xref: /openbmc/linux/arch/arm/mm/proc-xscale.S (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1/*
2 *  linux/arch/arm/mm/proc-xscale.S
3 *
4 *  Author:	Nicolas Pitre
5 *  Created:	November 2000
6 *  Copyright:	(C) 2000, 2001 MontaVista Software Inc.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * MMU functions for the Intel XScale CPUs
13 *
14 * 2001 Aug 21:
15 *	some contributions by Brett Gaines <brett.w.gaines@intel.com>
16 *	Copyright 2001 by Intel Corp.
17 *
18 * 2001 Sep 08:
19 *	Completely revisited, many important fixes
20 *	Nicolas Pitre <nico@cam.org>
21 */
22
23#include <linux/linkage.h>
24#include <linux/init.h>
25#include <asm/assembler.h>
26#include <asm/procinfo.h>
27#include <asm/hardware.h>
28#include <asm/pgtable.h>
29#include <asm/page.h>
30#include <asm/ptrace.h>
31#include "proc-macros.S"
32
33/*
34 * This is the maximum size of an area which will be flushed.  If the area
35 * is larger than this, then we flush the whole cache
36 */
37#define MAX_AREA_SIZE	32768
38
39/*
40 * the cache line size of the I and D cache
41 */
42#define CACHELINESIZE	32
43
44/*
45 * the size of the data cache
46 */
47#define CACHESIZE	32768
48
49/*
50 * Virtual address used to allocate the cache when flushed
51 *
52 * This must be an address range which is _never_ used.  It should
53 * apparently have a mapping in the corresponding page table for
54 * compatibility with future CPUs that _could_ require it.  For instance we
55 * don't care.
56 *
57 * This must be aligned on a 2*CACHESIZE boundary.  The code selects one of
58 * the 2 areas in alternance each time the clean_d_cache macro is used.
59 * Without this the XScale core exhibits cache eviction problems and no one
60 * knows why.
61 *
62 * Reminder: the vector table is located at 0xffff0000-0xffff0fff.
63 */
64#define CLEAN_ADDR	0xfffe0000
65
66/*
67 * This macro is used to wait for a CP15 write and is needed
68 * when we have to ensure that the last operation to the co-pro
69 * was completed before continuing with operation.
70 */
71	.macro	cpwait, rd
72	mrc	p15, 0, \rd, c2, c0, 0		@ arbitrary read of cp15
73	mov	\rd, \rd			@ wait for completion
74	sub 	pc, pc, #4			@ flush instruction pipeline
75	.endm
76
77	.macro	cpwait_ret, lr, rd
78	mrc	p15, 0, \rd, c2, c0, 0		@ arbitrary read of cp15
79	sub	pc, \lr, \rd, LSR #32		@ wait for completion and
80						@ flush instruction pipeline
81	.endm
82
83/*
84 * This macro cleans the entire dcache using line allocate.
85 * The main loop has been unrolled to reduce loop overhead.
86 * rd and rs are two scratch registers.
87 */
88	.macro  clean_d_cache, rd, rs
89	ldr	\rs, =clean_addr
90	ldr	\rd, [\rs]
91	eor	\rd, \rd, #CACHESIZE
92	str	\rd, [\rs]
93	add	\rs, \rd, #CACHESIZE
941:	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
95	add	\rd, \rd, #CACHELINESIZE
96	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
97	add	\rd, \rd, #CACHELINESIZE
98	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
99	add	\rd, \rd, #CACHELINESIZE
100	mcr	p15, 0, \rd, c7, c2, 5		@ allocate D cache line
101	add	\rd, \rd, #CACHELINESIZE
102	teq	\rd, \rs
103	bne	1b
104	.endm
105
106	.data
107clean_addr:	.word	CLEAN_ADDR
108
109	.text
110
111/*
112 * cpu_xscale_proc_init()
113 *
114 * Nothing too exciting at the moment
115 */
116ENTRY(cpu_xscale_proc_init)
117	mov	pc, lr
118
119/*
120 * cpu_xscale_proc_fin()
121 */
122ENTRY(cpu_xscale_proc_fin)
123	str	lr, [sp, #-4]!
124	mov	r0, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
125	msr	cpsr_c, r0
126	bl	xscale_flush_kern_cache_all	@ clean caches
127	mrc	p15, 0, r0, c1, c0, 0		@ ctrl register
128	bic	r0, r0, #0x1800			@ ...IZ...........
