xref: /openbmc/linux/arch/arm/mm/proc-xscale.S (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1/*
2 *  linux/arch/arm/mm/proc-xscale.S
3 *
4 *  Author:	Nicolas Pitre
5 *  Created:	November 2000
6 *  Copyright:	(C) 2000, 2001 MontaVista Software Inc.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * MMU functions for the Intel XScale CPUs
13 *
14 * 2001 Aug 21:
15 *	some contributions by Brett Gaines <brett.w.gaines@intel.com>
16 *	Copyright 2001 by Intel Corp.
17 *
18 * 2001 Sep 08:
19 *	Completely revisited, many important fixes
20 *	Nicolas Pitre <nico@cam.org>
21 */
22
23#include <linux/linkage.h>
24#include <linux/init.h>
25#include <asm/assembler.h>
26#include <asm/elf.h>
27#include <asm/pgtable.h>
28#include <asm/pgtable-hwdef.h>
29#include <asm/page.h>
30#include <asm/ptrace.h>
31#include "proc-macros.S"
32
33/*
34 * This is the maximum size of an area which will be flushed.  If the area
35 * is larger than this, then we flush the whole cache
36 */
37#define MAX_AREA_SIZE	32768
38
39/*
40 * the cache line size of the I and D cache
41 */
42#define CACHELINESIZE	32
43
44/*
45 * the size of the data cache
46 */
47#define CACHESIZE	32768
48
49/*
50 * Virtual address used to allocate the cache when flushed
51 *
52 * This must be an address range which is _never_ used.  It should
53 * apparently have a mapping in the corresponding page table for
54 * compatibility with future CPUs that _could_ require it.  For instance we
55 * don't care.
56 *
57 * This must be aligned on a 2*CACHESIZE boundary.  The code selects one of
58 * the 2 areas in alternance each time the clean_d_cache macro is used.
59 * Without this the XScale core exhibits cache eviction problems and no one
60 * knows why.
61 *
62 * Reminder: the vector table is located at 0xffff0000-0xffff0fff.
63 */
64#define CLEAN_ADDR	0xfffe0000
65
66/*
67 * This macro is used to wait for a CP15 write and is needed
68 * when we have to ensure that the last operation to the co-pro
69 * was completed before continuing with operation.
70 */
71	.macro	cpwait, rd
72	mrc	p15, 0, \rd, c2, c0, 0		@ arbitrary read of cp15
73	mov	\rd, \rd			@ wait for completion
74	sub 	pc, pc, #4			@ flush instruction pipeline
75	.endm
76
77	.macro	cpwait_ret, lr, rd
78	mrc	p15, 0, \rd, c2, c0, 0		@ arbitrary read of cp15
79	sub	pc, \lr, \rd, LSR #32		@ wait for completion and
80						@ flush instruction pipeline
81	.endm
82
83/*
84 * This macro cleans the entire dcache using line allocate.
85 * The main loop has been unrolled to reduce loop overhead.
86 * rd and rs are two scratch registers.
87 */
88	.macro  clean_d_cache, rd, rs
89	ldr	\rs, =clean_addr
90	ldr	\rd, [\rs]
91	eor	\rd, \rd, #CACHESIZE
92	str	\rd, [\rs]
93	add	\rs, \rd, #CACHESIZE
941:	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
95	add	\rd, \rd, #CACHELINESIZE
96	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
97	add	\rd, \rd, #CACHELINESIZE
98	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
99	add	\rd, \rd, #CACHELINESIZE
100	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
101	add	\rd, \rd, #CACHELINESIZE
102	teq	\rd, \rs
103	bne	1b
104	.endm
105
106	.data
107clean_addr:	.word	CLEAN_ADDR
108
109	.text
110
111/*
112 * cpu_xscale_proc_init()
113 *
114 * Nothing too exciting at the moment
115 */
116ENTRY(cpu_xscale_proc_init)
117	mov	pc, lr
118
119/*
120 * cpu_xscale_proc_fin()
121 */
122ENTRY(cpu_xscale_proc_fin)
123	str	lr, [sp, #-4]!
124	mov	r0, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
125	msr	cpsr_c, r0
126	bl	xscale_flush_kern_cache_all	@ clean caches
127	mrc	p15, 0, r0, c1, c0, 0		@ ctrl register
128	bic	r0, r0, #0x1800			@ ...IZ...........
129	bic	r0, r0, #0x0006			@ .............CA.
