xref: /openbmc/linux/arch/arm64/include/asm/kvm_arm.h (revision 2612e3bbc0386368a850140a6c9b990cd496a5ec)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_ARM_H__
8 #define __ARM64_KVM_ARM_H__
9 
10 #include <asm/esr.h>
11 #include <asm/memory.h>
12 #include <asm/sysreg.h>
13 #include <asm/types.h>
14 
15 /* Hyp Configuration Register (HCR) bits */
16 
17 #define HCR_TID5	(UL(1) << 58)
18 #define HCR_DCT		(UL(1) << 57)
19 #define HCR_ATA_SHIFT	56
20 #define HCR_ATA		(UL(1) << HCR_ATA_SHIFT)
21 #define HCR_AMVOFFEN	(UL(1) << 51)
22 #define HCR_TID4	(UL(1) << 49)
23 #define HCR_FIEN	(UL(1) << 47)
24 #define HCR_FWB		(UL(1) << 46)
25 #define HCR_API		(UL(1) << 41)
26 #define HCR_APK		(UL(1) << 40)
27 #define HCR_TEA		(UL(1) << 37)
28 #define HCR_TERR	(UL(1) << 36)
29 #define HCR_TLOR	(UL(1) << 35)
30 #define HCR_E2H		(UL(1) << 34)
31 #define HCR_ID		(UL(1) << 33)
32 #define HCR_CD		(UL(1) << 32)
33 #define HCR_RW_SHIFT	31
34 #define HCR_RW		(UL(1) << HCR_RW_SHIFT)
35 #define HCR_TRVM	(UL(1) << 30)
36 #define HCR_HCD		(UL(1) << 29)
37 #define HCR_TDZ		(UL(1) << 28)
38 #define HCR_TGE		(UL(1) << 27)
39 #define HCR_TVM		(UL(1) << 26)
40 #define HCR_TTLB	(UL(1) << 25)
41 #define HCR_TPU		(UL(1) << 24)
42 #define HCR_TPC		(UL(1) << 23) /* HCR_TPCP if FEAT_DPB */
43 #define HCR_TSW		(UL(1) << 22)
44 #define HCR_TACR	(UL(1) << 21)
45 #define HCR_TIDCP	(UL(1) << 20)
46 #define HCR_TSC		(UL(1) << 19)
47 #define HCR_TID3	(UL(1) << 18)
48 #define HCR_TID2	(UL(1) << 17)
49 #define HCR_TID1	(UL(1) << 16)
50 #define HCR_TID0	(UL(1) << 15)
51 #define HCR_TWE		(UL(1) << 14)
52 #define HCR_TWI		(UL(1) << 13)
53 #define HCR_DC		(UL(1) << 12)
54 #define HCR_BSU		(3 << 10)
55 #define HCR_BSU_IS	(UL(1) << 10)
56 #define HCR_FB		(UL(1) << 9)
57 #define HCR_VSE		(UL(1) << 8)
58 #define HCR_VI		(UL(1) << 7)
59 #define HCR_VF		(UL(1) << 6)
60 #define HCR_AMO		(UL(1) << 5)
61 #define HCR_IMO		(UL(1) << 4)
62 #define HCR_FMO		(UL(1) << 3)
63 #define HCR_PTW		(UL(1) << 2)
64 #define HCR_SWIO	(UL(1) << 1)
65 #define HCR_VM		(UL(1) << 0)
66 #define HCR_RES0	((UL(1) << 48) | (UL(1) << 39))
67 
68 /*
69  * The bits we set in HCR:
70  * TLOR:	Trap LORegion register accesses
71  * RW:		64bit by default, can be overridden for 32bit VMs
72  * TACR:	Trap ACTLR
73  * TSC:		Trap SMC
74  * TSW:		Trap cache operations by set/way
75  * TWE:		Trap WFE
76  * TWI:		Trap WFI
77  * TIDCP:	Trap L2CTLR/L2ECTLR
78  * BSU_IS:	Upgrade barriers to the inner shareable domain
79  * FB:		Force broadcast of all maintenance operations
80  * AMO:		Override CPSR.A and enable signaling with VA
81  * IMO:		Override CPSR.I and enable signaling with VI
82  * FMO:		Override CPSR.F and enable signaling with VF
83  * SWIO:	Turn set/way invalidates into set/way clean+invalidate
84  * PTW:		Take a stage2 fault if a stage1 walk steps in device memory
85  * TID3:	Trap EL1 reads of group 3 ID registers
86  * TID2:	Trap CTR_EL0, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1
87  */
88 #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
89 			 HCR_BSU_IS | HCR_FB | HCR_TACR | \
90 			 HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
91 			 HCR_FMO | HCR_IMO | HCR_PTW | HCR_TID3)
92 #define HCR_VIRT_EXCP_MASK (HCR_VSE | HCR_VI | HCR_VF)
93 #define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA)
94 #define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC)
95 #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H)
96 
97 #define HCRX_GUEST_FLAGS (HCRX_EL2_SMPME | HCRX_EL2_TCR2En)
