xref: /openbmc/linux/arch/arm64/Kconfig (revision 68f436a80fc89faa474134edfe442d95528be17a)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_IORT if ACPI
9	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
10	select ACPI_MCFG if (ACPI && PCI)
11	select ACPI_SPCR_TABLE if ACPI
12	select ACPI_PPTT if ACPI
13	select ARCH_HAS_DEBUG_WX
14	select ARCH_BINFMT_ELF_EXTRA_PHDRS
15	select ARCH_BINFMT_ELF_STATE
16	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CURRENT_STACK_POINTER
24	select ARCH_HAS_DEBUG_VIRTUAL
25	select ARCH_HAS_DEBUG_VM_PGTABLE
26	select ARCH_HAS_DMA_PREP_COHERENT
27	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
28	select ARCH_HAS_FAST_MULTIPLIER
29	select ARCH_HAS_FORTIFY_SOURCE
30	select ARCH_HAS_GCOV_PROFILE_ALL
31	select ARCH_HAS_GIGANTIC_PAGE
32	select ARCH_HAS_KCOV
33	select ARCH_HAS_KEEPINITRD
34	select ARCH_HAS_MEMBARRIER_SYNC_CORE
35	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
36	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
37	select ARCH_HAS_PTE_DEVMAP
38	select ARCH_HAS_PTE_SPECIAL
39	select ARCH_HAS_SETUP_DMA_OPS
40	select ARCH_HAS_SET_DIRECT_MAP
41	select ARCH_HAS_SET_MEMORY
42	select ARCH_STACKWALK
43	select ARCH_HAS_STRICT_KERNEL_RWX
44	select ARCH_HAS_STRICT_MODULE_RWX
45	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
46	select ARCH_HAS_SYNC_DMA_FOR_CPU
47	select ARCH_HAS_SYSCALL_WRAPPER
48	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
49	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
50	select ARCH_HAS_ZONE_DMA_SET if EXPERT
51	select ARCH_HAVE_ELF_PROT
52	select ARCH_HAVE_NMI_SAFE_CMPXCHG
53	select ARCH_HAVE_TRACE_MMIO_ACCESS
54	select ARCH_INLINE_READ_LOCK if !PREEMPTION
55	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
56	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
57	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
58	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
60	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
61	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
62	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
64	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
65	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
66	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
68	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
69	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
70	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
71	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
72	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
74	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
75	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
76	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
78	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
79	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
80	select ARCH_KEEP_MEMBLOCK
81	select ARCH_USE_CMPXCHG_LOCKREF
82	select ARCH_USE_GNU_PROPERTY
83	select ARCH_USE_MEMTEST
84	select ARCH_USE_QUEUED_RWLOCKS
85	select ARCH_USE_QUEUED_SPINLOCKS
86	select ARCH_USE_SYM_ANNOTATIONS
87	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
88	select ARCH_SUPPORTS_HUGETLBFS
89	select ARCH_SUPPORTS_MEMORY_FAILURE
90	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
91	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
92	select ARCH_SUPPORTS_LTO_CLANG_THIN
93	select ARCH_SUPPORTS_CFI_CLANG
94	select ARCH_SUPPORTS_ATOMIC_RMW
95	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
96	select ARCH_SUPPORTS_NUMA_BALANCING
97	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
98	select ARCH_SUPPORTS_PER_VMA_LOCK
99	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
100	select ARCH_WANT_DEFAULT_BPF_JIT
101	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
102	select ARCH_WANT_FRAME_POINTERS
103	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
104	select ARCH_WANT_LD_ORPHAN_WARN
105	select ARCH_WANTS_NO_INSTR
106	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
107	select ARCH_HAS_UBSAN_SANITIZE_ALL
108	select ARM_AMBA
109	select ARM_ARCH_TIMER
110	select ARM_GIC
111	select AUDIT_ARCH_COMPAT_GENERIC
112	select ARM_GIC_V2M if PCI
113	select ARM_GIC_V3
114	select ARM_GIC_V3_ITS if PCI
115	select ARM_PSCI_FW
116	select BUILDTIME_TABLE_SORT
117	select CLONE_BACKWARDS
118	select COMMON_CLK
119	select CPU_PM if (SUSPEND || CPU_IDLE)
120	select CRC32
121	select DCACHE_WORD_ACCESS
122	select DYNAMIC_FTRACE if FUNCTION_TRACER
123	select DMA_BOUNCE_UNALIGNED_KMALLOC
124	select DMA_DIRECT_REMAP
125	select EDAC_SUPPORT
126	select FRAME_POINTER
127	select FUNCTION_ALIGNMENT_4B
128	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
129	select GENERIC_ALLOCATOR
130	select GENERIC_ARCH_TOPOLOGY
131	select GENERIC_CLOCKEVENTS_BROADCAST
132	select GENERIC_CPU_AUTOPROBE
133	select GENERIC_CPU_VULNERABILITIES
134	select GENERIC_EARLY_IOREMAP
135	select GENERIC_IDLE_POLL_SETUP
136	select GENERIC_IOREMAP
137	select GENERIC_IRQ_IPI
138	select GENERIC_IRQ_PROBE
139	select GENERIC_IRQ_SHOW
140	select GENERIC_IRQ_SHOW_LEVEL
141	select GENERIC_LIB_DEVMEM_IS_ALLOWED
142	select GENERIC_PCI_IOMAP
143	select GENERIC_PTDUMP
144	select GENERIC_SCHED_CLOCK
145	select GENERIC_SMP_IDLE_THREAD
146	select GENERIC_TIME_VSYSCALL
147	select GENERIC_GETTIMEOFDAY
148	select GENERIC_VDSO_TIME_NS
149	select HARDIRQS_SW_RESEND
150	select HAS_IOPORT
151	select HAVE_MOVE_PMD
152	select HAVE_MOVE_PUD
153	select HAVE_PCI
154	select HAVE_ACPI_APEI if (ACPI && EFI)
155	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
156	select HAVE_ARCH_AUDITSYSCALL
157	select HAVE_ARCH_BITREVERSE
158	select HAVE_ARCH_COMPILER_H
159	select HAVE_ARCH_HUGE_VMALLOC
160	select HAVE_ARCH_HUGE_VMAP
161	select HAVE_ARCH_JUMP_LABEL
162	select HAVE_ARCH_JUMP_LABEL_RELATIVE
163	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
164	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
165	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
166	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
167	# Some instrumentation may be unsound, hence EXPERT
168	select HAVE_ARCH_KCSAN if EXPERT
169	select HAVE_ARCH_KFENCE
170	select HAVE_ARCH_KGDB
171	select HAVE_ARCH_MMAP_RND_BITS
172	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
173	select HAVE_ARCH_PREL32_RELOCATIONS
174	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
175	select HAVE_ARCH_SECCOMP_FILTER
176	select HAVE_ARCH_STACKLEAK
177	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
178	select HAVE_ARCH_TRACEHOOK
179	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
180	select HAVE_ARCH_VMAP_STACK
181	select HAVE_ARM_SMCCC
182	select HAVE_ASM_MODVERSIONS
183	select HAVE_EBPF_JIT
184	select HAVE_C_RECORDMCOUNT
185	select HAVE_CMPXCHG_DOUBLE
186	select HAVE_CMPXCHG_LOCAL
187	select HAVE_CONTEXT_TRACKING_USER
188	select HAVE_DEBUG_KMEMLEAK
189	select HAVE_DMA_CONTIGUOUS
190	select HAVE_DYNAMIC_FTRACE
191	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
192		if $(cc-option,-fpatchable-function-entry=2)
193	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
194		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
195	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
196		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
197		    !CC_OPTIMIZE_FOR_SIZE)
198	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
199		if DYNAMIC_FTRACE_WITH_ARGS
200	select HAVE_SAMPLE_FTRACE_DIRECT
201	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
202	select HAVE_EFFICIENT_UNALIGNED_ACCESS
203	select HAVE_FAST_GUP
204	select HAVE_FTRACE_MCOUNT_RECORD
205	select HAVE_FUNCTION_TRACER
206	select HAVE_FUNCTION_ERROR_INJECTION
207	select HAVE_FUNCTION_GRAPH_RETVAL if HAVE_FUNCTION_GRAPH_TRACER
208	select HAVE_FUNCTION_GRAPH_TRACER
209	select HAVE_GCC_PLUGINS
210	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
211		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
212	select HAVE_HW_BREAKPOINT if PERF_EVENTS
213	select HAVE_IOREMAP_PROT
214	select HAVE_IRQ_TIME_ACCOUNTING
215	select HAVE_KVM
216	select HAVE_MOD_ARCH_SPECIFIC
217	select HAVE_NMI
218	select HAVE_PERF_EVENTS
219	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
220	select HAVE_PERF_REGS
221	select HAVE_PERF_USER_STACK_DUMP
222	select HAVE_PREEMPT_DYNAMIC_KEY
223	select HAVE_REGS_AND_STACK_ACCESS_API
224	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
225	select HAVE_FUNCTION_ARG_ACCESS_API
226	select MMU_GATHER_RCU_TABLE_FREE
227	select HAVE_RSEQ
228	select HAVE_STACKPROTECTOR
229	select HAVE_SYSCALL_TRACEPOINTS
230	select HAVE_KPROBES
231	select HAVE_KRETPROBES
232	select HAVE_GENERIC_VDSO
233	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
234	select IRQ_DOMAIN
235	select IRQ_FORCED_THREADING
236	select KASAN_VMALLOC if KASAN
237	select LOCK_MM_AND_FIND_VMA
238	select MODULES_USE_ELF_RELA
239	select NEED_DMA_MAP_STATE
240	select NEED_SG_DMA_LENGTH
241	select OF
242	select OF_EARLY_FLATTREE
243	select PCI_DOMAINS_GENERIC if PCI
244	select PCI_ECAM if (ACPI && PCI)