130	mcr	p15, 0, r0, c1, c0, 0		@ disable caches
131	ldr	pc, [sp], #4
132
133/*
134 * cpu_xscale_reset(loc)
135 *
136 * Perform a soft reset of the system.  Put the CPU into the
137 * same state as it would be if it had been reset, and branch
138 * to what would be the reset vector.
139 *
140 * loc: location to jump to for soft reset
141 *
142 * Beware PXA270 erratum E7.
143 */
144	.align	5
145ENTRY(cpu_xscale_reset)
146	mov	r1, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
147	msr	cpsr_c, r1			@ reset CPSR
148	mcr	p15, 0, r1, c10, c4, 1		@ unlock I-TLB
149	mcr	p15, 0, r1, c8, c5, 0		@ invalidate I-TLB
150	mrc	p15, 0, r1, c1, c0, 0		@ ctrl register
151	bic	r1, r1, #0x0086			@ ........B....CA.
152	bic	r1, r1, #0x3900			@ ..VIZ..S........
153	sub	pc, pc, #4			@ flush pipeline
154	@ *** cache line aligned ***
155	mcr	p15, 0, r1, c1, c0, 0		@ ctrl register
156	bic	r1, r1, #0x0001			@ ...............M
157	mcr	p15, 0, ip, c7, c7, 0		@ invalidate I,D caches & BTB
158	mcr	p15, 0, r1, c1, c0, 0		@ ctrl register
159	@ CAUTION: MMU turned off from this point. We count on the pipeline
160	@ already containing those two last instructions to survive.
161	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I & D TLBs
162	mov	pc, r0
163
164/*
165 * cpu_xscale_do_idle()
166 *
167 * Cause the processor to idle
168 *
169 * For now we do nothing but go to idle mode for every case
170 *
171 * XScale supports clock switching, but using idle mode support
172 * allows external hardware to react to system state changes.
173 */
174	.align	5
175
176ENTRY(cpu_xscale_do_idle)
177	mov	r0, #1
178	mcr	p14, 0, r0, c7, c0, 0		@ Go to IDLE
179	mov	pc, lr
180
181/* ================================= CACHE ================================ */
182
183/*
184 *	flush_user_cache_all()
185 *
186 *	Invalidate all cache entries in a particular address
187 *	space.
188 */
189ENTRY(xscale_flush_user_cache_all)
190	/* FALLTHROUGH */
191
192/*
193 *	flush_kern_cache_all()
194 *
195 *	Clean and invalidate the entire cache.
196 */
197ENTRY(xscale_flush_kern_cache_all)
198	mov	r2, #VM_EXEC
199	mov	ip, #0
200__flush_whole_cache:
201	clean_d_cache r0, r1
202	tst	r2, #VM_EXEC
203	mcrne	p15, 0, ip, c7, c5, 0		@ Invalidate I cache & BTB
204	mcrne	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
205	mov	pc, lr
206
207/*
208 *	flush_user_cache_range(start, end, vm_flags)
209 *
210 *	Invalidate a range of cache entries in the specified
211 *	address space.
212 *
213 *	- start - start address (may not be aligned)
214 *	- end	- end address (exclusive, may not be aligned)
215 *	- vma	- vma_area_struct describing address space
216 */
217	.align	5
218ENTRY(xscale_flush_user_cache_range)
219	mov	ip, #0
220	sub	r3, r1, r0			@ calculate total size
221	cmp	r3, #MAX_AREA_SIZE
222	bhs	__flush_whole_cache
223
2241:	tst	r2, #VM_EXEC
225	mcrne	p15, 0, r0, c7, c5, 1		@ Invalidate I cache line
226	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
227	mcr	p15, 0, r0, c7, c6, 1		@ Invalidate D cache line
228	add	r0, r0, #CACHELINESIZE
229	cmp	r0, r1
230	blo	1b
231	tst	r2, #VM_EXEC
232	mcrne	p15, 0, ip, c7, c5, 6		@ Invalidate BTB
233	mcrne	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
234	mov	pc, lr
235
236/*
237 *	coherent_kern_range(start, end)
238 *
239 *	Ensure coherency between the Icache and the Dcache in the
240 *	region described by start.  If you have non-snooping
241 *	Harvard caches, you need to implement this function.
242 *
243 *	- start  - virtual start address
244 *	- end	 - virtual end address
245 *
246 *	Note: single I-cache line invalidation isn't used here since
247 *	it also trashes the mini I-cache used by JTAG debuggers.
