xref: /openbmc/linux/arch/arm64/kernel/entry-common.c (revision 64794d6db49730d22f440aef0cf4da98a56a4ea3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Exception handling code
4  *
5  * Copyright (C) 2019 ARM Ltd.
6  */
7 
8 #include <linux/context_tracking.h>
9 #include <linux/linkage.h>
10 #include <linux/lockdep.h>
11 #include <linux/ptrace.h>
12 #include <linux/sched.h>
13 #include <linux/sched/debug.h>
14 #include <linux/thread_info.h>
15 
16 #include <asm/cpufeature.h>
17 #include <asm/daifflags.h>
18 #include <asm/esr.h>
19 #include <asm/exception.h>
20 #include <asm/kprobes.h>
21 #include <asm/mmu.h>
22 #include <asm/processor.h>
23 #include <asm/sdei.h>
24 #include <asm/stacktrace.h>
25 #include <asm/sysreg.h>
26 #include <asm/system_misc.h>
27 
28 /*
29  * Handle IRQ/context state management when entering from kernel mode.
30  * Before this function is called it is not safe to call regular kernel code,
31  * intrumentable code, or any code which may trigger an exception.
32  *
33  * This is intended to match the logic in irqentry_enter(), handling the kernel
34  * mode transitions only.
35  */
36 static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs)
37 {
38 	regs->exit_rcu = false;
39 
40 	if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
41 		lockdep_hardirqs_off(CALLER_ADDR0);
42 		rcu_irq_enter();
43 		trace_hardirqs_off_finish();
44 
45 		regs->exit_rcu = true;
46 		return;
47 	}
48 
49 	lockdep_hardirqs_off(CALLER_ADDR0);
50 	rcu_irq_enter_check_tick();
51 	trace_hardirqs_off_finish();
52 }
53 
54 static void noinstr enter_from_kernel_mode(struct pt_regs *regs)
55 {
56 	__enter_from_kernel_mode(regs);
57 	mte_check_tfsr_entry();
58 }
59 
60 /*
61  * Handle IRQ/context state management when exiting to kernel mode.
62  * After this function returns it is not safe to call regular kernel code,
63  * intrumentable code, or any code which may trigger an exception.
64  *
65  * This is intended to match the logic in irqentry_exit(), handling the kernel
66  * mode transitions only, and with preemption handled elsewhere.
67  */
68 static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs)
69 {
70 	lockdep_assert_irqs_disabled();
71 
72 	if (interrupts_enabled(regs)) {
73 		if (regs->exit_rcu) {
74 			trace_hardirqs_on_prepare();
75 			lockdep_hardirqs_on_prepare(CALLER_ADDR0);
76 			rcu_irq_exit();
77 			lockdep_hardirqs_on(CALLER_ADDR0);
78 			return;
79 		}
80 
81 		trace_hardirqs_on();
82 	} else {
83 		if (regs->exit_rcu)
84 			rcu_irq_exit();
85 	}
86 }
87 
88 static void noinstr exit_to_kernel_mode(struct pt_regs *regs)
89 {
90 	mte_check_tfsr_exit();
91 	__exit_to_kernel_mode(regs);
92 }
93 
94 /*
95  * Handle IRQ/context state management when entering from user mode.
96  * Before this function is called it is not safe to call regular kernel code,
97  * intrumentable code, or any code which may trigger an exception.
98  */
99 static __always_inline void __enter_from_user_mode(void)
100 {
101 	lockdep_hardirqs_off(CALLER_ADDR0);
102 	CT_WARN_ON(ct_state() != CONTEXT_USER);
103 	user_exit_irqoff();
104 	trace_hardirqs_off_finish();
105 }
106 
107 static __always_inline void enter_from_user_mode(struct pt_regs *regs)
108 {
109 	__enter_from_user_mode();
110 }
111 
112 /*
113  * Handle IRQ/context state management when exiting to user mode.
114  * After this function returns it is not safe to call regular kernel code,
115  * intrumentable code, or any code which may trigger an exception.