98 #define HCRX_HOST_FLAGS (HCRX_EL2_MSCEn | HCRX_EL2_TCR2En)
99 
100 /* TCR_EL2 Registers bits */
101 #define TCR_EL2_RES1		((1U << 31) | (1 << 23))
102 #define TCR_EL2_TBI		(1 << 20)
103 #define TCR_EL2_PS_SHIFT	16
104 #define TCR_EL2_PS_MASK		(7 << TCR_EL2_PS_SHIFT)
105 #define TCR_EL2_PS_40B		(2 << TCR_EL2_PS_SHIFT)
106 #define TCR_EL2_TG0_MASK	TCR_TG0_MASK
107 #define TCR_EL2_SH0_MASK	TCR_SH0_MASK
108 #define TCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
109 #define TCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
110 #define TCR_EL2_T0SZ_MASK	0x3f
111 #define TCR_EL2_MASK	(TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
112 			 TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK)
113 
114 /* VTCR_EL2 Registers bits */
115 #define VTCR_EL2_RES1		(1U << 31)
116 #define VTCR_EL2_HD		(1 << 22)
117 #define VTCR_EL2_HA		(1 << 21)
118 #define VTCR_EL2_PS_SHIFT	TCR_EL2_PS_SHIFT
119 #define VTCR_EL2_PS_MASK	TCR_EL2_PS_MASK
120 #define VTCR_EL2_TG0_MASK	TCR_TG0_MASK
121 #define VTCR_EL2_TG0_4K		TCR_TG0_4K
122 #define VTCR_EL2_TG0_16K	TCR_TG0_16K
123 #define VTCR_EL2_TG0_64K	TCR_TG0_64K
124 #define VTCR_EL2_SH0_MASK	TCR_SH0_MASK
125 #define VTCR_EL2_SH0_INNER	TCR_SH0_INNER
126 #define VTCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
127 #define VTCR_EL2_ORGN0_WBWA	TCR_ORGN0_WBWA
128 #define VTCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
129 #define VTCR_EL2_IRGN0_WBWA	TCR_IRGN0_WBWA
130 #define VTCR_EL2_SL0_SHIFT	6
131 #define VTCR_EL2_SL0_MASK	(3 << VTCR_EL2_SL0_SHIFT)
132 #define VTCR_EL2_T0SZ_MASK	0x3f
133 #define VTCR_EL2_VS_SHIFT	19
134 #define VTCR_EL2_VS_8BIT	(0 << VTCR_EL2_VS_SHIFT)
135 #define VTCR_EL2_VS_16BIT	(1 << VTCR_EL2_VS_SHIFT)
136 
137 #define VTCR_EL2_T0SZ(x)	TCR_T0SZ(x)
138 
139 /*
140  * We configure the Stage-2 page tables to always restrict the IPA space to be
141  * 40 bits wide (T0SZ = 24).  Systems with a PARange smaller than 40 bits are
142  * not known to exist and will break with this configuration.
143  *
144  * The VTCR_EL2 is configured per VM and is initialised in kvm_init_stage2_mmu.
145  *
146  * Note that when using 4K pages, we concatenate two first level page tables
147  * together. With 16K pages, we concatenate 16 first level page tables.
148  *
149  */
150 
151 #define VTCR_EL2_COMMON_BITS	(VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
152 				 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
153 
154 /*
155  * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
156  * Interestingly, it depends on the page size.
157  * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
158  *
159  *	-----------------------------------------
160  *	| Entry level		|  4K  | 16K/64K |
161  *	------------------------------------------
162  *	| Level: 0		|  2   |   -     |
163  *	------------------------------------------
164  *	| Level: 1		|  1   |   2     |
165  *	------------------------------------------
166  *	| Level: 2		|  0   |   1     |
167  *	------------------------------------------
168  *	| Level: 3		|  -   |   0     |
169  *	------------------------------------------
170  *
171  * The table roughly translates to :
172  *
173  *	SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
174  *
175  * Where TGRAN_SL0_BASE is a magic number depending on the page size:
176  * 	TGRAN_SL0_BASE(4K) = 2
177  *	TGRAN_SL0_BASE(16K) = 3
178  *	TGRAN_SL0_BASE(64K) = 3
179  * provided we take care of ruling out the unsupported cases and
180  * Entry_Level = 4 - Number_of_levels.