245	select PCI_SYSCALL if PCI
246	select POWER_RESET
247	select POWER_SUPPLY
248	select SPARSE_IRQ
249	select SWIOTLB
250	select SYSCTL_EXCEPTION_TRACE
251	select THREAD_INFO_IN_TASK
252	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
253	select TRACE_IRQFLAGS_SUPPORT
254	select TRACE_IRQFLAGS_NMI_SUPPORT
255	select HAVE_SOFTIRQ_ON_OWN_STACK
256	help
257	  ARM 64-bit (AArch64) Linux support.
258
259config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
260	def_bool CC_IS_CLANG
261	# https://github.com/ClangBuiltLinux/linux/issues/1507
262	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
263	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
264
265config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
266	def_bool CC_IS_GCC
267	depends on $(cc-option,-fpatchable-function-entry=2)
268	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
269
270config 64BIT
271	def_bool y
272
273config MMU
274	def_bool y
275
276config ARM64_PAGE_SHIFT
277	int
278	default 16 if ARM64_64K_PAGES
279	default 14 if ARM64_16K_PAGES
280	default 12
281
282config ARM64_CONT_PTE_SHIFT
283	int
284	default 5 if ARM64_64K_PAGES
285	default 7 if ARM64_16K_PAGES
286	default 4
287
288config ARM64_CONT_PMD_SHIFT
289	int
290	default 5 if ARM64_64K_PAGES
291	default 5 if ARM64_16K_PAGES
292	default 4
293
294config ARCH_MMAP_RND_BITS_MIN
295	default 14 if ARM64_64K_PAGES
296	default 16 if ARM64_16K_PAGES
297	default 18
298
299# max bits determined by the following formula:
300#  VA_BITS - PAGE_SHIFT - 3
301config ARCH_MMAP_RND_BITS_MAX
302	default 19 if ARM64_VA_BITS=36
303	default 24 if ARM64_VA_BITS=39
304	default 27 if ARM64_VA_BITS=42
305	default 30 if ARM64_VA_BITS=47
306	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
307	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
308	default 33 if ARM64_VA_BITS=48
309	default 14 if ARM64_64K_PAGES
310	default 16 if ARM64_16K_PAGES
311	default 18
312
313config ARCH_MMAP_RND_COMPAT_BITS_MIN
314	default 7 if ARM64_64K_PAGES
315	default 9 if ARM64_16K_PAGES
316	default 11
317
318config ARCH_MMAP_RND_COMPAT_BITS_MAX
319	default 16
320
321config NO_IOPORT_MAP
322	def_bool y if !PCI
323
324config STACKTRACE_SUPPORT
325	def_bool y
326
327config ILLEGAL_POINTER_VALUE
328	hex
329	default 0xdead000000000000
330
331config LOCKDEP_SUPPORT
332	def_bool y
333
334config GENERIC_BUG
335	def_bool y
336	depends on BUG
337
338config GENERIC_BUG_RELATIVE_POINTERS
339	def_bool y
340	depends on GENERIC_BUG
341
342config GENERIC_HWEIGHT
343	def_bool y
344
345config GENERIC_CSUM
346	def_bool y
347
348config GENERIC_CALIBRATE_DELAY
349	def_bool y
350
351config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
352	def_bool y
353
354config SMP
355	def_bool y
356
357config KERNEL_MODE_NEON
358	def_bool y
359
360config FIX_EARLYCON_MEM
361	def_bool y
362
363config PGTABLE_LEVELS
364	int
365	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
366	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
367	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
368	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
369	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
370	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
371
372config ARCH_SUPPORTS_UPROBES
373	def_bool y
374
375config ARCH_PROC_KCORE_TEXT
376	def_bool y
377
378config BROKEN_GAS_INST
379	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
380
381config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
382	bool
383	# Clang's __builtin_return_adddress() strips the PAC since 12.0.0
384	# https://reviews.llvm.org/D75044
385	default y if CC_IS_CLANG && (CLANG_VERSION >= 120000)
386	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
387	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
388	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
389	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
390	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
391	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
392	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
393	default n
394
395config KASAN_SHADOW_OFFSET
396	hex
397	depends on KASAN_GENERIC || KASAN_SW_TAGS
398	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
399	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
400	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
401	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
402	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
403	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
404	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
405	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
406	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
407	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
408	default 0xffffffffffffffff
409
410config UNWIND_TABLES
411	bool
412
413source "arch/arm64/Kconfig.platforms"
414
415menu "Kernel Features"
416
417menu "ARM errata workarounds via the alternatives framework"
418
419config AMPERE_ERRATUM_AC03_CPU_38
420        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
421	default y
422	help
423	  This option adds an alternative code sequence to work around Ampere
424	  erratum AC03_CPU_38 on AmpereOne.
425
426	  The affected design reports FEAT_HAFDBS as not implemented in
427	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
428	  as required by the architecture. The unadvertised HAFDBS
429	  implementation suffers from an additional erratum where hardware
430	  A/D updates can occur after a PTE has been marked invalid.
431
432	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
433	  which avoids enabling unadvertised hardware Access Flag management
434	  at stage-2.
435
436	  If unsure, say Y.
437
438config ARM64_WORKAROUND_CLEAN_CACHE
439	bool
440
441config ARM64_ERRATUM_826319
442	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
443	default y
444	select ARM64_WORKAROUND_CLEAN_CACHE
445	help
446	  This option adds an alternative code sequence to work around ARM
447	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
448	  AXI master interface and an L2 cache.
449
450	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
451	  and is unable to accept a certain write via this interface, it will
452	  not progress on read data presented on the read data channel and the
453	  system can deadlock.
454
455	  The workaround promotes data cache clean instructions to
456	  data cache clean-and-invalidate.
457	  Please note that this does not necessarily enable the workaround,
458	  as it depends on the alternative framework, which will only patch
459	  the kernel if an affected CPU is detected.
460
461	  If unsure, say Y.
462
463config ARM64_ERRATUM_827319
464	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
465	default y
466	select ARM64_WORKAROUND_CLEAN_CACHE
467	help
468	  This option adds an alternative code sequence to work around ARM
469	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
470	  master interface and an L2 cache.
471
472	  Under certain conditions this erratum can cause a clean line eviction
473	  to occur at the same time as another transaction to the same address
474	  on the AMBA 5 CHI interface, which can cause data corruption if the
475	  interconnect reorders the two transactions.
476
477	  The workaround promotes data cache clean instructions to
478	  data cache clean-and-invalidate.
479	  Please note that this does not necessarily enable the workaround,
480	  as it depends on the alternative framework, which will only patch
481	  the kernel if an affected CPU is detected.
482
483	  If unsure, say Y.
484
485config ARM64_ERRATUM_824069
486	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
487	default y
488	select ARM64_WORKAROUND_CLEAN_CACHE
489	help
490	  This option adds an alternative code sequence to work around ARM
491	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
492	  to a coherent interconnect.
493
494	  If a Cortex-A53 processor is executing a store or prefetch for
495	  write instruction at the same time as a processor in another
496	  cluster is executing a cache maintenance operation to the same
497	  address, then this erratum might cause a clean cache line to be
498	  incorrectly marked as dirty.
499
500	  The workaround promotes data cache clean instructions to
501	  data cache clean-and-invalidate.
502	  Please note that this option does not necessarily enable the
503	  workaround, as it depends on the alternative framework, which will
504	  only patch the kernel if an affected CPU is detected.
505
506	  If unsure, say Y.
507
508config ARM64_ERRATUM_819472
509	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
510	default y
511	select ARM64_WORKAROUND_CLEAN_CACHE
512	help
513	  This option adds an alternative code sequence to work around ARM
514	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
515	  present when it is connected to a coherent interconnect.
516
517	  If the processor is executing a load and store exclusive sequence at
518	  the same time as a processor in another cluster is executing a cache
519	  maintenance operation to the same address, then this erratum might
520	  cause data corruption.
521
522	  The workaround promotes data cache clean instructions to
523	  data cache clean-and-invalidate.
524	  Please note that this does not necessarily enable the workaround,
525	  as it depends on the alternative framework, which will only patch
526	  the kernel if an affected CPU is detected.
527
528	  If unsure, say Y.
529
530config ARM64_ERRATUM_832075
531	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
532	default y
533	help
534	  This option adds an alternative code sequence to work around ARM
535	  erratum 832075 on Cortex-A57 parts up to r1p2.
536
537	  Affected Cortex-A57 parts might deadlock when exclusive load/store
538	  instructions to Write-Back memory are mixed with Device loads.
539
540	  The workaround is to promote device loads to use Load-Acquire
541	  semantics.
542	  Please note that this does not necessarily enable the workaround,
543	  as it depends on the alternative framework, which will only patch
544	  the kernel if an affected CPU is detected.
545
546	  If unsure, say Y.
547
548config ARM64_ERRATUM_834220
549	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
550	depends on KVM
551	default y
552	help
553	  This option adds an alternative code sequence to work around ARM
554	  erratum 834220 on Cortex-A57 parts up to r1p2.
555
556	  Affected Cortex-A57 parts might report a Stage 2 translation
557	  fault as the result of a Stage 1 fault for load crossing a
558	  page boundary when there is a permission or device memory
559	  alignment fault at Stage 1 and a translation fault at Stage 2.
560
561	  The workaround is to verify that the Stage 1 translation
562	  doesn't generate a fault before handling the Stage 2 fault.
563	  Please note that this does not necessarily enable the workaround,
564	  as it depends on the alternative framework, which will only patch
565	  the kernel if an affected CPU is detected.
