xref: /openbmc/linux/arch/arm64/kernel/module.c (revision 8339f7d8e178d9c933f437d14be0a5fd1359f53d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AArch64 loadable module support.
4  *
5  * Copyright (C) 2012 ARM Limited
6  *
7  * Author: Will Deacon <will.deacon@arm.com>
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/elf.h>
12 #include <linux/ftrace.h>
13 #include <linux/gfp.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/moduleloader.h>
18 #include <linux/scs.h>
19 #include <linux/vmalloc.h>
20 #include <asm/alternative.h>
21 #include <asm/insn.h>
22 #include <asm/scs.h>
23 #include <asm/sections.h>
24 
25 void *module_alloc(unsigned long size)
26 {
27 	u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
28 	gfp_t gfp_mask = GFP_KERNEL;
29 	void *p;
30 
31 	/* Silence the initial allocation */
32 	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
33 		gfp_mask |= __GFP_NOWARN;
34 
35 	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
36 				module_alloc_end, gfp_mask, PAGE_KERNEL, 0,
37 				NUMA_NO_NODE, __builtin_return_address(0));
38 
39 	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS)) {
40 		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
41 				module_alloc_base + SZ_2G, GFP_KERNEL,
42 				PAGE_KERNEL, 0, NUMA_NO_NODE,
43 				__builtin_return_address(0));
44 	}
45 
46 	if (p && (kasan_alloc_module_shadow(p, size, gfp_mask) < 0)) {
47 		vfree(p);
48 		return NULL;
49 	}
50 
51 	/* Memory is intended to be executable, reset the pointer tag. */
52 	return kasan_reset_tag(p);
53 }
54 
55 enum aarch64_reloc_op {
56 	RELOC_OP_NONE,
57 	RELOC_OP_ABS,
58 	RELOC_OP_PREL,
59 	RELOC_OP_PAGE,
60 };
61 
62 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
63 {
64 	switch (reloc_op) {
65 	case RELOC_OP_ABS:
66 		return val;
67 	case RELOC_OP_PREL:
68 		return val - (u64)place;
69 	case RELOC_OP_PAGE:
70 		return (val & ~0xfff) - ((u64)place & ~0xfff);
71 	case RELOC_OP_NONE:
72 		return 0;
73 	}
74 
75 	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
76 	return 0;
77 }
78 
79 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
80 {
81 	s64 sval = do_reloc(op, place, val);
82 
83 	/*
84 	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
85 	 * relative and absolute relocations as having a range of [-2^15, 2^16)
86 	 * or [-2^31, 2^32), respectively. However, in order to be able to
87 	 * detect overflows reliably, we have to choose whether we interpret
88 	 * such quantities as signed or as unsigned, and stick with it.
89 	 * The way we organize our address space requires a signed
90 	 * interpretation of 32-bit relative references, so let's use that
91 	 * for all R_AARCH64_PRELxx relocations. This means our upper
92 	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
93 	 */
94 
95 	switch (len) {
96 	case 16:
97 		*(s16 *)place = sval;
98 		switch (op) {
99 		case RELOC_OP_ABS:
100 			if (sval < 0 || sval > U16_MAX)
101 				return -ERANGE;
102 			break;
103 		case RELOC_OP_PREL:
104 			if (sval < S16_MIN || sval > S16_MAX)
105 				return -ERANGE;
106 			break;
107 		default:
108 			pr_err("Invalid 16-bit data relocation (%d)\n", op);
109 			return 0;
110 		}
111 		break;
112 	case 32:
113 		*(s32 *)place = sval;
114 		switch (op) {
115 		case RELOC_OP_ABS:
116 			if (sval < 0 || sval > U32_MAX)
117 				return -ERANGE;
118 			break;
119 		case RELOC_OP_PREL:
120 			if (sval < S32_MIN || sval > S32_MAX)
121 				return -ERANGE;
122 			break;
123 		default:
124 			pr_err("Invalid 32-bit data relocation (%d)\n", op);
125 			return 0;
126 		}
127 		break;
128 	case 64:
129 		*(s64 *)place = sval;
130 		break;
131 	default:
132 		pr_err("Invalid length (%d) for data relocation\n", len);
133 		return 0;
134 	}
135 	return 0;
136 }
137 
138 enum aarch64_insn_movw_imm_type {
139 	AARCH64_INSN_IMM_MOVNZ,
140 	AARCH64_INSN_IMM_MOVKZ,
141 };
142 
143 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
144 			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
145 {
146 	u64 imm;
147 	s64 sval;
148 	u32 insn = le32_to_cpu(*place);
149 
150 	sval = do_reloc(op, place, val);
151 	imm = sval >> lsb;
152 
153 	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
154 		/*
155 		 * For signed MOVW relocations, we have to manipulate the
156 		 * instruction encoding depending on whether or not the
157 		 * immediate is less than zero.