116  */
117 static __always_inline void __exit_to_user_mode(void)
118 {
119 	trace_hardirqs_on_prepare();
120 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
121 	user_enter_irqoff();
122 	lockdep_hardirqs_on(CALLER_ADDR0);
123 }
124 
125 static __always_inline void prepare_exit_to_user_mode(struct pt_regs *regs)
126 {
127 	unsigned long flags;
128 
129 	local_daif_mask();
130 
131 	flags = READ_ONCE(current_thread_info()->flags);
132 	if (unlikely(flags & _TIF_WORK_MASK))
133 		do_notify_resume(regs, flags);
134 }
135 
136 static __always_inline void exit_to_user_mode(struct pt_regs *regs)
137 {
138 	prepare_exit_to_user_mode(regs);
139 	mte_check_tfsr_exit();
140 	__exit_to_user_mode();
141 }
142 
143 asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
144 {
145 	exit_to_user_mode(regs);
146 }
147 
148 /*
149  * Handle IRQ/context state management when entering an NMI from user/kernel
150  * mode. Before this function is called it is not safe to call regular kernel
151  * code, intrumentable code, or any code which may trigger an exception.
152  */
153 static void noinstr arm64_enter_nmi(struct pt_regs *regs)
154 {
155 	regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
156 
157 	__nmi_enter();
158 	lockdep_hardirqs_off(CALLER_ADDR0);
159 	lockdep_hardirq_enter();
160 	rcu_nmi_enter();
161 
162 	trace_hardirqs_off_finish();
163 	ftrace_nmi_enter();
164 }
165 
166 /*
167  * Handle IRQ/context state management when exiting an NMI from user/kernel
168  * mode. After this function returns it is not safe to call regular kernel
169  * code, intrumentable code, or any code which may trigger an exception.
170  */
171 static void noinstr arm64_exit_nmi(struct pt_regs *regs)
172 {
173 	bool restore = regs->lockdep_hardirqs;
174 
175 	ftrace_nmi_exit();
176 	if (restore) {
177 		trace_hardirqs_on_prepare();
178 		lockdep_hardirqs_on_prepare(CALLER_ADDR0);
179 	}
180 
181 	rcu_nmi_exit();
182 	lockdep_hardirq_exit();
183 	if (restore)
184 		lockdep_hardirqs_on(CALLER_ADDR0);
185 	__nmi_exit();
186 }
187 
188 /*
189  * Handle IRQ/context state management when entering a debug exception from
190  * kernel mode. Before this function is called it is not safe to call regular
191  * kernel code, intrumentable code, or any code which may trigger an exception.
192  */
193 static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs)
194 {
195 	regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
196 
197 	lockdep_hardirqs_off(CALLER_ADDR0);
198 	rcu_nmi_enter();
199 
200 	trace_hardirqs_off_finish();
201 }
202 
203 /*
204  * Handle IRQ/context state management when exiting a debug exception from
205  * kernel mode. After this function returns it is not safe to call regular
206  * kernel code, intrumentable code, or any code which may trigger an exception.
207  */
208 static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs)
209 {
210 	bool restore = regs->lockdep_hardirqs;
211 
212 	if (restore) {
213 		trace_hardirqs_on_prepare();
214 		lockdep_hardirqs_on_prepare(CALLER_ADDR0);
215 	}
216 
217 	rcu_nmi_exit();
218 	if (restore)
219 		lockdep_hardirqs_on(CALLER_ADDR0);
220 }
221 
222 static void noinstr enter_el1_irq_or_nmi(struct pt_regs *regs)
223 {
224 	if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
225 		arm64_enter_nmi(regs);
226 	else
227 		enter_from_kernel_mode(regs);
228 }
229 
230 static void noinstr exit_el1_irq_or_nmi(struct pt_regs *regs)
231 {
232 	if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
233 		arm64_exit_nmi(regs);
234 	else
235 		exit_to_kernel_mode(regs);
236 }
237 
238 static void __sched arm64_preempt_schedule_irq(void)
239 {
240 	lockdep_assert_irqs_disabled();
241 
242 	/*
243 	 * DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC
244 	 * priority masking is used the GIC irqchip driver will clear DAIF.IF
245 	 * using gic_arch_enable_irqs() for normal IRQs. If anything is set in
246 	 * DAIF we must have handled an NMI, so skip preemption.