181  *
182  */
183 #ifdef CONFIG_ARM64_64K_PAGES
184 
185 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_64K
186 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
187 
188 #elif defined(CONFIG_ARM64_16K_PAGES)
189 
190 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_16K
191 #define VTCR_EL2_TGRAN_SL0_BASE		3UL
192 
193 #else	/* 4K */
194 
195 #define VTCR_EL2_TGRAN			VTCR_EL2_TG0_4K
196 #define VTCR_EL2_TGRAN_SL0_BASE		2UL
197 
198 #endif
199 
200 #define VTCR_EL2_LVLS_TO_SL0(levels)	\
201 	((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
202 #define VTCR_EL2_SL0_TO_LVLS(sl0)	\
203 	((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
204 #define VTCR_EL2_LVLS(vtcr)		\
205 	VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
206 
207 #define VTCR_EL2_FLAGS			(VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
208 #define VTCR_EL2_IPA(vtcr)		(64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
209 
210 /*
211  * ARM VMSAv8-64 defines an algorithm for finding the translation table
212  * descriptors in section D4.2.8 in ARM DDI 0487C.a.
213  *
214  * The algorithm defines the expectations on the translation table
215  * addresses for each level, based on PAGE_SIZE, entry level
216  * and the translation table size (T0SZ). The variable "x" in the
217  * algorithm determines the alignment of a table base address at a given
218  * level and thus determines the alignment of VTTBR:BADDR for stage2
219  * page table entry level.
220  * Since the number of bits resolved at the entry level could vary
221  * depending on the T0SZ, the value of "x" is defined based on a
222  * Magic constant for a given PAGE_SIZE and Entry Level. The
223  * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
224  * x = PAGE_SHIFT).
225  *
226  * The value of "x" for entry level is calculated as :
227  *    x = Magic_N - T0SZ
228  *
229  * where Magic_N is an integer depending on the page size and the entry
230  * level of the page table as below:
231  *
232  *	--------------------------------------------
233  *	| Entry level		|  4K    16K   64K |
234  *	--------------------------------------------
235  *	| Level: 0 (4 levels)	| 28   |  -  |  -  |
236  *	--------------------------------------------
237  *	| Level: 1 (3 levels)	| 37   | 31  | 25  |
238  *	--------------------------------------------
239  *	| Level: 2 (2 levels)	| 46   | 42  | 38  |
240  *	--------------------------------------------
241  *	| Level: 3 (1 level)	| -    | 53  | 51  |
242  *	--------------------------------------------
243  *
244  * We have a magic formula for the Magic_N below:
245  *
246  *  Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
247  *
248  * where Number_of_levels = (4 - Level). We are only interested in the
249  * value for Entry_Level for the stage2 page table.
250  *
251  * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
252  *
253  *	x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
254  *	  = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
255  *
256  * Here is one way to explain the Magic Formula:
257  *
258  *  x = log2(Size_of_Entry_Level_Table)
259  *
260  * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
261  * PAGE_SHIFT bits in the PTE, we have :
262  *
263  *  Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
264  *		     = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
265  *  where n = number of levels, and since each pointer is 8bytes, we have:
266  *
267  *  x = Bits_Entry_Level + 3
268  *    = IPA_SHIFT - (PAGE_SHIFT - 3) * n
269  *
270  * The only constraint here is that, we have to find the number of page table
271  * levels for a given IPA size (which we do, see stage2_pt_levels())
272  */
273 #define ARM64_VTTBR_X(ipa, levels)	((ipa) - ((levels) * (PAGE_SHIFT - 3)))