158 		 */
159 		insn &= ~(3 << 29);
160 		if (sval >= 0) {
161 			/* >=0: Set the instruction to MOVZ (opcode 10b). */
162 			insn |= 2 << 29;
163 		} else {
164 			/*
165 			 * <0: Set the instruction to MOVN (opcode 00b).
166 			 *     Since we've masked the opcode already, we
167 			 *     don't need to do anything other than
168 			 *     inverting the new immediate field.
169 			 */
170 			imm = ~imm;
171 		}
172 	}
173 
174 	/* Update the instruction with the new encoding. */
175 	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
176 	*place = cpu_to_le32(insn);
177 
178 	if (imm > U16_MAX)
179 		return -ERANGE;
180 
181 	return 0;
182 }
183 
184 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
185 			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
186 {
187 	u64 imm, imm_mask;
188 	s64 sval;
189 	u32 insn = le32_to_cpu(*place);
190 
191 	/* Calculate the relocation value. */
192 	sval = do_reloc(op, place, val);
193 	sval >>= lsb;
194 
195 	/* Extract the value bits and shift them to bit 0. */
196 	imm_mask = (BIT(lsb + len) - 1) >> lsb;
197 	imm = sval & imm_mask;
198 
199 	/* Update the instruction's immediate field. */
200 	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
201 	*place = cpu_to_le32(insn);
202 
203 	/*
204 	 * Extract the upper value bits (including the sign bit) and
205 	 * shift them to bit 0.
206 	 */
207 	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
208 
209 	/*
210 	 * Overflow has occurred if the upper bits are not all equal to
211 	 * the sign bit of the value.
212 	 */
213 	if ((u64)(sval + 1) >= 2)
214 		return -ERANGE;
215 
216 	return 0;
217 }
218 
219 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
220 			   __le32 *place, u64 val)
221 {
222 	u32 insn;
223 
224 	if (!is_forbidden_offset_for_adrp(place))
225 		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
226 				      AARCH64_INSN_IMM_ADR);
227 
228 	/* patch ADRP to ADR if it is in range */
229 	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
230 			    AARCH64_INSN_IMM_ADR)) {
231 		insn = le32_to_cpu(*place);
232 		insn &= ~BIT(31);
233 	} else {
234 		/* out of range for ADR -> emit a veneer */
235 		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
236 		if (!val)
237 			return -ENOEXEC;
238 		insn = aarch64_insn_gen_branch_imm((u64)place, val,
239 						   AARCH64_INSN_BRANCH_NOLINK);
240 	}
241 
242 	*place = cpu_to_le32(insn);
243 	return 0;
244 }
245 
246 int apply_relocate_add(Elf64_Shdr *sechdrs,
247 		       const char *strtab,
248 		       unsigned int symindex,
249 		       unsigned int relsec,
250 		       struct module *me)
251 {
252 	unsigned int i;
253 	int ovf;
254 	bool overflow_check;
255 	Elf64_Sym *sym;
256 	void *loc;
257 	u64 val;
258 	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
259 
260 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
261 		/* loc corresponds to P in the AArch64 ELF document. */
262 		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
263 			+ rel[i].r_offset;
264 
265 		/* sym is the ELF symbol we're referring to. */
266 		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
267 			+ ELF64_R_SYM(rel[i].r_info);
268 
269 		/* val corresponds to (S + A) in the AArch64 ELF document. */
270 		val = sym->st_value + rel[i].r_addend;
271 
272 		/* Check for overflow by default. */
273 		overflow_check = true;
274 
275 		/* Perform the static relocation. */
276 		switch (ELF64_R_TYPE(rel[i].r_info)) {
277 		/* Null relocations. */
278 		case R_ARM_NONE:
279 		case R_AARCH64_NONE:
280 			ovf = 0;
281 			break;
282 
283 		/* Data relocations. */