247 	 */
248 	if (system_uses_irq_prio_masking() && read_sysreg(daif))
249 		return;
250 
251 	/*
252 	 * Preempting a task from an IRQ means we leave copies of PSTATE
253 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
254 	 * resuming one of these preempted tasks would undo those changes.
255 	 *
256 	 * Only allow a task to be preempted once cpufeatures have been
257 	 * enabled.
258 	 */
259 	if (system_capabilities_finalized())
260 		preempt_schedule_irq();
261 }
262 
263 static void do_interrupt_handler(struct pt_regs *regs,
264 				 void (*handler)(struct pt_regs *))
265 {
266 	if (on_thread_stack())
267 		call_on_irq_stack(regs, handler);
268 	else
269 		handler(regs);
270 }
271 
272 extern void (*handle_arch_irq)(struct pt_regs *);
273 extern void (*handle_arch_fiq)(struct pt_regs *);
274 
275 static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
276 				      unsigned int esr)
277 {
278 	arm64_enter_nmi(regs);
279 
280 	console_verbose();
281 
282 	pr_crit("Unhandled %s exception on CPU%d, ESR 0x%08x -- %s\n",
283 		vector, smp_processor_id(), esr,
284 		esr_get_class_string(esr));
285 
286 	__show_regs(regs);
287 	panic("Unhandled exception");
288 }
289 
290 #define UNHANDLED(el, regsize, vector)							\
291 asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs)	\
292 {											\
293 	const char *desc = #regsize "-bit " #el " " #vector;				\
294 	__panic_unhandled(regs, desc, read_sysreg(esr_el1));				\
295 }
296 
297 #ifdef CONFIG_ARM64_ERRATUM_1463225
298 static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
299 
300 static void cortex_a76_erratum_1463225_svc_handler(void)
301 {
302 	u32 reg, val;
303 
304 	if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
305 		return;
306 
307 	if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
308 		return;
309 
310 	__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
311 	reg = read_sysreg(mdscr_el1);
312 	val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE;
313 	write_sysreg(val, mdscr_el1);
314 	asm volatile("msr daifclr, #8");
315 	isb();
316 
317 	/* We will have taken a single-step exception by this point */
318 
319 	write_sysreg(reg, mdscr_el1);
320 	__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
321 }
322 
323 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
324 {
325 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
326 		return false;
327 
328 	/*
329 	 * We've taken a dummy step exception from the kernel to ensure
330 	 * that interrupts are re-enabled on the syscall path. Return back
331 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
332 	 * masked so that we can safely restore the mdscr and get on with
333 	 * handling the syscall.