248 */
249ENTRY(xscale_coherent_kern_range)
250	bic	r0, r0, #CACHELINESIZE - 1
2511:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
252	add	r0, r0, #CACHELINESIZE
253	cmp	r0, r1
254	blo	1b
255	mov	r0, #0
256	mcr	p15, 0, r0, c7, c5, 0		@ Invalidate I cache & BTB
257	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
258	mov	pc, lr
259
260/*
261 *	coherent_user_range(start, end)
262 *
263 *	Ensure coherency between the Icache and the Dcache in the
264 *	region described by start.  If you have non-snooping
265 *	Harvard caches, you need to implement this function.
266 *
267 *	- start  - virtual start address
268 *	- end	 - virtual end address
269 */
270ENTRY(xscale_coherent_user_range)
271	bic	r0, r0, #CACHELINESIZE - 1
2721:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
273	mcr	p15, 0, r0, c7, c5, 1		@ Invalidate I cache entry
274	add	r0, r0, #CACHELINESIZE
275	cmp	r0, r1
276	blo	1b
277	mov	r0, #0
278	mcr	p15, 0, r0, c7, c5, 6		@ Invalidate BTB
279	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
280	mov	pc, lr
281
282/*
283 *	flush_kern_dcache_page(void *page)
284 *
285 *	Ensure no D cache aliasing occurs, either with itself or
286 *	the I cache
287 *
288 *	- addr	- page aligned address
289 */
290ENTRY(xscale_flush_kern_dcache_page)
291	add	r1, r0, #PAGE_SZ
2921:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
293	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D entry
294	add	r0, r0, #CACHELINESIZE
295	cmp	r0, r1
296	blo	1b
297	mov	r0, #0
298	mcr	p15, 0, r0, c7, c5, 0		@ Invalidate I cache & BTB
299	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
300	mov	pc, lr
301
302/*
303 *	dma_inv_range(start, end)
304 *
305 *	Invalidate (discard) the specified virtual address range.
306 *	May not write back any entries.  If 'start' or 'end'
307 *	are not cache line aligned, those lines must be written
308 *	back.
309 *
310 *	- start  - virtual start address
311 *	- end	 - virtual end address
312 */
313ENTRY(xscale_dma_inv_range)
314	tst	r0, #CACHELINESIZE - 1
315	bic	r0, r0, #CACHELINESIZE - 1
316	mcrne	p15, 0, r0, c7, c10, 1		@ clean D entry
317	tst	r1, #CACHELINESIZE - 1
318	mcrne	p15, 0, r1, c7, c10, 1		@ clean D entry
3191:	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D entry
320	add	r0, r0, #CACHELINESIZE
321	cmp	r0, r1
322	blo	1b
323	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
324	mov	pc, lr
325
326/*
327 *	dma_clean_range(start, end)
328 *
329 *	Clean the specified virtual address range.
330 *
331 *	- start  - virtual start address
332 *	- end	 - virtual end address
333 */
334ENTRY(xscale_dma_clean_range)
335	bic	r0, r0, #CACHELINESIZE - 1
3361:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
337	add	r0, r0, #CACHELINESIZE
338	cmp	r0, r1
339	blo	1b
340	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
341	mov	pc, lr
342
343/*
344 *	dma_flush_range(start, end)
345 *
346 *	Clean and invalidate the specified virtual address range.
347 *
348 *	- start  - virtual start address
349 *	- end	 - virtual end address
350 */
351ENTRY(xscale_dma_flush_range)
352	bic	r0, r0, #CACHELINESIZE - 1
3531:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
354	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D entry
355	add	r0, r0, #CACHELINESIZE
356	cmp	r0, r1
357	blo	1b
358	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
359	mov	pc, lr
360
361ENTRY(xscale_cache_fns)
362	.long	xscale_flush_kern_cache_all
363	.long	xscale_flush_user_cache_all
364	.long	xscale_flush_user_cache_range
365	.long	xscale_coherent_kern_range
366	.long	xscale_coherent_user_range
367	.long	xscale_flush_kern_dcache_page
368	.long	xscale_dma_inv_range
369	.long	xscale_dma_clean_range
370	.long	xscale_dma_flush_range
371
372/*
373 * On stepping A0/A1 of the 80200, invalidating D-cache by line doesn't
374 * clear the dirty bits, which means that if we invalidate a dirty line,
375 * the dirty data can still be written back to external memory later on.
376 *
377 * The recommended workaround is to always do a clean D-cache line before
378 * doing an invalidate D-cache line, so on the affected processors,
379 * dma_inv_range() is implemented as dma_flush_range().