566
567	  If unsure, say Y.
568
569config ARM64_ERRATUM_1742098
570	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
571	depends on COMPAT
572	default y
573	help
574	  This option removes the AES hwcap for aarch32 user-space to
575	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
576
577	  Affected parts may corrupt the AES state if an interrupt is
578	  taken between a pair of AES instructions. These instructions
579	  are only present if the cryptography extensions are present.
580	  All software should have a fallback implementation for CPUs
581	  that don't implement the cryptography extensions.
582
583	  If unsure, say Y.
584
585config ARM64_ERRATUM_845719
586	bool "Cortex-A53: 845719: a load might read incorrect data"
587	depends on COMPAT
588	default y
589	help
590	  This option adds an alternative code sequence to work around ARM
591	  erratum 845719 on Cortex-A53 parts up to r0p4.
592
593	  When running a compat (AArch32) userspace on an affected Cortex-A53
594	  part, a load at EL0 from a virtual address that matches the bottom 32
595	  bits of the virtual address used by a recent load at (AArch64) EL1
596	  might return incorrect data.
597
598	  The workaround is to write the contextidr_el1 register on exception
599	  return to a 32-bit task.
600	  Please note that this does not necessarily enable the workaround,
601	  as it depends on the alternative framework, which will only patch
602	  the kernel if an affected CPU is detected.
603
604	  If unsure, say Y.
605
606config ARM64_ERRATUM_843419
607	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
608	default y
609	help
610	  This option links the kernel with '--fix-cortex-a53-843419' and
611	  enables PLT support to replace certain ADRP instructions, which can
612	  cause subsequent memory accesses to use an incorrect address on
613	  Cortex-A53 parts up to r0p4.
614
615	  If unsure, say Y.
616
617config ARM64_LD_HAS_FIX_ERRATUM_843419
618	def_bool $(ld-option,--fix-cortex-a53-843419)
619
620config ARM64_ERRATUM_1024718
621	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
622	default y
623	help
624	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
625
626	  Affected Cortex-A55 cores (all revisions) could cause incorrect
627	  update of the hardware dirty bit when the DBM/AP bits are updated
628	  without a break-before-make. The workaround is to disable the usage
629	  of hardware DBM locally on the affected cores. CPUs not affected by
630	  this erratum will continue to use the feature.
631
632	  If unsure, say Y.
633
634config ARM64_ERRATUM_1418040
635	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
636	default y
637	depends on COMPAT
638	help
639	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
640	  errata 1188873 and 1418040.
641
642	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
643	  cause register corruption when accessing the timer registers
644	  from AArch32 userspace.
645
646	  If unsure, say Y.
647
648config ARM64_WORKAROUND_SPECULATIVE_AT
649	bool
650
651config ARM64_ERRATUM_1165522
652	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
653	default y
654	select ARM64_WORKAROUND_SPECULATIVE_AT
655	help
656	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
657
658	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
659	  corrupted TLBs by speculating an AT instruction during a guest
660	  context switch.
661
662	  If unsure, say Y.
663
664config ARM64_ERRATUM_1319367
665	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
666	default y
667	select ARM64_WORKAROUND_SPECULATIVE_AT
668	help
669	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
670	  and A72 erratum 1319367
671
672	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
673	  speculating an AT instruction during a guest context switch.
674
675	  If unsure, say Y.
676
677config ARM64_ERRATUM_1530923
678	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
679	default y
680	select ARM64_WORKAROUND_SPECULATIVE_AT
681	help
682	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
683
684	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
685	  corrupted TLBs by speculating an AT instruction during a guest
686	  context switch.
687
688	  If unsure, say Y.
689
690config ARM64_WORKAROUND_REPEAT_TLBI
691	bool
692
693config ARM64_ERRATUM_2441007
694	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
695	default y
696	select ARM64_WORKAROUND_REPEAT_TLBI
697	help
698	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
699
700	  Under very rare circumstances, affected Cortex-A55 CPUs
701	  may not handle a race between a break-before-make sequence on one
702	  CPU, and another CPU accessing the same page. This could allow a
703	  store to a page that has been unmapped.
704
705	  Work around this by adding the affected CPUs to the list that needs
706	  TLB sequences to be done twice.
707
708	  If unsure, say Y.
709
710config ARM64_ERRATUM_1286807
711	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
712	default y
713	select ARM64_WORKAROUND_REPEAT_TLBI
714	help
715	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
716
717	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
718	  address for a cacheable mapping of a location is being
719	  accessed by a core while another core is remapping the virtual
720	  address to a new physical page using the recommended
721	  break-before-make sequence, then under very rare circumstances
722	  TLBI+DSB completes before a read using the translation being
723	  invalidated has been observed by other observers. The
724	  workaround repeats the TLBI+DSB operation.
725
726config ARM64_ERRATUM_1463225
727	bool "Cortex-A76: Software Step might prevent interrupt recognition"
728	default y
729	help
730	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
731
732	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
733	  of a system call instruction (SVC) can prevent recognition of
734	  subsequent interrupts when software stepping is disabled in the
735	  exception handler of the system call and either kernel debugging
736	  is enabled or VHE is in use.
737
738	  Work around the erratum by triggering a dummy step exception
739	  when handling a system call from a task that is being stepped
740	  in a VHE configuration of the kernel.
741
742	  If unsure, say Y.
743
744config ARM64_ERRATUM_1542419
745	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
746	default y
747	help
748	  This option adds a workaround for ARM Neoverse-N1 erratum
749	  1542419.
750
751	  Affected Neoverse-N1 cores could execute a stale instruction when
752	  modified by another CPU. The workaround depends on a firmware
753	  counterpart.
754
755	  Workaround the issue by hiding the DIC feature from EL0. This
756	  forces user-space to perform cache maintenance.
757
758	  If unsure, say Y.
759
760config ARM64_ERRATUM_1508412
761	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
762	default y
763	help
764	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
765
766	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
767	  of a store-exclusive or read of PAR_EL1 and a load with device or
768	  non-cacheable memory attributes. The workaround depends on a firmware
769	  counterpart.
770
771	  KVM guests must also have the workaround implemented or they can
772	  deadlock the system.
773
774	  Work around the issue by inserting DMB SY barriers around PAR_EL1
775	  register reads and warning KVM users. The DMB barrier is sufficient
776	  to prevent a speculative PAR_EL1 read.
777
778	  If unsure, say Y.
779
780config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
781	bool
782
783config ARM64_ERRATUM_2051678
784	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
785	default y
786	help
787	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
788	  Affected Cortex-A510 might not respect the ordering rules for
789	  hardware update of the page table's dirty bit. The workaround
790	  is to not enable the feature on affected CPUs.
791
792	  If unsure, say Y.
793
794config ARM64_ERRATUM_2077057
795	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
796	default y
797	help
798	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
799	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
800	  expected, but a Pointer Authentication trap is taken instead. The
801	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
802	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
803
804	  This can only happen when EL2 is stepping EL1.
805
806	  When these conditions occur, the SPSR_EL2 value is unchanged from the
807	  previous guest entry, and can be restored from the in-memory copy.
808
809	  If unsure, say Y.
810
811config ARM64_ERRATUM_2658417
812	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
813	default y
814	help
815	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
816	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
817	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
818	  A510 CPUs are using shared neon hardware. As the sharing is not
819	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
820	  user-space should not be using these instructions.
821
822	  If unsure, say Y.
823
824config ARM64_ERRATUM_2119858
825	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
826	default y
827	depends on CORESIGHT_TRBE
828	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
829	help
830	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
831
832	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
833	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
834	  the event of a WRAP event.
835
836	  Work around the issue by always making sure we move the TRBPTR_EL1 by
837	  256 bytes before enabling the buffer and filling the first 256 bytes of
838	  the buffer with ETM ignore packets upon disabling.
839
840	  If unsure, say Y.
841
842config ARM64_ERRATUM_2139208
843	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
844	default y
845	depends on CORESIGHT_TRBE
846	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
847	help
848	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
849
850	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
851	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
852	  the event of a WRAP event.
853
854	  Work around the issue by always making sure we move the TRBPTR_EL1 by
855	  256 bytes before enabling the buffer and filling the first 256 bytes of
856	  the buffer with ETM ignore packets upon disabling.
857
858	  If unsure, say Y.
859
860config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
861	bool
862
863config ARM64_ERRATUM_2054223
864	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
865	default y
866	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
867	help
868	  Enable workaround for ARM Cortex-A710 erratum 2054223
869
870	  Affected cores may fail to flush the trace data on a TSB instruction, when
871	  the PE is in trace prohibited state. This will cause losing a few bytes
872	  of the trace cached.
873
874	  Workaround is to issue two TSB consecutively on affected cores.
875
876	  If unsure, say Y.
877
878config ARM64_ERRATUM_2067961
879	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
880	default y
881	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
882	help
883	  Enable workaround for ARM Neoverse-N2 erratum 2067961
884
885	  Affected cores may fail to flush the trace data on a TSB instruction, when
886	  the PE is in trace prohibited state. This will cause losing a few bytes
887	  of the trace cached.