334 	 */
335 	regs->pstate |= PSR_D_BIT;
336 	return true;
337 }
338 #else /* CONFIG_ARM64_ERRATUM_1463225 */
339 static void cortex_a76_erratum_1463225_svc_handler(void) { }
340 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
341 {
342 	return false;
343 }
344 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
345 
346 UNHANDLED(el1t, 64, sync)
347 UNHANDLED(el1t, 64, irq)
348 UNHANDLED(el1t, 64, fiq)
349 UNHANDLED(el1t, 64, error)
350 
351 static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
352 {
353 	unsigned long far = read_sysreg(far_el1);
354 
355 	enter_from_kernel_mode(regs);
356 	local_daif_inherit(regs);
357 	do_mem_abort(far, esr, regs);
358 	local_daif_mask();
359 	exit_to_kernel_mode(regs);
360 }
361 
362 static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
363 {
364 	unsigned long far = read_sysreg(far_el1);
365 
366 	enter_from_kernel_mode(regs);
367 	local_daif_inherit(regs);
368 	do_sp_pc_abort(far, esr, regs);
369 	local_daif_mask();
370 	exit_to_kernel_mode(regs);
371 }
372 
373 static void noinstr el1_undef(struct pt_regs *regs)
374 {
375 	enter_from_kernel_mode(regs);
376 	local_daif_inherit(regs);
377 	do_undefinstr(regs);
378 	local_daif_mask();
379 	exit_to_kernel_mode(regs);
380 }
381 
382 static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr)
383 {
384 	unsigned long far = read_sysreg(far_el1);
385 
386 	arm64_enter_el1_dbg(regs);
387 	if (!cortex_a76_erratum_1463225_debug_handler(regs))
388 		do_debug_exception(far, esr, regs);
389 	arm64_exit_el1_dbg(regs);
390 }
391 
392 static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
393 {
394 	enter_from_kernel_mode(regs);
395 	local_daif_inherit(regs);
396 	do_ptrauth_fault(regs, esr);
397 	local_daif_mask();
398 	exit_to_kernel_mode(regs);
399 }
400 
401 asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
402 {
403 	unsigned long esr = read_sysreg(esr_el1);
404 
405 	switch (ESR_ELx_EC(esr)) {
406 	case ESR_ELx_EC_DABT_CUR:
407 	case ESR_ELx_EC_IABT_CUR:
408 		el1_abort(regs, esr);
409 		break;
410 	/*
411 	 * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
412 	 * recursive exception when trying to push the initial pt_regs.
413 	 */
414 	case ESR_ELx_EC_PC_ALIGN:
415 		el1_pc(regs, esr);
416 		break;
417 	case ESR_ELx_EC_SYS64:
418 	case ESR_ELx_EC_UNKNOWN:
419 		el1_undef(regs);
420 		break;
421 	case ESR_ELx_EC_BREAKPT_CUR:
422 	case ESR_ELx_EC_SOFTSTP_CUR:
423 	case ESR_ELx_EC_WATCHPT_CUR:
424 	case ESR_ELx_EC_BRK64:
425 		el1_dbg(regs, esr);
426 		break;
427 	case ESR_ELx_EC_FPAC:
428 		el1_fpac(regs, esr);
429 		break;
430 	default:
431 		__panic_unhandled(regs, "64-bit el1h sync", esr);
432 	}
433 }
434 
435 static void noinstr el1_interrupt(struct pt_regs *regs,
436 				  void (*handler)(struct pt_regs *))
437 {
438 	write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
439 
440 	enter_el1_irq_or_nmi(regs);
441 	do_interrupt_handler(regs, handler);
442 
443 	/*
444 	 * Note: thread_info::preempt_count includes both thread_info::count
445 	 * and thread_info::need_resched, and is not equivalent to
446 	 * preempt_count().
447 	 */
448 	if (IS_ENABLED(CONFIG_PREEMPTION) &&
449 	    READ_ONCE(current_thread_info()->preempt_count) == 0)
450 		arm64_preempt_schedule_irq();
451 
452 	exit_el1_irq_or_nmi(regs);
453 }
454 
455 asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
456 {
457 	el1_interrupt(regs, handle_arch_irq);
458 }
459 
460 asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
461 {
462 	el1_interrupt(regs, handle_arch_fiq);
463 }
464 
465 asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
466 {
467 	unsigned long esr = read_sysreg(esr_el1);
468 
469 	local_daif_restore(DAIF_ERRCTX);
470 	arm64_enter_nmi(regs);
471 	do_serror(regs, esr);
472 	arm64_exit_nmi(regs);
473 }
474 
475 static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
476 {
477 	unsigned long far = read_sysreg(far_el1);
478 
479 	enter_from_user_mode(regs);
480 	local_daif_restore(DAIF_PROCCTX);
481 	do_mem_abort(far, esr, regs);
482 	exit_to_user_mode(regs);
483 }
484 
485 static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
486 {
487 	unsigned long far = read_sysreg(far_el1);
488 
489 	/*
490 	 * We've taken an instruction abort from userspace and not yet
491 	 * re-enabled IRQs. If the address is a kernel address, apply
492 	 * BP hardening prior to enabling IRQs and pre-emption.