380 *
381 * See erratum #25 of "Intel 80200 Processor Specification Update",
382 * revision January 22, 2003, available at:
383 *     http://www.intel.com/design/iio/specupdt/273415.htm
384 */
385ENTRY(xscale_80200_A0_A1_cache_fns)
386	.long	xscale_flush_kern_cache_all
387	.long	xscale_flush_user_cache_all
388	.long	xscale_flush_user_cache_range
389	.long	xscale_coherent_kern_range
390	.long	xscale_coherent_user_range
391	.long	xscale_flush_kern_dcache_page
392	.long	xscale_dma_flush_range
393	.long	xscale_dma_clean_range
394	.long	xscale_dma_flush_range
395
396ENTRY(cpu_xscale_dcache_clean_area)
3971:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
398	add	r0, r0, #CACHELINESIZE
399	subs	r1, r1, #CACHELINESIZE
400	bhi	1b
401	mov	pc, lr
402
403/* =============================== PageTable ============================== */
404
405#define PTE_CACHE_WRITE_ALLOCATE 0
406
407/*
408 * cpu_xscale_switch_mm(pgd)
409 *
410 * Set the translation base pointer to be as described by pgd.
411 *
412 * pgd: new page tables
413 */
414	.align	5
415ENTRY(cpu_xscale_switch_mm)
416	clean_d_cache r1, r2
417	mcr	p15, 0, ip, c7, c5, 0		@ Invalidate I cache & BTB
418	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
419	mcr	p15, 0, r0, c2, c0, 0		@ load page table pointer
420	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I & D TLBs
421	cpwait_ret lr, ip
422
423/*
424 * cpu_xscale_set_pte_ext(ptep, pte, ext)
425 *
426 * Set a PTE and flush it out
427 *
428 * Errata 40: must set memory to write-through for user read-only pages.
429 */
430	.align	5
431ENTRY(cpu_xscale_set_pte_ext)
432	str	r1, [r0], #-2048		@ linux version
433
434	bic	r2, r1, #0xff0
435	orr	r2, r2, #PTE_TYPE_EXT		@ extended page
436
437	eor	r3, r1, #L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_WRITE | L_PTE_DIRTY
438
439	tst	r3, #L_PTE_USER			@ User?
440	orrne	r2, r2, #PTE_EXT_AP_URO_SRW	@ yes -> user r/o, system r/w
441
442	tst	r3, #L_PTE_WRITE | L_PTE_DIRTY	@ Write and Dirty?
443	orreq	r2, r2, #PTE_EXT_AP_UNO_SRW	@ yes -> user n/a, system r/w
444						@ combined with user -> user r/w
445
446	@
447	@ Handle the X bit.  We want to set this bit for the minicache
448	@ (U = E = B = W = 0, C = 1) or when write allocate is enabled,
449	@ and we have a writeable, cacheable region.  If we ignore the
450	@ U and E bits, we can allow user space to use the minicache as
451	@ well.
452	@
453	@  X = (C & ~W & ~B) | (C & W & B & write_allocate)
454	@
455	eor	ip, r1, #L_PTE_CACHEABLE
456	tst	ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
457#if PTE_CACHE_WRITE_ALLOCATE
458	eorne	ip, r1, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
459	tstne	ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
460#endif
461	orreq	r2, r2, #PTE_EXT_TEX(1)
462
463	@
464	@ Erratum 40: The B bit must be cleared for a user read-only
465	@ cacheable page.
466	@
467	@  B = B & ~(U & C & ~W)
468	@
469	and	ip, r1, #L_PTE_USER | L_PTE_WRITE | L_PTE_CACHEABLE
470	teq	ip, #L_PTE_USER | L_PTE_CACHEABLE
471	biceq	r2, r2, #PTE_BUFFERABLE
472
473	tst	r3, #L_PTE_PRESENT | L_PTE_YOUNG	@ Present and Young?
