xref: /openbmc/linux/arch/arm/vfp/vfp.h (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  *  linux/arch/arm/vfp/vfp.h
3  *
4  *  Copyright (C) 2004 ARM Limited.
5  *  Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
13 {
14 	if (shift) {
15 		if (shift < 32)
16 			val = val >> shift | ((val << (32 - shift)) != 0);
17 		else
18 			val = val != 0;
19 	}
20 	return val;
21 }
22 
23 static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
24 {
25 	if (shift) {
26 		if (shift < 64)
27 			val = val >> shift | ((val << (64 - shift)) != 0);
28 		else
29 			val = val != 0;
30 	}
31 	return val;
32 }
33 
34 static inline u32 vfp_hi64to32jamming(u64 val)
35 {
36 	u32 v;
37 
38 	asm(
39 	"cmp	%Q1, #1		@ vfp_hi64to32jamming\n\t"
40 	"movcc	%0, %R1\n\t"
41 	"orrcs	%0, %R1, #1"
42 	: "=r" (v) : "r" (val) : "cc");
43 
44 	return v;
45 }
46 
47 static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
48 {
49 	asm(	"adds	%Q0, %Q2, %Q4\n\t"
50 		"adcs	%R0, %R2, %R4\n\t"
51 		"adcs	%Q1, %Q3, %Q5\n\t"
52 		"adc	%R1, %R3, %R5"
53 	    : "=r" (nl), "=r" (nh)
54 	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
55 	    : "cc");
56 	*resh = nh;
57 	*resl = nl;
58 }
59 
60 static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
61 {
62 	asm(	"subs	%Q0, %Q2, %Q4\n\t"
63 		"sbcs	%R0, %R2, %R4\n\t"
64 		"sbcs	%Q1, %Q3, %Q5\n\t"
65 		"sbc	%R1, %R3, %R5\n\t"
66 	    : "=r" (nl), "=r" (nh)
67 	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
68 	    : "cc");
69 	*resh = nh;
70 	*resl = nl;
71 }
72 
73 static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
74 {
75 	u32 nh, nl, mh, ml;
76 	u64 rh, rma, rmb, rl;
77 
78 	nl = n;
79 	ml = m;
80 	rl = (u64)nl * ml;
81 
82 	nh = n >> 32;
83 	rma = (u64)nh * ml;
84 
85 	mh = m >> 32;
86 	rmb = (u64)nl * mh;
87 	rma += rmb;
88 
89 	rh = (u64)nh * mh;
90 	rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
91 
92 	rma <<= 32;
93 	rl += rma;
94 	rh += (rl < rma);
95 
96 	*resl = rl;
97 	*resh = rh;
98 }
99 
100 static inline void shift64left(u64 *resh, u64 *resl, u64 n)
101 {
102 	*resh = n >> 63;
103 	*resl = n << 1;
104 }
105 
106 static inline u64 vfp_hi64multiply64(u64 n, u64 m)
107 {
108 	u64 rh, rl;
109 	mul64to128(&rh, &rl, n, m);
110 	return rh | (rl != 0);
111 }
112 
113 static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
114 {
115 	u64 mh, ml, remh, reml, termh, terml, z;
116 
117 	if (nh >= m)
118 		return ~0ULL;
119 	mh = m >> 32;
120 	z = (mh << 32 <= nh) ? 0xffffffff00000000ULL : (nh / mh) << 32;
121 	mul64to128(&termh, &terml, m, z);
122 	sub128(&remh, &reml, nh, nl, termh, terml);
123 	ml = m << 32;
124 	while ((s64)remh < 0) {
125 		z -= 0x100000000ULL;
126 		add128(&remh, &reml, remh, reml, mh, ml);
127 	}
128 	remh = (remh << 32) | (reml >> 32);
129 	z |= (mh << 32 <= remh) ? 0xffffffff : remh / mh;
130 	return z;
131 }
132 
133 /*
134  * Operations on unpacked elements
135  */
136 #define vfp_sign_negate(sign)	(sign ^ 0x8000)
137 
138 /*
139  * Single-precision
140  */
141 struct vfp_single {
142 	s16	exponent;
143 	u16	sign;
144 	u32	significand;
145 };
146 
147 extern s32 vfp_get_float(unsigned int reg);
148 extern void vfp_put_float(unsigned int reg, s32 val);
149 
150 /*
151  * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
152  * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
153  * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
154  *  which are not propagated to the float upon packing.
155  */
156 #define VFP_SINGLE_MANTISSA_BITS	(23)
157 #define VFP_SINGLE_EXPONENT_BITS	(8)
158 #define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2)
159 #define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1)
160 
161 /*
162  * The bit in an unpacked float which indicates that it is a quiet NaN
163  */
164 #define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
165 
166 /*
167  * Operations on packed single-precision numbers
168  */
169 #define vfp_single_packed_sign(v)	((v) & 0x80000000)
170 #define vfp_single_packed_negate(v)	((v) ^ 0x80000000)
171 #define vfp_single_packed_abs(v)	((v) & ~0x80000000)
172 #define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
173 #define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
174 
175 /*
176  * Unpack a single-precision float.  Note that this returns the magnitude
177  * of the single-precision float mantissa with the 1. if necessary,
178  * aligned to bit 30.