129	bic	r0, r0, #0x0006			@ .............CA.
130	mcr	p15, 0, r0, c1, c0, 0		@ disable caches
131	ldr	pc, [sp], #4
132
133/*
134 * cpu_xscale_reset(loc)
135 *
136 * Perform a soft reset of the system.  Put the CPU into the
137 * same state as it would be if it had been reset, and branch
138 * to what would be the reset vector.
139 *
140 * loc: location to jump to for soft reset
141 */
142	.align	5
143ENTRY(cpu_xscale_reset)
144	mov	r1, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
145	msr	cpsr_c, r1			@ reset CPSR
146	mrc	p15, 0, r1, c1, c0, 0		@ ctrl register
147	bic	r1, r1, #0x0086			@ ........B....CA.
148	bic	r1, r1, #0x3900			@ ..VIZ..S........
149	mcr	p15, 0, r1, c1, c0, 0		@ ctrl register
150	mcr	p15, 0, ip, c7, c7, 0		@ invalidate I,D caches & BTB
151	bic	r1, r1, #0x0001			@ ...............M
152	mcr	p15, 0, r1, c1, c0, 0		@ ctrl register
153	@ CAUTION: MMU turned off from this point. We count on the pipeline
154	@ already containing those two last instructions to survive.
155	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I & D TLBs
156	mov	pc, r0
157
158/*
159 * cpu_xscale_do_idle()
160 *
161 * Cause the processor to idle
162 *
163 * For now we do nothing but go to idle mode for every case
164 *
165 * XScale supports clock switching, but using idle mode support
166 * allows external hardware to react to system state changes.
167 */
168	.align	5
169
170ENTRY(cpu_xscale_do_idle)
171	mov	r0, #1
172	mcr	p14, 0, r0, c7, c0, 0		@ Go to IDLE
173	mov	pc, lr
174
175/* ================================= CACHE ================================ */
176
177/*
178 *	flush_user_cache_all()
179 *
180 *	Invalidate all cache entries in a particular address
181 *	space.
182 */
183ENTRY(xscale_flush_user_cache_all)
184	/* FALLTHROUGH */
185
186/*
187 *	flush_kern_cache_all()
188 *
189 *	Clean and invalidate the entire cache.
190 */
191ENTRY(xscale_flush_kern_cache_all)
192	mov	r2, #VM_EXEC
193	mov	ip, #0
194__flush_whole_cache:
195	clean_d_cache r0, r1
196	tst	r2, #VM_EXEC
197	mcrne	p15, 0, ip, c7, c5, 0		@ Invalidate I cache & BTB
198	mcrne	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
199	mov	pc, lr
200
201/*
202 *	flush_user_cache_range(start, end, vm_flags)
203 *
204 *	Invalidate a range of cache entries in the specified
205 *	address space.
206 *
207 *	- start - start address (may not be aligned)
208 *	- end	- end address (exclusive, may not be aligned)
209 *	- vma	- vma_area_struct describing address space
210 */
211	.align	5
212ENTRY(xscale_flush_user_cache_range)
213	mov	ip, #0
214	sub	r3, r1, r0			@ calculate total size
215	cmp	r3, #MAX_AREA_SIZE
216	bhs	__flush_whole_cache
217
2181:	tst	r2, #VM_EXEC
219	mcrne	p15, 0, r0, c7, c5, 1		@ Invalidate I cache line
220	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
221	mcr	p15, 0, r0, c7, c6, 1		@ Invalidate D cache line
222	add	r0, r0, #CACHELINESIZE
223	cmp	r0, r1
224	blo	1b
225	tst	r2, #VM_EXEC
226	mcrne	p15, 0, ip, c7, c5, 6		@ Invalidate BTB
227	mcrne	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
228	mov	pc, lr
229
230/*
231 *	coherent_kern_range(start, end)
232 *
233 *	Ensure coherency between the Icache and the Dcache in the
234 *	region described by start.  If you have non-snooping
235 *	Harvard caches, you need to implement this function.
236 *
237 *	- start  - virtual start address
238 *	- end	 - virtual end address
239 *
240 *	Note: single I-cache line invalidation isn't used here since
241 *	it also trashes the mini I-cache used by JTAG debuggers.