474	movne	r2, #0				@ no -> fault
475
476	str	r2, [r0]			@ hardware version
477	mov	ip, #0
478	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
479	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
480	mov	pc, lr
481
482
483	.ltorg
484
485	.align
486
487	__INIT
488
489	.type	__xscale_setup, #function
490__xscale_setup:
491	mcr	p15, 0, ip, c7, c7, 0		@ invalidate I, D caches & BTB
492	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
493	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I, D TLBs
494	mov	r0, #1 << 6			@ cp6 for IOP3xx and Bulverde
495	orr	r0, r0, #1 << 13		@ Its undefined whether this
496	mcr	p15, 0, r0, c15, c1, 0		@ affects USR or SVC modes
497
498	adr	r5, xscale_crval
499	ldmia	r5, {r5, r6}
500	mrc	p15, 0, r0, c1, c0, 0		@ get control register
501	bic	r0, r0, r5
502	orr	r0, r0, r6
503	mov	pc, lr
504	.size	__xscale_setup, . - __xscale_setup
505
506	/*
507	 *  R
508	 * .RVI ZFRS BLDP WCAM
509	 * ..11 1.01 .... .101
510	 *
511	 */
512	.type	xscale_crval, #object
513xscale_crval:
514	crval	clear=0x00003b07, mmuset=0x00003905, ucset=0x00001900
515
516	__INITDATA
517
518/*
519 * Purpose : Function pointers used to access above functions - all calls
520 *	     come through these
521 */
522
523	.type	xscale_processor_functions, #object
524ENTRY(xscale_processor_functions)
525	.word	v5t_early_abort
526	.word	cpu_xscale_proc_init
527	.word	cpu_xscale_proc_fin
528	.word	cpu_xscale_reset
529	.word	cpu_xscale_do_idle
530	.word	cpu_xscale_dcache_clean_area
531	.word	cpu_xscale_switch_mm
532	.word	cpu_xscale_set_pte_ext
533	.size	xscale_processor_functions, . - xscale_processor_functions
534
535	.section ".rodata"
536
537	.type	cpu_arch_name, #object
538cpu_arch_name:
539	.asciz	"armv5te"
540	.size	cpu_arch_name, . - cpu_arch_name
541
542	.type	cpu_elf_name, #object
543cpu_elf_name:
544	.asciz	"v5"
545	.size	cpu_elf_name, . - cpu_elf_name
546
547	.type	cpu_80200_A0_A1_name, #object
548cpu_80200_A0_A1_name:
549	.asciz	"XScale-80200 A0/A1"
550	.size	cpu_80200_A0_A1_name, . - cpu_80200_A0_A1_name
551
552	.type	cpu_80200_name, #object
553cpu_80200_name:
554	.asciz	"XScale-80200"
555	.size	cpu_80200_name, . - cpu_80200_name
556
557	.type	cpu_80219_name, #object
558cpu_80219_name:
559	.asciz	"XScale-80219"
560	.size	cpu_80219_name, . - cpu_80219_name
561
562	.type	cpu_8032x_name, #object
563cpu_8032x_name:
564	.asciz	"XScale-IOP8032x Family"
565	.size	cpu_8032x_name, . - cpu_8032x_name
566
567	.type	cpu_8033x_name, #object
568cpu_8033x_name:
569	.asciz	"XScale-IOP8033x Family"
570	.size	cpu_8033x_name, . - cpu_8033x_name
571
572	.type	cpu_pxa250_name, #object
573cpu_pxa250_name:
574	.asciz	"XScale-PXA250"
575	.size	cpu_pxa250_name, . - cpu_pxa250_name
576
577	.type	cpu_pxa210_name, #object
578cpu_pxa210_name:
579	.asciz	"XScale-PXA210"
580	.size	cpu_pxa210_name, . - cpu_pxa210_name
581
582	.type	cpu_ixp42x_name, #object
583cpu_ixp42x_name:
584	.asciz	"XScale-IXP42x Family"
585	.size	cpu_ixp42x_name, . - cpu_ixp42x_name
586
587	.type	cpu_ixp43x_name, #object
588cpu_ixp43x_name:
589	.asciz	"XScale-IXP43x Family"
590	.size	cpu_ixp43x_name, . - cpu_ixp43x_name
591
592	.type	cpu_ixp46x_name, #object
593cpu_ixp46x_name:
594	.asciz	"XScale-IXP46x Family"
595	.size	cpu_ixp46x_name, . - cpu_ixp46x_name