179  */
180 static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
181 {
182 	u32 significand;
183 
184 	s->sign = vfp_single_packed_sign(val) >> 16,
185 	s->exponent = vfp_single_packed_exponent(val);
186 
187 	significand = (u32) val;
188 	significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
189 	if (s->exponent && s->exponent != 255)
190 		significand |= 0x40000000;
191 	s->significand = significand;
192 }
193 
194 /*
195  * Re-pack a single-precision float.  This assumes that the float is
196  * already normalised such that the MSB is bit 30, _not_ bit 31.
197  */
198 static inline s32 vfp_single_pack(struct vfp_single *s)
199 {
200 	u32 val;
201 	val = (s->sign << 16) +
202 	      (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
203 	      (s->significand >> VFP_SINGLE_LOW_BITS);
204 	return (s32)val;
205 }
206 
207 #define VFP_NUMBER		(1<<0)
208 #define VFP_ZERO		(1<<1)
209 #define VFP_DENORMAL		(1<<2)
210 #define VFP_INFINITY		(1<<3)
211 #define VFP_NAN			(1<<4)
212 #define VFP_NAN_SIGNAL		(1<<5)
213 
214 #define VFP_QNAN		(VFP_NAN)
215 #define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL)
216 
217 static inline int vfp_single_type(struct vfp_single *s)
218 {
219 	int type = VFP_NUMBER;
220 	if (s->exponent == 255) {
221 		if (s->significand == 0)
222 			type = VFP_INFINITY;
223 		else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
224 			type = VFP_QNAN;
225 		else
226 			type = VFP_SNAN;
227 	} else if (s->exponent == 0) {
228 		if (s->significand == 0)
229 			type |= VFP_ZERO;
230 		else
231 			type |= VFP_DENORMAL;
232 	}
233 	return type;
234 }
235 
236 #ifndef DEBUG
237 #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
238 u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
239 #else
240 u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
241 #endif
242 
243 /*
244  * Double-precision
245  */
246 struct vfp_double {
247 	s16	exponent;
248 	u16	sign;
249 	u64	significand;
250 };
251 
252 /*
253  * VFP_REG_ZERO is a special register number for vfp_get_double
254  * which returns (double)0.0.  This is useful for the compare with
255  * zero instructions.
256  */
257 #define VFP_REG_ZERO	16
258 extern u64 vfp_get_double(unsigned int reg);
259 extern void vfp_put_double(unsigned int reg, u64 val);
260 
261 #define VFP_DOUBLE_MANTISSA_BITS	(52)
262 #define VFP_DOUBLE_EXPONENT_BITS	(11)
263 #define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2)
264 #define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1)
265 
266 /*
267  * The bit in an unpacked double which indicates that it is a quiet NaN
268  */
269 #define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
270 
271 /*
272  * Operations on packed single-precision numbers
273  */
274 #define vfp_double_packed_sign(v)	((v) & (1ULL << 63))
275 #define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63))
276 #define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63))
277 #define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
278 #define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
279 
280 /*
281  * Unpack a double-precision float.  Note that this returns the magnitude
282  * of the double-precision float mantissa with the 1. if necessary,
283  * aligned to bit 62.
284  */
285 static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
286 {
287 	u64 significand;
288 
289 	s->sign = vfp_double_packed_sign(val) >> 48;
290 	s->exponent = vfp_double_packed_exponent(val);
291 
292 	significand = (u64) val;
293 	significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
294 	if (s->exponent && s->exponent != 2047)
295 		significand |= (1ULL << 62);
296 	s->significand = significand;
297 }
298 
299 /*
300  * Re-pack a double-precision float.  This assumes that the float is
301  * already normalised such that the MSB is bit 30, _not_ bit 31.
302  */
303 static inline s64 vfp_double_pack(struct vfp_double *s)
304 {
305 	u64 val;
306 	val = ((u64)s->sign << 48) +
307 	      ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
308 	      (s->significand >> VFP_DOUBLE_LOW_BITS);
309 	return (s64)val;
310 }
311 
312 static inline int vfp_double_type(struct vfp_double *s)
313 {
314 	int type = VFP_NUMBER;
315 	if (s->exponent == 2047) {
316 		if (s->significand == 0)
317 			type = VFP_INFINITY;
318 		else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
319 			type = VFP_QNAN;
320 		else
321 			type = VFP_SNAN;
322 	} else if (s->exponent == 0) {
323 		if (s->significand == 0)
324 			type |= VFP_ZERO;
325 		else
326 			type |= VFP_DENORMAL;
327 	}
328 	return type;
329 }
330 
331 u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
332 
333 /*
334  * System registers
335  */
336 extern u32 vfp_get_sys(unsigned int reg);
337 extern void vfp_put_sys(unsigned int reg, u32 val);
338 
339 u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
340 
341 /*
342  * A special flag to tell the normalisation code not to normalise.
343  */
344 #define VFP_NAN_FLAG	0x100
345