274 
275 #define VTTBR_CNP_BIT     (UL(1))
276 #define VTTBR_VMID_SHIFT  (UL(48))
277 #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
278 
279 /* Hyp System Trap Register */
280 #define HSTR_EL2_T(x)	(1 << x)
281 
282 /* Hyp Coprocessor Trap Register Shifts */
283 #define CPTR_EL2_TFP_SHIFT 10
284 
285 /* Hyp Coprocessor Trap Register */
286 #define CPTR_EL2_TCPAC	(1U << 31)
287 #define CPTR_EL2_TAM	(1 << 30)
288 #define CPTR_EL2_TTA	(1 << 20)
289 #define CPTR_EL2_TSM	(1 << 12)
290 #define CPTR_EL2_TFP	(1 << CPTR_EL2_TFP_SHIFT)
291 #define CPTR_EL2_TZ	(1 << 8)
292 #define CPTR_NVHE_EL2_RES1	0x000032ff /* known RES1 bits in CPTR_EL2 (nVHE) */
293 #define CPTR_NVHE_EL2_RES0	(GENMASK(63, 32) |	\
294 				 GENMASK(29, 21) |	\
295 				 GENMASK(19, 14) |	\
296 				 BIT(11))
297 
298 /* Hyp Debug Configuration Register bits */
299 #define MDCR_EL2_E2TB_MASK	(UL(0x3))
300 #define MDCR_EL2_E2TB_SHIFT	(UL(24))
301 #define MDCR_EL2_HPMFZS		(UL(1) << 36)
302 #define MDCR_EL2_HPMFZO		(UL(1) << 29)
303 #define MDCR_EL2_MTPME		(UL(1) << 28)
304 #define MDCR_EL2_TDCC		(UL(1) << 27)
305 #define MDCR_EL2_HLP		(UL(1) << 26)
306 #define MDCR_EL2_HCCD		(UL(1) << 23)
307 #define MDCR_EL2_TTRF		(UL(1) << 19)
308 #define MDCR_EL2_HPMD		(UL(1) << 17)
309 #define MDCR_EL2_TPMS		(UL(1) << 14)
310 #define MDCR_EL2_E2PB_MASK	(UL(0x3))
311 #define MDCR_EL2_E2PB_SHIFT	(UL(12))
312 #define MDCR_EL2_TDRA		(UL(1) << 11)
313 #define MDCR_EL2_TDOSA		(UL(1) << 10)
314 #define MDCR_EL2_TDA		(UL(1) << 9)
315 #define MDCR_EL2_TDE		(UL(1) << 8)
316 #define MDCR_EL2_HPME		(UL(1) << 7)
317 #define MDCR_EL2_TPM		(UL(1) << 6)
318 #define MDCR_EL2_TPMCR		(UL(1) << 5)
319 #define MDCR_EL2_HPMN_MASK	(UL(0x1F))
320 #define MDCR_EL2_RES0		(GENMASK(63, 37) |	\
321 				 GENMASK(35, 30) |	\
322 				 GENMASK(25, 24) |	\
323 				 GENMASK(22, 20) |	\
324 				 BIT(18) |		\
325 				 GENMASK(16, 15))
326 
327 /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
328 #define HPFAR_MASK	(~UL(0xf))
329 /*
330  * We have
331  *	PAR	[PA_Shift - 1	: 12] = PA	[PA_Shift - 1 : 12]
332  *	HPFAR	[PA_Shift - 9	: 4]  = FIPA	[PA_Shift - 1 : 12]
333  *
334  * Always assume 52 bit PA since at this point, we don't know how many PA bits
335  * the page table has been set up for. This should be safe since unused address
336  * bits in PAR are res0.
337  */
338 #define PAR_TO_HPFAR(par)		\
339 	(((par) & GENMASK_ULL(52 - 1, 12)) >> 8)
340 
341 #define ECN(x) { ESR_ELx_EC_##x, #x }
342 
343 #define kvm_arm_exception_class \
344 	ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
345 	ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \
346 	ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \
347 	ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \
348 	ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
349 	ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
350 	ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
351 	ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
352 	ECN(BKPT32), ECN(VECTOR32), ECN(BRK64), ECN(ERET)
353 
354 #define CPACR_EL1_TTA		(1 << 28)
355 
356 #define kvm_mode_names				\
357 	{ PSR_MODE_EL0t,	"EL0t" },	\
358 	{ PSR_MODE_EL1t,	"EL1t" },	\
359 	{ PSR_MODE_EL1h,	"EL1h" },	\
360 	{ PSR_MODE_EL2t,	"EL2t" },	\
361 	{ PSR_MODE_EL2h,	"EL2h" },	\
362 	{ PSR_MODE_EL3t,	"EL3t" },	\
363 	{ PSR_MODE_EL3h,	"EL3h" },	\
364 	{ PSR_AA32_MODE_USR,	"32-bit USR" },	\
365 	{ PSR_AA32_MODE_FIQ,	"32-bit FIQ" },	\
366 	{ PSR_AA32_MODE_IRQ,	"32-bit IRQ" },	\
367 	{ PSR_AA32_MODE_SVC,	"32-bit SVC" },	\
368 	{ PSR_AA32_MODE_ABT,	"32-bit ABT" },	\
369 	{ PSR_AA32_MODE_HYP,	"32-bit HYP" },	\
370 	{ PSR_AA32_MODE_UND,	"32-bit UND" },	\
371 	{ PSR_AA32_MODE_SYS,	"32-bit SYS" }
372 
373 #endif /* __ARM64_KVM_ARM_H__ */
374