596
597	.type	cpu_ixp2400_name, #object
598cpu_ixp2400_name:
599	.asciz	"XScale-IXP2400"
600	.size	cpu_ixp2400_name, . - cpu_ixp2400_name
601
602	.type	cpu_ixp2800_name, #object
603cpu_ixp2800_name:
604	.asciz	"XScale-IXP2800"
605	.size	cpu_ixp2800_name, . - cpu_ixp2800_name
606
607	.type	cpu_pxa255_name, #object
608cpu_pxa255_name:
609	.asciz	"XScale-PXA255"
610	.size	cpu_pxa255_name, . - cpu_pxa255_name
611
612	.type	cpu_pxa270_name, #object
613cpu_pxa270_name:
614	.asciz	"XScale-PXA270"
615	.size	cpu_pxa270_name, . - cpu_pxa270_name
616
617	.align
618
619	.section ".proc.info.init", #alloc, #execinstr
620
621	.type	__80200_A0_A1_proc_info,#object
622__80200_A0_A1_proc_info:
623	.long	0x69052000
624	.long	0xfffffffe
625	.long   PMD_TYPE_SECT | \
626		PMD_SECT_BUFFERABLE | \
627		PMD_SECT_CACHEABLE | \
628		PMD_SECT_AP_WRITE | \
629		PMD_SECT_AP_READ
630	.long   PMD_TYPE_SECT | \
631		PMD_SECT_AP_WRITE | \
632		PMD_SECT_AP_READ
633	b	__xscale_setup
634	.long	cpu_arch_name
635	.long	cpu_elf_name
636	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
637	.long	cpu_80200_name
638	.long	xscale_processor_functions
639	.long	v4wbi_tlb_fns
640	.long	xscale_mc_user_fns
641	.long	xscale_80200_A0_A1_cache_fns
642	.size	__80200_A0_A1_proc_info, . - __80200_A0_A1_proc_info
643
644	.type	__80200_proc_info,#object
645__80200_proc_info:
646	.long	0x69052000
647	.long	0xfffffff0
648	.long   PMD_TYPE_SECT | \
649		PMD_SECT_BUFFERABLE | \
650		PMD_SECT_CACHEABLE | \
651		PMD_SECT_AP_WRITE | \
652		PMD_SECT_AP_READ
653	.long   PMD_TYPE_SECT | \
654		PMD_SECT_AP_WRITE | \
655		PMD_SECT_AP_READ
656	b	__xscale_setup
657	.long	cpu_arch_name
658	.long	cpu_elf_name
659	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
660	.long	cpu_80200_name
661	.long	xscale_processor_functions
662	.long	v4wbi_tlb_fns
663	.long	xscale_mc_user_fns
664	.long	xscale_cache_fns
665	.size	__80200_proc_info, . - __80200_proc_info
666
667	.type	__80219_proc_info,#object
668__80219_proc_info:
669	.long	0x69052e20
670	.long	0xffffffe0
671	.long   PMD_TYPE_SECT | \
672		PMD_SECT_BUFFERABLE | \
673		PMD_SECT_CACHEABLE | \
674		PMD_SECT_AP_WRITE | \
675		PMD_SECT_AP_READ
676	.long   PMD_TYPE_SECT | \
677		PMD_SECT_AP_WRITE | \
678		PMD_SECT_AP_READ
679	b	__xscale_setup
680	.long	cpu_arch_name
681	.long	cpu_elf_name
682	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
683	.long	cpu_80219_name
684	.long	xscale_processor_functions
685	.long	v4wbi_tlb_fns
686	.long	xscale_mc_user_fns
687	.long	xscale_cache_fns
688	.size	__80219_proc_info, . - __80219_proc_info
689
690	.type	__8032x_proc_info,#object
691__8032x_proc_info:
692	.long	0x69052420
693	.long	0xfffff7e0
694	.long   PMD_TYPE_SECT | \
695		PMD_SECT_BUFFERABLE | \
696		PMD_SECT_CACHEABLE | \
697		PMD_SECT_AP_WRITE | \
698		PMD_SECT_AP_READ
699	.long   PMD_TYPE_SECT | \
700		PMD_SECT_AP_WRITE | \
701		PMD_SECT_AP_READ
702	b	__xscale_setup
703	.long	cpu_arch_name
704	.long	cpu_elf_name
705	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
706	.long	cpu_8032x_name
707	.long	xscale_processor_functions
708	.long	v4wbi_tlb_fns
709	.long	xscale_mc_user_fns
710	.long	xscale_cache_fns
711	.size	__8032x_proc_info, . - __8032x_proc_info
712
713	.type	__8033x_proc_info,#object
714__8033x_proc_info:
715	.long	0x69054010
716	.long	0xfffffd30
717	.long   PMD_TYPE_SECT | \
718		PMD_SECT_BUFFERABLE | \
719		PMD_SECT_CACHEABLE | \
720		PMD_SECT_AP_WRITE | \
721		PMD_SECT_AP_READ
722	.long   PMD_TYPE_SECT | \
723		PMD_SECT_AP_WRITE | \
724		PMD_SECT_AP_READ
725	b	__xscale_setup
726	.long	cpu_arch_name
727	.long	cpu_elf_name
728	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
729	.long	cpu_8033x_name
730	.long	xscale_processor_functions
731	.long	v4wbi_tlb_fns
732	.long	xscale_mc_user_fns
733	.long	xscale_cache_fns
734	.size	__8033x_proc_info, . - __8033x_proc_info
735
736	.type	__pxa250_proc_info,#object
737__pxa250_proc_info:
738	.long	0x69052100
739	.long	0xfffff7f0
740	.long   PMD_TYPE_SECT | \
741		PMD_SECT_BUFFERABLE | \
742		PMD_SECT_CACHEABLE | \
743		PMD_SECT_AP_WRITE | \
744		PMD_SECT_AP_READ
745	.long   PMD_TYPE_SECT | \
746		PMD_SECT_AP_WRITE | \
747		PMD_SECT_AP_READ
748	b	__xscale_setup
749	.long	cpu_arch_name
750	.long	cpu_elf_name
751	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
752	.long	cpu_pxa250_name
753	.long	xscale_processor_functions
754	.long	v4wbi_tlb_fns
755	.long	xscale_mc_user_fns
756	.long	xscale_cache_fns
757	.size	__pxa250_proc_info, . - __pxa250_proc_info
758
759	.type	__pxa210_proc_info,#object
760__pxa210_proc_info:
761	.long	0x69052120
762	.long	0xfffff3f0
763	.long   PMD_TYPE_SECT | \
764		PMD_SECT_BUFFERABLE | \
765		PMD_SECT_CACHEABLE | \
766		PMD_SECT_AP_WRITE | \
767		PMD_SECT_AP_READ
768	.long   PMD_TYPE_SECT | \
769		PMD_SECT_AP_WRITE | \
770		PMD_SECT_AP_READ
771	b	__xscale_setup
772	.long	cpu_arch_name
773	.long	cpu_elf_name
774	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
775	.long	cpu_pxa210_name
776	.long	xscale_processor_functions
777	.long	v4wbi_tlb_fns
778	.long	xscale_mc_user_fns
779	.long	xscale_cache_fns
780	.size	__pxa210_proc_info, . - __pxa210_proc_info
781
782	.type	__ixp2400_proc_info, #object
783__ixp2400_proc_info:
784	.long   0x69054190
785	.long   0xfffffff0
786	.long   PMD_TYPE_SECT | \
787		PMD_SECT_BUFFERABLE | \
788		PMD_SECT_CACHEABLE | \
789		PMD_SECT_AP_WRITE | \
790		PMD_SECT_AP_READ
791	.long   PMD_TYPE_SECT | \
792		PMD_SECT_AP_WRITE | \
793		PMD_SECT_AP_READ
794	b       __xscale_setup
795	.long   cpu_arch_name
796	.long   cpu_elf_name
797	.long   HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
798	.long   cpu_ixp2400_name
799	.long   xscale_processor_functions
800	.long	v4wbi_tlb_fns
801	.long	xscale_mc_user_fns
802	.long	xscale_cache_fns
803	.size   __ixp2400_proc_info, . - __ixp2400_proc_info
804
805	.type	__ixp2800_proc_info, #object
806__ixp2800_proc_info:
807	.long   0x690541a0
808	.long   0xfffffff0
809	.long   PMD_TYPE_SECT | \
810		PMD_SECT_BUFFERABLE | \
811		PMD_SECT_CACHEABLE | \
812		PMD_SECT_AP_WRITE | \
813		PMD_SECT_AP_READ
814	.long   PMD_TYPE_SECT | \
815		PMD_SECT_AP_WRITE | \
816		PMD_SECT_AP_READ
817	b       __xscale_setup
818	.long   cpu_arch_name
819	.long   cpu_elf_name
820	.long   HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
821	.long   cpu_ixp2800_name
822	.long   xscale_processor_functions
823	.long	v4wbi_tlb_fns
824	.long	xscale_mc_user_fns
825	.long	xscale_cache_fns
826	.size   __ixp2800_proc_info, . - __ixp2800_proc_info
827
828	.type	__ixp42x_proc_info, #object