284 		case R_AARCH64_ABS64:
285 			overflow_check = false;
286 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
287 			break;
288 		case R_AARCH64_ABS32:
289 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
290 			break;
291 		case R_AARCH64_ABS16:
292 			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
293 			break;
294 		case R_AARCH64_PREL64:
295 			overflow_check = false;
296 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
297 			break;
298 		case R_AARCH64_PREL32:
299 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
300 			break;
301 		case R_AARCH64_PREL16:
302 			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
303 			break;
304 
305 		/* MOVW instruction relocations. */
306 		case R_AARCH64_MOVW_UABS_G0_NC:
307 			overflow_check = false;
308 			fallthrough;
309 		case R_AARCH64_MOVW_UABS_G0:
310 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
311 					      AARCH64_INSN_IMM_MOVKZ);
312 			break;
313 		case R_AARCH64_MOVW_UABS_G1_NC:
314 			overflow_check = false;
315 			fallthrough;
316 		case R_AARCH64_MOVW_UABS_G1:
317 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
318 					      AARCH64_INSN_IMM_MOVKZ);
319 			break;
320 		case R_AARCH64_MOVW_UABS_G2_NC:
321 			overflow_check = false;
322 			fallthrough;
323 		case R_AARCH64_MOVW_UABS_G2:
324 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
325 					      AARCH64_INSN_IMM_MOVKZ);
326 			break;
327 		case R_AARCH64_MOVW_UABS_G3:
328 			/* We're using the top bits so we can't overflow. */
329 			overflow_check = false;
330 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
331 					      AARCH64_INSN_IMM_MOVKZ);
332 			break;
333 		case R_AARCH64_MOVW_SABS_G0:
334 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
335 					      AARCH64_INSN_IMM_MOVNZ);
336 			break;
337 		case R_AARCH64_MOVW_SABS_G1:
338 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
339 					      AARCH64_INSN_IMM_MOVNZ);
340 			break;
341 		case R_AARCH64_MOVW_SABS_G2:
342 			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
343 					      AARCH64_INSN_IMM_MOVNZ);
344 			break;
345 		case R_AARCH64_MOVW_PREL_G0_NC:
346 			overflow_check = false;
347 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
348 					      AARCH64_INSN_IMM_MOVKZ);
349 			break;
350 		case R_AARCH64_MOVW_PREL_G0:
351 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
352 					      AARCH64_INSN_IMM_MOVNZ);
353 			break;
354 		case R_AARCH64_MOVW_PREL_G1_NC:
355 			overflow_check = false;
356 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
357 					      AARCH64_INSN_IMM_MOVKZ);
358 			break;
359 		case R_AARCH64_MOVW_PREL_G1:
360 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
361 					      AARCH64_INSN_IMM_MOVNZ);
362 			break;
363 		case R_AARCH64_MOVW_PREL_G2_NC:
364 			overflow_check = false;
365 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
366 					      AARCH64_INSN_IMM_MOVKZ);
367 			break;
368 		case R_AARCH64_MOVW_PREL_G2:
369 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
370 					      AARCH64_INSN_IMM_MOVNZ);
371 			break;
372 		case R_AARCH64_MOVW_PREL_G3:
373 			/* We're using the top bits so we can't overflow. */
374 			overflow_check = false;
375 			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
376 					      AARCH64_INSN_IMM_MOVNZ);
377 			break;
378 
379 		/* Immediate instruction relocations. */
380 		case R_AARCH64_LD_PREL_LO19:
381 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
382 					     AARCH64_INSN_IMM_19);
383 			break;
384 		case R_AARCH64_ADR_PREL_LO21:
385 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