888
889	  Workaround is to issue two TSB consecutively on affected cores.
890
891	  If unsure, say Y.
892
893config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
894	bool
895
896config ARM64_ERRATUM_2253138
897	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
898	depends on CORESIGHT_TRBE
899	default y
900	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
901	help
902	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
903
904	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
905	  for TRBE. Under some conditions, the TRBE might generate a write to the next
906	  virtually addressed page following the last page of the TRBE address space
907	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
908
909	  Work around this in the driver by always making sure that there is a
910	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
911
912	  If unsure, say Y.
913
914config ARM64_ERRATUM_2224489
915	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
916	depends on CORESIGHT_TRBE
917	default y
918	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
919	help
920	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
921
922	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
923	  for TRBE. Under some conditions, the TRBE might generate a write to the next
924	  virtually addressed page following the last page of the TRBE address space
925	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
926
927	  Work around this in the driver by always making sure that there is a
928	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
929
930	  If unsure, say Y.
931
932config ARM64_ERRATUM_2441009
933	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
934	default y
935	select ARM64_WORKAROUND_REPEAT_TLBI
936	help
937	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
938
939	  Under very rare circumstances, affected Cortex-A510 CPUs
940	  may not handle a race between a break-before-make sequence on one
941	  CPU, and another CPU accessing the same page. This could allow a
942	  store to a page that has been unmapped.
943
944	  Work around this by adding the affected CPUs to the list that needs
945	  TLB sequences to be done twice.
946
947	  If unsure, say Y.
948
949config ARM64_ERRATUM_2064142
950	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
951	depends on CORESIGHT_TRBE
952	default y
953	help
954	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
955
956	  Affected Cortex-A510 core might fail to write into system registers after the
957	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
958	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
959	  and TRBTRG_EL1 will be ignored and will not be effected.
960
961	  Work around this in the driver by executing TSB CSYNC and DSB after collection
962	  is stopped and before performing a system register write to one of the affected
963	  registers.
964
965	  If unsure, say Y.
966
967config ARM64_ERRATUM_2038923
968	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
969	depends on CORESIGHT_TRBE
970	default y
971	help
972	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
973
974	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
975	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
976	  might be corrupted. This happens after TRBE buffer has been enabled by setting
977	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
978	  execution changes from a context, in which trace is prohibited to one where it
979	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
980	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
981	  the trace buffer state might be corrupted.
982
983	  Work around this in the driver by preventing an inconsistent view of whether the
984	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
985	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
986	  two ISB instructions if no ERET is to take place.
987
988	  If unsure, say Y.
989
990config ARM64_ERRATUM_1902691
991	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
992	depends on CORESIGHT_TRBE
993	default y
994	help
995	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
996
997	  Affected Cortex-A510 core might cause trace data corruption, when being written
998	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
999	  trace data.
1000
1001	  Work around this problem in the driver by just preventing TRBE initialization on
1002	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1003	  on such implementations. This will cover the kernel for any firmware that doesn't
1004	  do this already.
1005
1006	  If unsure, say Y.
1007
1008config ARM64_ERRATUM_2457168
1009	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1010	depends on ARM64_AMU_EXTN
1011	default y
1012	help
1013	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1014
1015	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1016	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1017	  incorrectly giving a significantly higher output value.
1018
1019	  Work around this problem by returning 0 when reading the affected counter in
1020	  key locations that results in disabling all users of this counter. This effect
1021	  is the same to firmware disabling affected counters.
1022
1023	  If unsure, say Y.
1024
1025config ARM64_ERRATUM_2645198
1026	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1027	default y
1028	help
1029	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1030
1031	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1032	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1033	  next instruction abort caused by permission fault.
1034
1035	  Only user-space does executable to non-executable permission transition via
1036	  mprotect() system call. Workaround the problem by doing a break-before-make
1037	  TLB invalidation, for all changes to executable user space mappings.
1038
1039	  If unsure, say Y.
1040
1041config CAVIUM_ERRATUM_22375
1042	bool "Cavium erratum 22375, 24313"
1043	default y
1044	help
1045	  Enable workaround for errata 22375 and 24313.
1046
1047	  This implements two gicv3-its errata workarounds for ThunderX. Both
1048	  with a small impact affecting only ITS table allocation.
1049
1050	    erratum 22375: only alloc 8MB table size
1051	    erratum 24313: ignore memory access type
1052
1053	  The fixes are in ITS initialization and basically ignore memory access
1054	  type and table size provided by the TYPER and BASER registers.
1055
1056	  If unsure, say Y.
1057
1058config CAVIUM_ERRATUM_23144
1059	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1060	depends on NUMA
1061	default y
1062	help
1063	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1064
1065	  If unsure, say Y.
1066
1067config CAVIUM_ERRATUM_23154
1068	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1069	default y
1070	help
1071	  The ThunderX GICv3 implementation requires a modified version for
1072	  reading the IAR status to ensure data synchronization
1073	  (access to icc_iar1_el1 is not sync'ed before and after).
1074
1075	  It also suffers from erratum 38545 (also present on Marvell's
1076	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1077	  spuriously presented to the CPU interface.
1078
1079	  If unsure, say Y.
1080
1081config CAVIUM_ERRATUM_27456
1082	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1083	default y
1084	help
1085	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1086	  instructions may cause the icache to become corrupted if it
1087	  contains data for a non-current ASID.  The fix is to
1088	  invalidate the icache when changing the mm context.
1089
1090	  If unsure, say Y.
1091
1092config CAVIUM_ERRATUM_30115
1093	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1094	default y
1095	help
1096	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1097	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1098	  interrupts in host. Trapping both GICv3 group-0 and group-1
1099	  accesses sidesteps the issue.
1100
1101	  If unsure, say Y.
1102
1103config CAVIUM_TX2_ERRATUM_219
1104	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1105	default y
1106	help
1107	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1108	  TTBR update and the corresponding context synchronizing operation can
1109	  cause a spurious Data Abort to be delivered to any hardware thread in
1110	  the CPU core.
1111
1112	  Work around the issue by avoiding the problematic code sequence and
1113	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1114	  trap handler performs the corresponding register access, skips the
1115	  instruction and ensures context synchronization by virtue of the
1116	  exception return.
1117
1118	  If unsure, say Y.
1119
1120config FUJITSU_ERRATUM_010001
1121	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1122	default y
1123	help
1124	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1125	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1126	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1127	  This fault occurs under a specific hardware condition when a
1128	  load/store instruction performs an address translation using:
1129	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1130	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1131	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1132	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1133
1134	  The workaround is to ensure these bits are clear in TCR_ELx.
1135	  The workaround only affects the Fujitsu-A64FX.
1136
1137	  If unsure, say Y.
1138
1139config HISILICON_ERRATUM_161600802
1140	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1141	default y
1142	help
1143	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1144	  when issued ITS commands such as VMOVP and VMAPP, and requires
1145	  a 128kB offset to be applied to the target address in this commands.
1146
1147	  If unsure, say Y.
1148
1149config QCOM_FALKOR_ERRATUM_1003
1150	bool "Falkor E1003: Incorrect translation due to ASID change"
1151	default y
1152	help
1153	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1154	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1155	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1156	  then only for entries in the walk cache, since the leaf translation
1157	  is unchanged. Work around the erratum by invalidating the walk cache
1158	  entries for the trampoline before entering the kernel proper.
1159
1160config QCOM_FALKOR_ERRATUM_1009
1161	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1162	default y
1163	select ARM64_WORKAROUND_REPEAT_TLBI
1164	help
1165	  On Falkor v1, the CPU may prematurely complete a DSB following a
1166	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1167	  one more time to fix the issue.
1168
1169	  If unsure, say Y.
1170
1171config QCOM_QDF2400_ERRATUM_0065
1172	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1173	default y
1174	help
1175	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1176	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1177	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1178
1179	  If unsure, say Y.
1180
1181config QCOM_FALKOR_ERRATUM_E1041
1182	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1183	default y
1184	help
1185	  Falkor CPU may speculatively fetch instructions from an improper
1186	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1187	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1188
1189	  If unsure, say Y.
1190
1191config NVIDIA_CARMEL_CNP_ERRATUM
1192	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1193	default y
1194	help
1195	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1196	  invalidate shared TLB entries installed by a different core, as it would
1197	  on standard ARM cores.
1198
1199	  If unsure, say Y.
1200
1201config ROCKCHIP_ERRATUM_3588001
1202	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1203	default y
1204	help
1205	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1206	  This means, that its sharability feature may not be used, even though it
1207	  is supported by the IP itself.
1208
1209	  If unsure, say Y.
1210
1211config SOCIONEXT_SYNQUACER_PREITS
1212	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1213	default y
1214	help
1215	  Socionext Synquacer SoCs implement a separate h/w block to generate
1216	  MSI doorbell writes with non-zero values for the device ID.
1217
1218	  If unsure, say Y.
1219
1220endmenu # "ARM errata workarounds via the alternatives framework"
1221
1222choice
1223	prompt "Page size"
1224	default ARM64_4K_PAGES
1225	help
1226	  Page size (translation granule) configuration.
1227
1228config ARM64_4K_PAGES
1229	bool "4KB"
1230	help
1231	  This feature enables 4KB pages support.
1232
1233config ARM64_16K_PAGES
1234	bool "16KB"
1235	help
1236	  The system will use 16KB pages support. AArch32 emulation
1237	  requires applications compiled with 16K (or a multiple of 16K)
1238	  aligned segments.
1239
1240config ARM64_64K_PAGES
1241	bool "64KB"
1242	help
1243	  This feature enables 64KB pages support (4KB by default)
1244	  allowing only two levels of page tables and faster TLB
1245	  look-up. AArch32 emulation requires applications compiled
1246	  with 64K aligned segments.
1247
1248endchoice
1249
1250choice
1251	prompt "Virtual address space size"
1252	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1253	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1254	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1255	help
1256	  Allows choosing one of multiple possible virtual address
1257	  space sizes. The level of translation table is determined by
1258	  a combination of page size and virtual address space size.