493 	 */
494 	if (!is_ttbr0_addr(far))
495 		arm64_apply_bp_hardening();
496 
497 	enter_from_user_mode(regs);
498 	local_daif_restore(DAIF_PROCCTX);
499 	do_mem_abort(far, esr, regs);
500 	exit_to_user_mode(regs);
501 }
502 
503 static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
504 {
505 	enter_from_user_mode(regs);
506 	local_daif_restore(DAIF_PROCCTX);
507 	do_fpsimd_acc(esr, regs);
508 	exit_to_user_mode(regs);
509 }
510 
511 static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
512 {
513 	enter_from_user_mode(regs);
514 	local_daif_restore(DAIF_PROCCTX);
515 	do_sve_acc(esr, regs);
516 	exit_to_user_mode(regs);
517 }
518 
519 static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
520 {
521 	enter_from_user_mode(regs);
522 	local_daif_restore(DAIF_PROCCTX);
523 	do_fpsimd_exc(esr, regs);
524 	exit_to_user_mode(regs);
525 }
526 
527 static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
528 {
529 	enter_from_user_mode(regs);
530 	local_daif_restore(DAIF_PROCCTX);
531 	do_sysinstr(esr, regs);
532 	exit_to_user_mode(regs);
533 }
534 
535 static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
536 {
537 	unsigned long far = read_sysreg(far_el1);
538 
539 	if (!is_ttbr0_addr(instruction_pointer(regs)))
540 		arm64_apply_bp_hardening();
541 
542 	enter_from_user_mode(regs);
543 	local_daif_restore(DAIF_PROCCTX);
544 	do_sp_pc_abort(far, esr, regs);
545 	exit_to_user_mode(regs);
546 }
547 
548 static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
549 {
550 	enter_from_user_mode(regs);
551 	local_daif_restore(DAIF_PROCCTX);
552 	do_sp_pc_abort(regs->sp, esr, regs);
553 	exit_to_user_mode(regs);
554 }
555 
556 static void noinstr el0_undef(struct pt_regs *regs)
557 {
558 	enter_from_user_mode(regs);
559 	local_daif_restore(DAIF_PROCCTX);
560 	do_undefinstr(regs);
561 	exit_to_user_mode(regs);
562 }
563 
564 static void noinstr el0_bti(struct pt_regs *regs)
565 {
566 	enter_from_user_mode(regs);
567 	local_daif_restore(DAIF_PROCCTX);
568 	do_bti(regs);
569 	exit_to_user_mode(regs);
570 }
571 
572 static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
573 {
574 	enter_from_user_mode(regs);
575 	local_daif_restore(DAIF_PROCCTX);
576 	bad_el0_sync(regs, 0, esr);
577 	exit_to_user_mode(regs);
578 }
579 
580 static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr)
581 {
582 	/* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
583 	unsigned long far = read_sysreg(far_el1);
584 
585 	enter_from_user_mode(regs);
586 	do_debug_exception(far, esr, regs);
587 	local_daif_restore(DAIF_PROCCTX);
588 	exit_to_user_mode(regs);
589 }
590 
591 static void noinstr el0_svc(struct pt_regs *regs)
592 {
593 	enter_from_user_mode(regs);
594 	cortex_a76_erratum_1463225_svc_handler();
595 	do_el0_svc(regs);
596 	exit_to_user_mode(regs);
597 }
598 
599 static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
600 {
601 	enter_from_user_mode(regs);
602 	local_daif_restore(DAIF_PROCCTX);
603 	do_ptrauth_fault(regs, esr);
604 	exit_to_user_mode(regs);
605 }
606 