829__ixp42x_proc_info:
830	.long   0x690541c0
831	.long   0xffffffc0
832	.long   PMD_TYPE_SECT | \
833		PMD_SECT_BUFFERABLE | \
834		PMD_SECT_CACHEABLE | \
835		PMD_SECT_AP_WRITE | \
836		PMD_SECT_AP_READ
837	.long   PMD_TYPE_SECT | \
838		PMD_SECT_AP_WRITE | \
839		PMD_SECT_AP_READ
840	b       __xscale_setup
841	.long   cpu_arch_name
842	.long   cpu_elf_name
843	.long   HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
844	.long   cpu_ixp42x_name
845	.long   xscale_processor_functions
846	.long	v4wbi_tlb_fns
847	.long	xscale_mc_user_fns
848	.long	xscale_cache_fns
849	.size   __ixp42x_proc_info, . - __ixp42x_proc_info
850
851	.type   __ixp43x_proc_info, #object
852__ixp43x_proc_info:
853	.long   0x69054040
854	.long   0xfffffff0
855	.long   PMD_TYPE_SECT | \
856		PMD_SECT_BUFFERABLE | \
857		PMD_SECT_CACHEABLE | \
858		PMD_SECT_AP_WRITE | \
859		PMD_SECT_AP_READ
860	.long   PMD_TYPE_SECT | \
861		PMD_SECT_AP_WRITE | \
862		PMD_SECT_AP_READ
863	b       __xscale_setup
864	.long   cpu_arch_name
865	.long   cpu_elf_name
866	.long   HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
867	.long   cpu_ixp43x_name
868	.long   xscale_processor_functions
869	.long   v4wbi_tlb_fns
870	.long   xscale_mc_user_fns
871	.long   xscale_cache_fns
872	.size   __ixp43x_proc_info, . - __ixp43x_proc_info
873
874	.type	__ixp46x_proc_info, #object
875__ixp46x_proc_info:
876	.long   0x69054200
877	.long   0xffffff00
878	.long   PMD_TYPE_SECT | \
879		PMD_SECT_BUFFERABLE | \
880		PMD_SECT_CACHEABLE | \
881		PMD_SECT_AP_WRITE | \
882		PMD_SECT_AP_READ
883	.long   PMD_TYPE_SECT | \
884		PMD_SECT_AP_WRITE | \
885		PMD_SECT_AP_READ
886	b       __xscale_setup
887	.long   cpu_arch_name
888	.long   cpu_elf_name
889	.long   HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
890	.long   cpu_ixp46x_name
891	.long   xscale_processor_functions
892	.long	v4wbi_tlb_fns
893	.long	xscale_mc_user_fns
894	.long	xscale_cache_fns
895	.size   __ixp46x_proc_info, . - __ixp46x_proc_info
896
897	.type	__pxa255_proc_info,#object
898__pxa255_proc_info:
899	.long	0x69052d00
900	.long	0xfffffff0
901	.long   PMD_TYPE_SECT | \
902		PMD_SECT_BUFFERABLE | \
903		PMD_SECT_CACHEABLE | \
904		PMD_SECT_AP_WRITE | \
905		PMD_SECT_AP_READ
906	.long   PMD_TYPE_SECT | \
907		PMD_SECT_AP_WRITE | \
908		PMD_SECT_AP_READ
909	b	__xscale_setup
910	.long	cpu_arch_name
911	.long	cpu_elf_name
912	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
913	.long	cpu_pxa255_name
914	.long	xscale_processor_functions
915	.long	v4wbi_tlb_fns
916	.long	xscale_mc_user_fns
917	.long	xscale_cache_fns
918	.size	__pxa255_proc_info, . - __pxa255_proc_info
919
920	.type	__pxa270_proc_info,#object
921__pxa270_proc_info:
922	.long	0x69054110
923	.long	0xfffffff0
924	.long   PMD_TYPE_SECT | \
925		PMD_SECT_BUFFERABLE | \
926		PMD_SECT_CACHEABLE | \
927		PMD_SECT_AP_WRITE | \
928		PMD_SECT_AP_READ
929	.long   PMD_TYPE_SECT | \
930		PMD_SECT_AP_WRITE | \
931		PMD_SECT_AP_READ
932	b	__xscale_setup
933	.long	cpu_arch_name
934	.long	cpu_elf_name
935	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
936	.long	cpu_pxa270_name
937	.long	xscale_processor_functions
938	.long	v4wbi_tlb_fns
939	.long	xscale_mc_user_fns
940	.long	xscale_cache_fns
941	.size	__pxa270_proc_info, . - __pxa270_proc_info
942
943