386 					     AARCH64_INSN_IMM_ADR);
387 			break;
388 		case R_AARCH64_ADR_PREL_PG_HI21_NC:
389 			overflow_check = false;
390 			fallthrough;
391 		case R_AARCH64_ADR_PREL_PG_HI21:
392 			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
393 			if (ovf && ovf != -ERANGE)
394 				return ovf;
395 			break;
396 		case R_AARCH64_ADD_ABS_LO12_NC:
397 		case R_AARCH64_LDST8_ABS_LO12_NC:
398 			overflow_check = false;
399 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
400 					     AARCH64_INSN_IMM_12);
401 			break;
402 		case R_AARCH64_LDST16_ABS_LO12_NC:
403 			overflow_check = false;
404 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
405 					     AARCH64_INSN_IMM_12);
406 			break;
407 		case R_AARCH64_LDST32_ABS_LO12_NC:
408 			overflow_check = false;
409 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
410 					     AARCH64_INSN_IMM_12);
411 			break;
412 		case R_AARCH64_LDST64_ABS_LO12_NC:
413 			overflow_check = false;
414 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
415 					     AARCH64_INSN_IMM_12);
416 			break;
417 		case R_AARCH64_LDST128_ABS_LO12_NC:
418 			overflow_check = false;
419 			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
420 					     AARCH64_INSN_IMM_12);
421 			break;
422 		case R_AARCH64_TSTBR14:
423 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
424 					     AARCH64_INSN_IMM_14);
425 			break;
426 		case R_AARCH64_CONDBR19:
427 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
428 					     AARCH64_INSN_IMM_19);
429 			break;
430 		case R_AARCH64_JUMP26:
431 		case R_AARCH64_CALL26:
432 			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
433 					     AARCH64_INSN_IMM_26);
434 
435 			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
436 			    ovf == -ERANGE) {
437 				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
438 				if (!val)
439 					return -ENOEXEC;
440 				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
441 						     26, AARCH64_INSN_IMM_26);
442 			}
443 			break;
444 
445 		default:
446 			pr_err("module %s: unsupported RELA relocation: %llu\n",
447 			       me->name, ELF64_R_TYPE(rel[i].r_info));
448 			return -ENOEXEC;
449 		}
450 
451 		if (overflow_check && ovf == -ERANGE)
452 			goto overflow;
453 
454 	}
455 
456 	return 0;
457 
458 overflow:
459 	pr_err("module %s: overflow in relocation type %d val %Lx\n",
460 	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
461 	return -ENOEXEC;
462 }
463 
464 static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
465 {
466 	*plt = get_plt_entry(addr, plt);
467 }
468 
469 static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
470 				  const Elf_Shdr *sechdrs,
471 				  struct module *mod)
472 {
473 #if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
474 	const Elf_Shdr *s;
475 	struct plt_entry *plts;
476 
477 	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
478 	if (!s)
479 		return -ENOEXEC;
480 
481 	plts = (void *)s->sh_addr;
482 
483 	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
484 
485 	mod->arch.ftrace_trampolines = plts;
486 #endif
487 	return 0;
488 }
489 
490 int module_finalize(const Elf_Ehdr *hdr,
491 		    const Elf_Shdr *sechdrs,
492 		    struct module *me)
493 {
494 	const Elf_Shdr *s;
495 	s = find_section(hdr, sechdrs, ".altinstructions");
496 	if (s)
497 		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
498 
499 	if (scs_is_dynamic()) {
500 		s = find_section(hdr, sechdrs, ".init.eh_frame");
501 		if (s)
502 			scs_patch((void *)s->sh_addr, s->sh_size);
503 	}
504 
505 	return module_init_ftrace_plt(hdr, sechdrs, me);
506 }
507