607 asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
608 {
609 	unsigned long esr = read_sysreg(esr_el1);
610 
611 	switch (ESR_ELx_EC(esr)) {
612 	case ESR_ELx_EC_SVC64:
613 		el0_svc(regs);
614 		break;
615 	case ESR_ELx_EC_DABT_LOW:
616 		el0_da(regs, esr);
617 		break;
618 	case ESR_ELx_EC_IABT_LOW:
619 		el0_ia(regs, esr);
620 		break;
621 	case ESR_ELx_EC_FP_ASIMD:
622 		el0_fpsimd_acc(regs, esr);
623 		break;
624 	case ESR_ELx_EC_SVE:
625 		el0_sve_acc(regs, esr);
626 		break;
627 	case ESR_ELx_EC_FP_EXC64:
628 		el0_fpsimd_exc(regs, esr);
629 		break;
630 	case ESR_ELx_EC_SYS64:
631 	case ESR_ELx_EC_WFx:
632 		el0_sys(regs, esr);
633 		break;
634 	case ESR_ELx_EC_SP_ALIGN:
635 		el0_sp(regs, esr);
636 		break;
637 	case ESR_ELx_EC_PC_ALIGN:
638 		el0_pc(regs, esr);
639 		break;
640 	case ESR_ELx_EC_UNKNOWN:
641 		el0_undef(regs);
642 		break;
643 	case ESR_ELx_EC_BTI:
644 		el0_bti(regs);
645 		break;
646 	case ESR_ELx_EC_BREAKPT_LOW:
647 	case ESR_ELx_EC_SOFTSTP_LOW:
648 	case ESR_ELx_EC_WATCHPT_LOW:
649 	case ESR_ELx_EC_BRK64:
650 		el0_dbg(regs, esr);
651 		break;
652 	case ESR_ELx_EC_FPAC:
653 		el0_fpac(regs, esr);
654 		break;
655 	default:
656 		el0_inv(regs, esr);
657 	}
658 }
659 
660 static void noinstr el0_interrupt(struct pt_regs *regs,
661 				  void (*handler)(struct pt_regs *))
662 {
663 	enter_from_user_mode(regs);
664 
665 	write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
666 
667 	if (regs->pc & BIT(55))
668 		arm64_apply_bp_hardening();
669 
670 	do_interrupt_handler(regs, handler);
671 
672 	exit_to_user_mode(regs);
673 }
674 
675 static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
676 {
677 	el0_interrupt(regs, handle_arch_irq);
678 }
679 
680 asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
681 {
682 	__el0_irq_handler_common(regs);
683 }
684 
685 static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
686 {
687 	el0_interrupt(regs, handle_arch_fiq);
688 }
689 
690 asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
691 {
692 	__el0_fiq_handler_common(regs);
693 }
694 
695 static void noinstr __el0_error_handler_common(struct pt_regs *regs)
696 {
697 	unsigned long esr = read_sysreg(esr_el1);
698 
699 	enter_from_user_mode(regs);
700 	local_daif_restore(DAIF_ERRCTX);
701 	arm64_enter_nmi(regs);
702 	do_serror(regs, esr);
703 	arm64_exit_nmi(regs);
704 	local_daif_restore(DAIF_PROCCTX);
705 	exit_to_user_mode(regs);
706 }
707 
708 asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
709 {
710 	__el0_error_handler_common(regs);
711 }
712 
713 #ifdef CONFIG_COMPAT
714 static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
715 {
716 	enter_from_user_mode(regs);
717 	local_daif_restore(DAIF_PROCCTX);
718 	do_cp15instr(esr, regs);
719 	exit_to_user_mode(regs);
720 }
721 
722 static void noinstr el0_svc_compat(struct pt_regs *regs)
723 {
724 	enter_from_user_mode(regs);
725 	cortex_a76_erratum_1463225_svc_handler();
726 	do_el0_svc_compat(regs);
727 	exit_to_user_mode(regs);
728 }
729 
730 asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
731 {