1259
1260config ARM64_VA_BITS_36
1261	bool "36-bit" if EXPERT
1262	depends on ARM64_16K_PAGES
1263
1264config ARM64_VA_BITS_39
1265	bool "39-bit"
1266	depends on ARM64_4K_PAGES
1267
1268config ARM64_VA_BITS_42
1269	bool "42-bit"
1270	depends on ARM64_64K_PAGES
1271
1272config ARM64_VA_BITS_47
1273	bool "47-bit"
1274	depends on ARM64_16K_PAGES
1275
1276config ARM64_VA_BITS_48
1277	bool "48-bit"
1278
1279config ARM64_VA_BITS_52
1280	bool "52-bit"
1281	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1282	help
1283	  Enable 52-bit virtual addressing for userspace when explicitly
1284	  requested via a hint to mmap(). The kernel will also use 52-bit
1285	  virtual addresses for its own mappings (provided HW support for
1286	  this feature is available, otherwise it reverts to 48-bit).
1287
1288	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1289	  ARMv8.3 Pointer Authentication will result in the PAC being
1290	  reduced from 7 bits to 3 bits, which may have a significant
1291	  impact on its susceptibility to brute-force attacks.
1292
1293	  If unsure, select 48-bit virtual addressing instead.
1294
1295endchoice
1296
1297config ARM64_FORCE_52BIT
1298	bool "Force 52-bit virtual addresses for userspace"
1299	depends on ARM64_VA_BITS_52 && EXPERT
1300	help
1301	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1302	  to maintain compatibility with older software by providing 48-bit VAs
1303	  unless a hint is supplied to mmap.
1304
1305	  This configuration option disables the 48-bit compatibility logic, and
1306	  forces all userspace addresses to be 52-bit on HW that supports it. One
1307	  should only enable this configuration option for stress testing userspace
1308	  memory management code. If unsure say N here.
1309
1310config ARM64_VA_BITS
1311	int
1312	default 36 if ARM64_VA_BITS_36
1313	default 39 if ARM64_VA_BITS_39
1314	default 42 if ARM64_VA_BITS_42
1315	default 47 if ARM64_VA_BITS_47
1316	default 48 if ARM64_VA_BITS_48
1317	default 52 if ARM64_VA_BITS_52
1318
1319choice
1320	prompt "Physical address space size"
1321	default ARM64_PA_BITS_48
1322	help
1323	  Choose the maximum physical address range that the kernel will
1324	  support.
1325
1326config ARM64_PA_BITS_48
1327	bool "48-bit"
1328
1329config ARM64_PA_BITS_52
1330	bool "52-bit (ARMv8.2)"
1331	depends on ARM64_64K_PAGES
1332	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1333	help
1334	  Enable support for a 52-bit physical address space, introduced as
1335	  part of the ARMv8.2-LPA extension.
1336
1337	  With this enabled, the kernel will also continue to work on CPUs that
1338	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1339	  minor performance overhead).
1340
1341endchoice
1342
1343config ARM64_PA_BITS
1344	int
1345	default 48 if ARM64_PA_BITS_48
1346	default 52 if ARM64_PA_BITS_52
1347
1348choice
1349	prompt "Endianness"
1350	default CPU_LITTLE_ENDIAN
1351	help
1352	  Select the endianness of data accesses performed by the CPU. Userspace
1353	  applications will need to be compiled and linked for the endianness
1354	  that is selected here.
1355
1356config CPU_BIG_ENDIAN
1357	bool "Build big-endian kernel"
1358	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1359	help
1360	  Say Y if you plan on running a kernel with a big-endian userspace.
1361
1362config CPU_LITTLE_ENDIAN
1363	bool "Build little-endian kernel"
1364	help
1365	  Say Y if you plan on running a kernel with a little-endian userspace.
1366	  This is usually the case for distributions targeting arm64.
1367
1368endchoice
1369
1370config SCHED_MC
1371	bool "Multi-core scheduler support"
1372	help
1373	  Multi-core scheduler support improves the CPU scheduler's decision
1374	  making when dealing with multi-core CPU chips at a cost of slightly
1375	  increased overhead in some places. If unsure say N here.
1376
1377config SCHED_CLUSTER
1378	bool "Cluster scheduler support"
1379	help
1380	  Cluster scheduler support improves the CPU scheduler's decision
1381	  making when dealing with machines that have clusters of CPUs.
1382	  Cluster usually means a couple of CPUs which are placed closely
1383	  by sharing mid-level caches, last-level cache tags or internal
1384	  busses.
1385
1386config SCHED_SMT
1387	bool "SMT scheduler support"
1388	help
1389	  Improves the CPU scheduler's decision making when dealing with
1390	  MultiThreading at a cost of slightly increased overhead in some
1391	  places. If unsure say N here.
1392
1393config NR_CPUS
1394	int "Maximum number of CPUs (2-4096)"
1395	range 2 4096
1396	default "256"
1397
1398config HOTPLUG_CPU
1399	bool "Support for hot-pluggable CPUs"
1400	select GENERIC_IRQ_MIGRATION
1401	help
1402	  Say Y here to experiment with turning CPUs off and on.  CPUs
1403	  can be controlled through /sys/devices/system/cpu.
1404
1405# Common NUMA Features
1406config NUMA
1407	bool "NUMA Memory Allocation and Scheduler Support"
1408	select GENERIC_ARCH_NUMA
1409	select ACPI_NUMA if ACPI
1410	select OF_NUMA
1411	select HAVE_SETUP_PER_CPU_AREA
1412	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1413	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1414	select USE_PERCPU_NUMA_NODE_ID
1415	help
1416	  Enable NUMA (Non-Uniform Memory Access) support.
1417
1418	  The kernel will try to allocate memory used by a CPU on the
1419	  local memory of the CPU and add some more
1420	  NUMA awareness to the kernel.
1421
1422config NODES_SHIFT
1423	int "Maximum NUMA Nodes (as a power of 2)"
1424	range 1 10
1425	default "4"
1426	depends on NUMA
1427	help
1428	  Specify the maximum number of NUMA Nodes available on the target
1429	  system.  Increases memory reserved to accommodate various tables.
1430
1431source "kernel/Kconfig.hz"
1432
1433config ARCH_SPARSEMEM_ENABLE
1434	def_bool y
1435	select SPARSEMEM_VMEMMAP_ENABLE
1436	select SPARSEMEM_VMEMMAP
1437
1438config HW_PERF_EVENTS
1439	def_bool y
1440	depends on ARM_PMU
1441
1442# Supported by clang >= 7.0 or GCC >= 12.0.0
1443config CC_HAVE_SHADOW_CALL_STACK
1444	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1445
1446config PARAVIRT
1447	bool "Enable paravirtualization code"
1448	help
1449	  This changes the kernel so it can modify itself when it is run
1450	  under a hypervisor, potentially improving performance significantly
1451	  over full virtualization.
1452
1453config PARAVIRT_TIME_ACCOUNTING
1454	bool "Paravirtual steal time accounting"
1455	select PARAVIRT
1456	help
1457	  Select this option to enable fine granularity task steal time
1458	  accounting. Time spent executing other tasks in parallel with
1459	  the current vCPU is discounted from the vCPU power. To account for
1460	  that, there can be a small performance impact.
1461
1462	  If in doubt, say N here.
1463
1464config KEXEC
1465	depends on PM_SLEEP_SMP
1466	select KEXEC_CORE
1467	bool "kexec system call"
1468	help
1469	  kexec is a system call that implements the ability to shutdown your
1470	  current kernel, and to start another kernel.  It is like a reboot
1471	  but it is independent of the system firmware.   And like a reboot
1472	  you can start any kernel with it, not just Linux.
1473
1474config KEXEC_FILE
1475	bool "kexec file based system call"
1476	select KEXEC_CORE
1477	select HAVE_IMA_KEXEC if IMA
1478	help
1479	  This is new version of kexec system call. This system call is
1480	  file based and takes file descriptors as system call argument
1481	  for kernel and initramfs as opposed to list of segments as
1482	  accepted by previous system call.
1483
1484config KEXEC_SIG
1485	bool "Verify kernel signature during kexec_file_load() syscall"
1486	depends on KEXEC_FILE
1487	help
1488	  Select this option to verify a signature with loaded kernel
1489	  image. If configured, any attempt of loading a image without
1490	  valid signature will fail.
1491
1492	  In addition to that option, you need to enable signature
1493	  verification for the corresponding kernel image type being
1494	  loaded in order for this to work.
1495
1496config KEXEC_IMAGE_VERIFY_SIG
1497	bool "Enable Image signature verification support"
1498	default y
1499	depends on KEXEC_SIG
1500	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1501	help
1502	  Enable Image signature verification support.
1503
1504comment "Support for PE file signature verification disabled"
1505	depends on KEXEC_SIG
1506	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1507
1508config CRASH_DUMP
1509	bool "Build kdump crash kernel"
1510	help
1511	  Generate crash dump after being started by kexec. This should
1512	  be normally only set in special crash dump kernels which are
1513	  loaded in the main kernel with kexec-tools into a specially
1514	  reserved region and then later executed after a crash by
1515	  kdump/kexec.
1516
1517	  For more details see Documentation/admin-guide/kdump/kdump.rst
1518
1519config TRANS_TABLE
1520	def_bool y
1521	depends on HIBERNATION || KEXEC_CORE
1522
1523config XEN_DOM0
1524	def_bool y
1525	depends on XEN
1526
1527config XEN
1528	bool "Xen guest support on ARM64"
1529	depends on ARM64 && OF
1530	select SWIOTLB_XEN
1531	select PARAVIRT
1532	help
1533	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1534
1535# include/linux/mmzone.h requires the following to be true:
1536#
1537#   MAX_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1538#
1539# so the maximum value of MAX_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1540#
1541#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_ORDER  |  default MAX_ORDER |
1542# ----+-------------------+--------------+-----------------+--------------------+
1543# 4K  |       27          |      12      |       15        |         10         |
1544# 16K |       27          |      14      |       13        |         11         |
1545# 64K |       29          |      16      |       13        |         13         |
1546config ARCH_FORCE_MAX_ORDER
1547	int
1548	default "13" if ARM64_64K_PAGES
1549	default "11" if ARM64_16K_PAGES
1550	default "10"
1551	help
1552	  The kernel page allocator limits the size of maximal physically
1553	  contiguous allocations. The limit is called MAX_ORDER and it
1554	  defines the maximal power of two of number of pages that can be
1555	  allocated as a single contiguous block. This option allows
1556	  overriding the default setting when ability to allocate very
1557	  large blocks of physically contiguous memory is required.
