 
658 asmlinkage void __sched arm64_preempt_schedule_irq(void)
659 {
660 	lockdep_assert_irqs_disabled();
661 
662 	/*
663 	 * Preempting a task from an IRQ means we leave copies of PSTATE
664 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
665 	 * resuming one of these preempted tasks would undo those changes.
666 	 *
667 	 * Only allow a task to be preempted once cpufeatures have been
668 	 * enabled.
669 	 */
670 	if (system_capabilities_finalized())
671 		preempt_schedule_irq();
672 }
673 
674 #ifdef CONFIG_BINFMT_ELF
675 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
676 			 bool has_interp, bool is_interp)
677 {
678 	/*
679 	 * For dynamically linked executables the interpreter is
680 	 * responsible for setting PROT_BTI on everything except
681 	 * itself.
682 	 */
683 	if (is_interp != has_interp)
684 		return prot;
685 
686 	if (!(state->flags & ARM64_ELF_BTI))
687 		return prot;
688 
689 	if (prot & PROT_EXEC)
690 		prot |= PROT_BTI;
691 
692 	return prot;
693 }
694 #endif
695