732 	unsigned long esr = read_sysreg(esr_el1);
733 
734 	switch (ESR_ELx_EC(esr)) {
735 	case ESR_ELx_EC_SVC32:
736 		el0_svc_compat(regs);
737 		break;
738 	case ESR_ELx_EC_DABT_LOW:
739 		el0_da(regs, esr);
740 		break;
741 	case ESR_ELx_EC_IABT_LOW:
742 		el0_ia(regs, esr);
743 		break;
744 	case ESR_ELx_EC_FP_ASIMD:
745 		el0_fpsimd_acc(regs, esr);
746 		break;
747 	case ESR_ELx_EC_FP_EXC32:
748 		el0_fpsimd_exc(regs, esr);
749 		break;
750 	case ESR_ELx_EC_PC_ALIGN:
751 		el0_pc(regs, esr);
752 		break;
753 	case ESR_ELx_EC_UNKNOWN:
754 	case ESR_ELx_EC_CP14_MR:
755 	case ESR_ELx_EC_CP14_LS:
756 	case ESR_ELx_EC_CP14_64:
757 		el0_undef(regs);
758 		break;
759 	case ESR_ELx_EC_CP15_32:
760 	case ESR_ELx_EC_CP15_64:
761 		el0_cp15(regs, esr);
762 		break;
763 	case ESR_ELx_EC_BREAKPT_LOW:
764 	case ESR_ELx_EC_SOFTSTP_LOW:
765 	case ESR_ELx_EC_WATCHPT_LOW:
766 	case ESR_ELx_EC_BKPT32:
767 		el0_dbg(regs, esr);
768 		break;
769 	default:
770 		el0_inv(regs, esr);
771 	}
772 }
773 
774 asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
775 {
776 	__el0_irq_handler_common(regs);
777 }
778 
779 asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
780 {
781 	__el0_fiq_handler_common(regs);
782 }
783 
784 asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
785 {
786 	__el0_error_handler_common(regs);
787 }
788 #else /* CONFIG_COMPAT */
789 UNHANDLED(el0t, 32, sync)
790 UNHANDLED(el0t, 32, irq)
791 UNHANDLED(el0t, 32, fiq)
792 UNHANDLED(el0t, 32, error)
793 #endif /* CONFIG_COMPAT */
794 
795 #ifdef CONFIG_VMAP_STACK
796 asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs)
797 {
798 	unsigned int esr = read_sysreg(esr_el1);
799 	unsigned long far = read_sysreg(far_el1);
800 
801 	arm64_enter_nmi(regs);
802 	panic_bad_stack(regs, esr, far);
803 }
804 #endif /* CONFIG_VMAP_STACK */
805 
806 #ifdef CONFIG_ARM_SDE_INTERFACE
807 asmlinkage noinstr unsigned long
808 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
809 {
810 	unsigned long ret;
811 
812 	/*
813 	 * We didn't take an exception to get here, so the HW hasn't
814 	 * set/cleared bits in PSTATE that we may rely on.
815 	 *
816 	 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
817 	 * whether PSTATE bits are inherited unchanged or generated from
818 	 * scratch, and the TF-A implementation always clears PAN and always
819 	 * clears UAO. There are no other known implementations.
820 	 *
821 	 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
822 	 * PSTATE is modified upon architectural exceptions, and so PAN is
823 	 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always
824 	 * cleared.
825 	 *
826 	 * We must explicitly reset PAN to the expected state, including
827 	 * clearing it when the host isn't using it, in case a VM had it set.
828 	 */
829 	if (system_uses_hw_pan())
830 		set_pstate_pan(1);
831 	else if (cpu_has_pan())
832 		set_pstate_pan(0);
833 
834 	arm64_enter_nmi(regs);
835 	ret = do_sdei_event(regs, arg);
836 	arm64_exit_nmi(regs);
837 
838 	return ret;
839 }
840 #endif /* CONFIG_ARM_SDE_INTERFACE */
841