1558
1559	  The maximal size of allocation cannot exceed the size of the
1560	  section, so the value of MAX_ORDER should satisfy
1561
1562	    MAX_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1563
1564	  Don't change if unsure.
1565
1566config UNMAP_KERNEL_AT_EL0
1567	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1568	default y
1569	help
1570	  Speculation attacks against some high-performance processors can
1571	  be used to bypass MMU permission checks and leak kernel data to
1572	  userspace. This can be defended against by unmapping the kernel
1573	  when running in userspace, mapping it back in on exception entry
1574	  via a trampoline page in the vector table.
1575
1576	  If unsure, say Y.
1577
1578config MITIGATE_SPECTRE_BRANCH_HISTORY
1579	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1580	default y
1581	help
1582	  Speculation attacks against some high-performance processors can
1583	  make use of branch history to influence future speculation.
1584	  When taking an exception from user-space, a sequence of branches
1585	  or a firmware call overwrites the branch history.
1586
1587config RODATA_FULL_DEFAULT_ENABLED
1588	bool "Apply r/o permissions of VM areas also to their linear aliases"
1589	default y
1590	help
1591	  Apply read-only attributes of VM areas to the linear alias of
1592	  the backing pages as well. This prevents code or read-only data
1593	  from being modified (inadvertently or intentionally) via another
1594	  mapping of the same memory page. This additional enhancement can
1595	  be turned off at runtime by passing rodata=[off|on] (and turned on
1596	  with rodata=full if this option is set to 'n')
1597
1598	  This requires the linear region to be mapped down to pages,
1599	  which may adversely affect performance in some cases.
1600
1601config ARM64_SW_TTBR0_PAN
1602	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1603	help
1604	  Enabling this option prevents the kernel from accessing
1605	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1606	  zeroed area and reserved ASID. The user access routines
1607	  restore the valid TTBR0_EL1 temporarily.
1608
1609config ARM64_TAGGED_ADDR_ABI
1610	bool "Enable the tagged user addresses syscall ABI"
1611	default y
1612	help
1613	  When this option is enabled, user applications can opt in to a
1614	  relaxed ABI via prctl() allowing tagged addresses to be passed
1615	  to system calls as pointer arguments. For details, see
1616	  Documentation/arch/arm64/tagged-address-abi.rst.
1617
1618menuconfig COMPAT
1619	bool "Kernel support for 32-bit EL0"
1620	depends on ARM64_4K_PAGES || EXPERT
1621	select HAVE_UID16
1622	select OLD_SIGSUSPEND3
1623	select COMPAT_OLD_SIGACTION
1624	help
1625	  This option enables support for a 32-bit EL0 running under a 64-bit
1626	  kernel at EL1. AArch32-specific components such as system calls,
1627	  the user helper functions, VFP support and the ptrace interface are
1628	  handled appropriately by the kernel.
1629
1630	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1631	  that you will only be able to execute AArch32 binaries that were compiled
1632	  with page size aligned segments.
1633
1634	  If you want to execute 32-bit userspace applications, say Y.
1635
1636if COMPAT
1637
1638config KUSER_HELPERS
1639	bool "Enable kuser helpers page for 32-bit applications"
1640	default y
1641	help
1642	  Warning: disabling this option may break 32-bit user programs.
1643
1644	  Provide kuser helpers to compat tasks. The kernel provides
1645	  helper code to userspace in read only form at a fixed location
1646	  to allow userspace to be independent of the CPU type fitted to
1647	  the system. This permits binaries to be run on ARMv4 through
1648	  to ARMv8 without modification.
1649
1650	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1651
1652	  However, the fixed address nature of these helpers can be used
1653	  by ROP (return orientated programming) authors when creating
1654	  exploits.
1655
1656	  If all of the binaries and libraries which run on your platform
1657	  are built specifically for your platform, and make no use of
1658	  these helpers, then you can turn this option off to hinder
1659	  such exploits. However, in that case, if a binary or library
1660	  relying on those helpers is run, it will not function correctly.
1661
1662	  Say N here only if you are absolutely certain that you do not
1663	  need these helpers; otherwise, the safe option is to say Y.
1664
1665config COMPAT_VDSO
1666	bool "Enable vDSO for 32-bit applications"
1667	depends on !CPU_BIG_ENDIAN
1668	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1669	select GENERIC_COMPAT_VDSO
1670	default y
1671	help
1672	  Place in the process address space of 32-bit applications an
1673	  ELF shared object providing fast implementations of gettimeofday
1674	  and clock_gettime.
1675
1676	  You must have a 32-bit build of glibc 2.22 or later for programs
1677	  to seamlessly take advantage of this.
1678
1679config THUMB2_COMPAT_VDSO
1680	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1681	depends on COMPAT_VDSO
1682	default y
1683	help
1684	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1685	  otherwise with '-marm'.
1686
1687config COMPAT_ALIGNMENT_FIXUPS
1688	bool "Fix up misaligned multi-word loads and stores in user space"
1689
1690menuconfig ARMV8_DEPRECATED
1691	bool "Emulate deprecated/obsolete ARMv8 instructions"
1692	depends on SYSCTL
1693	help
1694	  Legacy software support may require certain instructions
1695	  that have been deprecated or obsoleted in the architecture.
1696
1697	  Enable this config to enable selective emulation of these
1698	  features.
1699
1700	  If unsure, say Y
1701
1702if ARMV8_DEPRECATED
1703
1704config SWP_EMULATION
1705	bool "Emulate SWP/SWPB instructions"
1706	help
1707	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1708	  they are always undefined. Say Y here to enable software
1709	  emulation of these instructions for userspace using LDXR/STXR.
1710	  This feature can be controlled at runtime with the abi.swp
1711	  sysctl which is disabled by default.
1712
1713	  In some older versions of glibc [<=2.8] SWP is used during futex
1714	  trylock() operations with the assumption that the code will not
1715	  be preempted. This invalid assumption may be more likely to fail
1716	  with SWP emulation enabled, leading to deadlock of the user
1717	  application.
1718
1719	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1720	  on an external transaction monitoring block called a global
1721	  monitor to maintain update atomicity. If your system does not
1722	  implement a global monitor, this option can cause programs that
1723	  perform SWP operations to uncached memory to deadlock.
1724
1725	  If unsure, say Y
1726
1727config CP15_BARRIER_EMULATION
1728	bool "Emulate CP15 Barrier instructions"
1729	help
1730	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1731	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1732	  strongly recommended to use the ISB, DSB, and DMB
1733	  instructions instead.
1734
1735	  Say Y here to enable software emulation of these
1736	  instructions for AArch32 userspace code. When this option is
1737	  enabled, CP15 barrier usage is traced which can help
1738	  identify software that needs updating. This feature can be
1739	  controlled at runtime with the abi.cp15_barrier sysctl.
1740
1741	  If unsure, say Y
1742
1743config SETEND_EMULATION
1744	bool "Emulate SETEND instruction"
1745	help
1746	  The SETEND instruction alters the data-endianness of the
1747	  AArch32 EL0, and is deprecated in ARMv8.
1748
1749	  Say Y here to enable software emulation of the instruction
1750	  for AArch32 userspace code. This feature can be controlled
1751	  at runtime with the abi.setend sysctl.
1752
1753	  Note: All the cpus on the system must have mixed endian support at EL0
1754	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1755	  endian - is hotplugged in after this feature has been enabled, there could
1756	  be unexpected results in the applications.
1757
1758	  If unsure, say Y
1759endif # ARMV8_DEPRECATED
1760
1761endif # COMPAT
1762
1763menu "ARMv8.1 architectural features"
1764
1765config ARM64_HW_AFDBM
1766	bool "Support for hardware updates of the Access and Dirty page flags"
1767	default y
1768	help
1769	  The ARMv8.1 architecture extensions introduce support for
1770	  hardware updates of the access and dirty information in page
1771	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1772	  capable processors, accesses to pages with PTE_AF cleared will
1773	  set this bit instead of raising an access flag fault.
1774	  Similarly, writes to read-only pages with the DBM bit set will
1775	  clear the read-only bit (AP[2]) instead of raising a
1776	  permission fault.
1777
1778	  Kernels built with this configuration option enabled continue
1779	  to work on pre-ARMv8.1 hardware and the performance impact is
1780	  minimal. If unsure, say Y.
1781
1782config ARM64_PAN
1783	bool "Enable support for Privileged Access Never (PAN)"
1784	default y
1785	help
1786	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1787	  prevents the kernel or hypervisor from accessing user-space (EL0)
1788	  memory directly.
1789
1790	  Choosing this option will cause any unprotected (not using
1791	  copy_to_user et al) memory access to fail with a permission fault.
1792
1793	  The feature is detected at runtime, and will remain as a 'nop'
1794	  instruction if the cpu does not implement the feature.
1795
1796config AS_HAS_LDAPR
1797	def_bool $(as-instr,.arch_extension rcpc)
1798
1799config AS_HAS_LSE_ATOMICS
1800	def_bool $(as-instr,.arch_extension lse)
1801
1802config ARM64_LSE_ATOMICS
1803	bool
1804	default ARM64_USE_LSE_ATOMICS
1805	depends on AS_HAS_LSE_ATOMICS
1806
1807config ARM64_USE_LSE_ATOMICS
1808	bool "Atomic instructions"
1809	default y
1810	help
1811	  As part of the Large System Extensions, ARMv8.1 introduces new
1812	  atomic instructions that are designed specifically to scale in
1813	  very large systems.
1814
1815	  Say Y here to make use of these instructions for the in-kernel
1816	  atomic routines. This incurs a small overhead on CPUs that do
1817	  not support these instructions and requires the kernel to be
1818	  built with binutils >= 2.25 in order for the new instructions
1819	  to be used.
1820
1821endmenu # "ARMv8.1 architectural features"
1822
1823menu "ARMv8.2 architectural features"
1824
1825config AS_HAS_ARMV8_2
1826	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1827
1828config AS_HAS_SHA3
1829	def_bool $(as-instr,.arch armv8.2-a+sha3)
1830
1831config ARM64_PMEM
1832	bool "Enable support for persistent memory"
1833	select ARCH_HAS_PMEM_API
1834	select ARCH_HAS_UACCESS_FLUSHCACHE
1835	help
1836	  Say Y to enable support for the persistent memory API based on the
1837	  ARMv8.2 DCPoP feature.
1838
1839	  The feature is detected at runtime, and the kernel will use DC CVAC
1840	  operations if DC CVAP is not supported (following the behaviour of
1841	  DC CVAP itself if the system does not define a point of persistence).
1842
1843config ARM64_RAS_EXTN
1844	bool "Enable support for RAS CPU Extensions"
1845	default y
1846	help
1847	  CPUs that support the Reliability, Availability and Serviceability
1848	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1849	  errors, classify them and report them to software.
1850
1851	  On CPUs with these extensions system software can use additional
1852	  barriers to determine if faults are pending and read the
1853	  classification from a new set of registers.
1854
1855	  Selecting this feature will allow the kernel to use these barriers
1856	  and access the new registers if the system supports the extension.
1857	  Platform RAS features may additionally depend on firmware support.
1858
1859config ARM64_CNP
1860	bool "Enable support for Common Not Private (CNP) translations"
1861	default y
1862	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1863	help
1864	  Common Not Private (CNP) allows translation table entries to
1865	  be shared between different PEs in the same inner shareable
1866	  domain, so the hardware can use this fact to optimise the
1867	  caching of such entries in the TLB.
1868
1869	  Selecting this option allows the CNP feature to be detected
1870	  at runtime, and does not affect PEs that do not implement
1871	  this feature.
1872
1873endmenu # "ARMv8.2 architectural features"
1874
1875menu "ARMv8.3 architectural features"
1876
1877config ARM64_PTR_AUTH
1878	bool "Enable support for pointer authentication"
1879	default y
1880	help
1881	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1882	  instructions for signing and authenticating pointers against secret
1883	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1884	  and other attacks.
1885
1886	  This option enables these instructions at EL0 (i.e. for userspace).
1887	  Choosing this option will cause the kernel to initialise secret keys
1888	  for each process at exec() time, with these keys being
1889	  context-switched along with the process.
1890
1891	  The feature is detected at runtime. If the feature is not present in
1892	  hardware it will not be advertised to userspace/KVM guest nor will it
1893	  be enabled.
1894
1895	  If the feature is present on the boot CPU but not on a late CPU, then
1896	  the late CPU will be parked. Also, if the boot CPU does not have
1897	  address auth and the late CPU has then the late CPU will still boot
1898	  but with the feature disabled. On such a system, this option should
1899	  not be selected.
1900
1901config ARM64_PTR_AUTH_KERNEL
1902	bool "Use pointer authentication for kernel"
1903	default y
1904	depends on ARM64_PTR_AUTH
1905	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1906	# Modern compilers insert a .note.gnu.property section note for PAC
1907	# which is only understood by binutils starting with version 2.33.1.
1908	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1909	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1910	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1911	help
1912	  If the compiler supports the -mbranch-protection or
1913	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1914	  will cause the kernel itself to be compiled with return address
1915	  protection. In this case, and if the target hardware is known to
1916	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1917	  disabled with minimal loss of protection.
1918
1919	  This feature works with FUNCTION_GRAPH_TRACER option only if
1920	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1921
1922config CC_HAS_BRANCH_PROT_PAC_RET
1923	# GCC 9 or later, clang 8 or later
1924	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1925
1926config CC_HAS_SIGN_RETURN_ADDRESS
1927	# GCC 7, 8
1928	def_bool $(cc-option,-msign-return-address=all)
1929
1930config AS_HAS_ARMV8_3
1931	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1932
1933config AS_HAS_CFI_NEGATE_RA_STATE
1934	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1935
1936endmenu # "ARMv8.3 architectural features"
1937
1938menu "ARMv8.4 architectural features"
1939
1940config ARM64_AMU_EXTN
1941	bool "Enable support for the Activity Monitors Unit CPU extension"
1942	default y
1943	help
1944	  The activity monitors extension is an optional extension introduced
1945	  by the ARMv8.4 CPU architecture. This enables support for version 1
1946	  of the activity monitors architecture, AMUv1.
1947
1948	  To enable the use of this extension on CPUs that implement it, say Y.
1949
1950	  Note that for architectural reasons, firmware _must_ implement AMU
1951	  support when running on CPUs that present the activity monitors
1952	  extension. The required support is present in:
1953	    * Version 1.5 and later of the ARM Trusted Firmware
1954
1955	  For kernels that have this configuration enabled but boot with broken
1956	  firmware, you may need to say N here until the firmware is fixed.
1957	  Otherwise you may experience firmware panics or lockups when
1958	  accessing the counter registers. Even if you are not observing these
1959	  symptoms, the values returned by the register reads might not
1960	  correctly reflect reality. Most commonly, the value read will be 0,
1961	  indicating that the counter is not enabled.
1962
1963config AS_HAS_ARMV8_4
1964	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1965
1966config ARM64_TLB_RANGE
1967	bool "Enable support for tlbi range feature"
1968	default y
1969	depends on AS_HAS_ARMV8_4
1970	help
1971	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1972	  range of input addresses.
1973
1974	  The feature introduces new assembly instructions, and they were
1975	  support when binutils >= 2.30.
1976
1977endmenu # "ARMv8.4 architectural features"
1978
1979menu "ARMv8.5 architectural features"
1980
1981config AS_HAS_ARMV8_5
1982	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1983
1984config ARM64_BTI
1985	bool "Branch Target Identification support"
1986	default y
1987	help
1988	  Branch Target Identification (part of the ARMv8.5 Extensions)
1989	  provides a mechanism to limit the set of locations to which computed
1990	  branch instructions such as BR or BLR can jump.
1991
1992	  To make use of BTI on CPUs that support it, say Y.
1993
1994	  BTI is intended to provide complementary protection to other control
1995	  flow integrity protection mechanisms, such as the Pointer
1996	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1997	  For this reason, it does not make sense to enable this option without
1998	  also enabling support for pointer authentication.  Thus, when
1999	  enabling this option you should also select ARM64_PTR_AUTH=y.
2000
2001	  Userspace binaries must also be specifically compiled to make use of
2002	  this mechanism.  If you say N here or the hardware does not support
2003	  BTI, such binaries can still run, but you get no additional
2004	  enforcement of branch destinations.
2005
2006config ARM64_BTI_KERNEL
2007	bool "Use Branch Target Identification for kernel"
2008	default y
2009	depends on ARM64_BTI
2010	depends on ARM64_PTR_AUTH_KERNEL
2011	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2012	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2013	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2014	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2015	depends on !CC_IS_GCC
2016	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
2017	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
2018	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2019	help
2020	  Build the kernel with Branch Target Identification annotations
2021	  and enable enforcement of this for kernel code. When this option
2022	  is enabled and the system supports BTI all kernel code including
2023	  modular code must have BTI enabled.
2024
2025config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2026	# GCC 9 or later, clang 8 or later
2027	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2028
2029config ARM64_E0PD
2030	bool "Enable support for E0PD"
2031	default y
2032	help
2033	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2034	  that EL0 accesses made via TTBR1 always fault in constant time,
2035	  providing similar benefits to KASLR as those provided by KPTI, but
2036	  with lower overhead and without disrupting legitimate access to
2037	  kernel memory such as SPE.
2038
2039	  This option enables E0PD for TTBR1 where available.
2040
2041config ARM64_AS_HAS_MTE
2042	# Initial support for MTE went in binutils 2.32.0, checked with
2043	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2044	# as a late addition to the final architecture spec (LDGM/STGM)
2045	# is only supported in the newer 2.32.x and 2.33 binutils
2046	# versions, hence the extra "stgm" instruction check below.
2047	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2048
2049config ARM64_MTE
2050	bool "Memory Tagging Extension support"
2051	default y
2052	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2053	depends on AS_HAS_ARMV8_5
2054	depends on AS_HAS_LSE_ATOMICS
2055	# Required for tag checking in the uaccess routines
2056	depends on ARM64_PAN
2057	select ARCH_HAS_SUBPAGE_FAULTS
2058	select ARCH_USES_HIGH_VMA_FLAGS
2059	select ARCH_USES_PG_ARCH_X
2060	help
2061	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2062	  architectural support for run-time, always-on detection of
2063	  various classes of memory error to aid with software debugging
2064	  to eliminate vulnerabilities arising from memory-unsafe
2065	  languages.
2066
2067	  This option enables the support for the Memory Tagging
2068	  Extension at EL0 (i.e. for userspace).
2069
2070	  Selecting this option allows the feature to be detected at
2071	  runtime. Any secondary CPU not implementing this feature will
2072	  not be allowed a late bring-up.
2073
2074	  Userspace binaries that want to use this feature must
2075	  explicitly opt in. The mechanism for the userspace is
2076	  described in:
2077
2078	  Documentation/arch/arm64/memory-tagging-extension.rst.
2079
2080endmenu # "ARMv8.5 architectural features"
2081
2082menu "ARMv8.7 architectural features"
2083
2084config ARM64_EPAN
2085	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2086	default y
2087	depends on ARM64_PAN
2088	help
2089	  Enhanced Privileged Access Never (EPAN) allows Privileged
2090	  Access Never to be used with Execute-only mappings.
2091
2092	  The feature is detected at runtime, and will remain disabled
2093	  if the cpu does not implement the feature.
2094endmenu # "ARMv8.7 architectural features"
2095
2096config ARM64_SVE
2097	bool "ARM Scalable Vector Extension support"
2098	default y
2099	help
2100	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2101	  execution state which complements and extends the SIMD functionality
2102	  of the base architecture to support much larger vectors and to enable
2103	  additional vectorisation opportunities.
2104
2105	  To enable use of this extension on CPUs that implement it, say Y.
2106
2107	  On CPUs that support the SVE2 extensions, this option will enable
2108	  those too.
2109
2110	  Note that for architectural reasons, firmware _must_ implement SVE
2111	  support when running on SVE capable hardware.  The required support
2112	  is present in:
2113
2114	    * version 1.5 and later of the ARM Trusted Firmware
2115	    * the AArch64 boot wrapper since commit 5e1261e08abf
2116	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2117
2118	  For other firmware implementations, consult the firmware documentation
2119	  or vendor.
2120
2121	  If you need the kernel to boot on SVE-capable hardware with broken
2122	  firmware, you may need to say N here until you get your firmware
2123	  fixed.  Otherwise, you may experience firmware panics or lockups when
2124	  booting the kernel.  If unsure and you are not observing these
2125	  symptoms, you should assume that it is safe to say Y.
2126
2127config ARM64_SME
2128	bool "ARM Scalable Matrix Extension support"
2129	default y
2130	depends on ARM64_SVE
2131	help
2132	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2133	  execution state which utilises a substantial subset of the SVE
2134	  instruction set, together with the addition of new architectural
2135	  register state capable of holding two dimensional matrix tiles to
2136	  enable various matrix operations.
2137
2138config ARM64_PSEUDO_NMI
2139	bool "Support for NMI-like interrupts"
2140	select ARM_GIC_V3
2141	help
2142	  Adds support for mimicking Non-Maskable Interrupts through the use of
2143	  GIC interrupt priority. This support requires version 3 or later of
2144	  ARM GIC.
2145
2146	  This high priority configuration for interrupts needs to be
2147	  explicitly enabled by setting the kernel parameter
2148	  "irqchip.gicv3_pseudo_nmi" to 1.
2149
2150	  If unsure, say N
2151
2152if ARM64_PSEUDO_NMI
2153config ARM64_DEBUG_PRIORITY_MASKING
2154	bool "Debug interrupt priority masking"
2155	help
2156	  This adds runtime checks to functions enabling/disabling
2157	  interrupts when using priority masking. The additional checks verify
2158	  the validity of ICC_PMR_EL1 when calling concerned functions.
2159
2160	  If unsure, say N
2161endif # ARM64_PSEUDO_NMI
2162
2163config RELOCATABLE
2164	bool "Build a relocatable kernel image" if EXPERT
2165	select ARCH_HAS_RELR
2166	default y
2167	help
2168	  This builds the kernel as a Position Independent Executable (PIE),
2169	  which retains all relocation metadata required to relocate the
2170	  kernel binary at runtime to a different virtual address than the
2171	  address it was linked at.
2172	  Since AArch64 uses the RELA relocation format, this requires a
2173	  relocation pass at runtime even if the kernel is loaded at the
2174	  same address it was linked at.
2175
2176config RANDOMIZE_BASE
2177	bool "Randomize the address of the kernel image"
2178	select RELOCATABLE
2179	help
2180	  Randomizes the virtual address at which the kernel image is
2181	  loaded, as a security feature that deters exploit attempts
2182	  relying on knowledge of the location of kernel internals.
2183
2184	  It is the bootloader's job to provide entropy, by passing a
2185	  random u64 value in /chosen/kaslr-seed at kernel entry.
2186
2187	  When booting via the UEFI stub, it will invoke the firmware's
2188	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2189	  to the kernel proper. In addition, it will randomise the physical
2190	  location of the kernel Image as well.
2191
2192	  If unsure, say N.
2193
2194config RANDOMIZE_MODULE_REGION_FULL
2195	bool "Randomize the module region over a 2 GB range"
2196	depends on RANDOMIZE_BASE
2197	default y
2198	help
2199	  Randomizes the location of the module region inside a 2 GB window
2200	  covering the core kernel. This way, it is less likely for modules
2201	  to leak information about the location of core kernel data structures
2202	  but it does imply that function calls between modules and the core
2203	  kernel will need to be resolved via veneers in the module PLT.
2204
2205	  When this option is not set, the module region will be randomized over
2206	  a limited range that contains the [_stext, _etext] interval of the
2207	  core kernel, so branch relocations are almost always in range unless
2208	  the region is exhausted. In this particular case of region
2209	  exhaustion, modules might be able to fall back to a larger 2GB area.
2210
2211config CC_HAVE_STACKPROTECTOR_SYSREG
2212	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2213
2214config STACKPROTECTOR_PER_TASK
2215	def_bool y
2216	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2217
2218config UNWIND_PATCH_PAC_INTO_SCS
2219	bool "Enable shadow call stack dynamically using code patching"
2220	# needs Clang with https://reviews.llvm.org/D111780 incorporated
2221	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2222	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2223	depends on SHADOW_CALL_STACK
2224	select UNWIND_TABLES
2225	select DYNAMIC_SCS
2226
2227endmenu # "Kernel Features"
2228
2229menu "Boot options"
2230
2231config ARM64_ACPI_PARKING_PROTOCOL
2232	bool "Enable support for the ARM64 ACPI parking protocol"
2233	depends on ACPI
2234	help
2235	  Enable support for the ARM64 ACPI parking protocol. If disabled
2236	  the kernel will not allow booting through the ARM64 ACPI parking
2237	  protocol even if the corresponding data is present in the ACPI
2238	  MADT table.
2239
2240config CMDLINE
2241	string "Default kernel command string"
2242	default ""
2243	help
2244	  Provide a set of default command-line options at build time by
2245	  entering them here. As a minimum, you should specify the the
2246	  root device (e.g. root=/dev/nfs).
2247
2248choice
2249	prompt "Kernel command line type" if CMDLINE != ""
2250	default CMDLINE_FROM_BOOTLOADER
2251	help
2252	  Choose how the kernel will handle the provided default kernel
2253	  command line string.
2254
2255config CMDLINE_FROM_BOOTLOADER
2256	bool "Use bootloader kernel arguments if available"
2257	help
2258	  Uses the command-line options passed by the boot loader. If
2259	  the boot loader doesn't provide any, the default kernel command
2260	  string provided in CMDLINE will be used.
2261
2262config CMDLINE_FORCE
2263	bool "Always use the default kernel command string"
2264	help
2265	  Always use the default kernel command string, even if the boot
2266	  loader passes other arguments to the kernel.
2267	  This is useful if you cannot or don't want to change the
2268	  command-line options your boot loader passes to the kernel.
2269
2270endchoice
2271
2272config EFI_STUB
2273	bool
2274
2275config EFI
2276	bool "UEFI runtime support"
2277	depends on OF && !CPU_BIG_ENDIAN
2278	depends on KERNEL_MODE_NEON
2279	select ARCH_SUPPORTS_ACPI
2280	select LIBFDT
2281	select UCS2_STRING
2282	select EFI_PARAMS_FROM_FDT
2283	select EFI_RUNTIME_WRAPPERS
2284	select EFI_STUB
2285	select EFI_GENERIC_STUB
2286	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2287	default y
2288	help
2289	  This option provides support for runtime services provided
2290	  by UEFI firmware (such as non-volatile variables, realtime
2291	  clock, and platform reset). A UEFI stub is also provided to
2292	  allow the kernel to be booted as an EFI application. This
2293	  is only useful on systems that have UEFI firmware.
2294
2295config DMI
2296	bool "Enable support for SMBIOS (DMI) tables"
2297	depends on EFI
2298	default y
2299	help
2300	  This enables SMBIOS/DMI feature for systems.
2301
2302	  This option is only useful on systems that have UEFI firmware.
2303	  However, even with this option, the resultant kernel should
2304	  continue to boot on existing non-UEFI platforms.
2305
2306endmenu # "Boot options"
2307
2308menu "Power management options"
2309
2310source "kernel/power/Kconfig"
2311
2312config ARCH_HIBERNATION_POSSIBLE
2313	def_bool y
2314	depends on CPU_PM
2315
2316config ARCH_HIBERNATION_HEADER
2317	def_bool y
2318	depends on HIBERNATION
2319
2320config ARCH_SUSPEND_POSSIBLE
2321	def_bool y
2322
2323endmenu # "Power management options"
2324
2325menu "CPU Power Management"
2326
2327source "drivers/cpuidle/Kconfig"
2328
2329source "drivers/cpufreq/Kconfig"
2330
2331endmenu # "CPU Power Management"
2332
2333source "drivers/acpi/Kconfig"
2334
2335source "arch/arm64/kvm/Kconfig"
2336
2337