242 */
243ENTRY(xscale_coherent_kern_range)
244	/* FALLTHROUGH */
245
246/*
247 *	coherent_user_range(start, end)
248 *
249 *	Ensure coherency between the Icache and the Dcache in the
250 *	region described by start.  If you have non-snooping
251 *	Harvard caches, you need to implement this function.
252 *
253 *	- start  - virtual start address
254 *	- end	 - virtual end address
255 *
256 *	Note: single I-cache line invalidation isn't used here since
257 *	it also trashes the mini I-cache used by JTAG debuggers.
258 */
259ENTRY(xscale_coherent_user_range)
260	bic	r0, r0, #CACHELINESIZE - 1
2611:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
262	add	r0, r0, #CACHELINESIZE
263	cmp	r0, r1
264	blo	1b
265	mov	r0, #0
266	mcr	p15, 0, r0, c7, c5, 0		@ Invalidate I cache & BTB
267	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
268	mov	pc, lr
269
270/*
271 *	flush_kern_dcache_page(void *page)
272 *
273 *	Ensure no D cache aliasing occurs, either with itself or
274 *	the I cache
275 *
276 *	- addr	- page aligned address
277 */
278ENTRY(xscale_flush_kern_dcache_page)
279	add	r1, r0, #PAGE_SZ
2801:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
281	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D entry
282	add	r0, r0, #CACHELINESIZE
283	cmp	r0, r1
284	blo	1b
285	mov	r0, #0
286	mcr	p15, 0, r0, c7, c5, 0		@ Invalidate I cache & BTB
287	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
288	mov	pc, lr
289
290/*
291 *	dma_inv_range(start, end)
292 *
293 *	Invalidate (discard) the specified virtual address range.
294 *	May not write back any entries.  If 'start' or 'end'
295 *	are not cache line aligned, those lines must be written
296 *	back.
297 *
298 *	- start  - virtual start address
299 *	- end	 - virtual end address
300 */
301ENTRY(xscale_dma_inv_range)
302	mrc	p15, 0, r2, c0, c0, 0		@ read ID
303	eor	r2, r2, #0x69000000
304	eor	r2, r2, #0x00052000
305	bics	r2, r2, #1
306	beq	xscale_dma_flush_range
307
308	tst	r0, #CACHELINESIZE - 1
309	bic	r0, r0, #CACHELINESIZE - 1
310	mcrne	p15, 0, r0, c7, c10, 1		@ clean D entry
311	tst	r1, #CACHELINESIZE - 1
312	mcrne	p15, 0, r1, c7, c10, 1		@ clean D entry
3131:	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D entry
314	add	r0, r0, #CACHELINESIZE
315	cmp	r0, r1
316	blo	1b
317	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
318	mov	pc, lr
319
320/*
321 *	dma_clean_range(start, end)
322 *
323 *	Clean the specified virtual address range.
324 *
325 *	- start  - virtual start address
326 *	- end	 - virtual end address
327 */
328ENTRY(xscale_dma_clean_range)
329	bic	r0, r0, #CACHELINESIZE - 1
3301:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
331	add	r0, r0, #CACHELINESIZE
332	cmp	r0, r1
333	blo	1b
334	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
335	mov	pc, lr
336
337/*
338 *	dma_flush_range(start, end)
339 *
340 *	Clean and invalidate the specified virtual address range.
341 *
342 *	- start  - virtual start address
343 *	- end	 - virtual end address
344 */
345ENTRY(xscale_dma_flush_range)
346	bic	r0, r0, #CACHELINESIZE - 1
3471:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
348	mcr	p15, 0, r0, c7, c6, 1		@ invalidate D entry
349	add	r0, r0, #CACHELINESIZE
350	cmp	r0, r1
351	blo	1b
352	mcr	p15, 0, r0, c7, c10, 4		@ Drain Write (& Fill) Buffer
353	mov	pc, lr
354
355ENTRY(xscale_cache_fns)
356	.long	xscale_flush_kern_cache_all
357	.long	xscale_flush_user_cache_all
358	.long	xscale_flush_user_cache_range
359	.long	xscale_coherent_kern_range
360	.long	xscale_coherent_user_range
361	.long	xscale_flush_kern_dcache_page
362	.long	xscale_dma_inv_range
363	.long	xscale_dma_clean_range
364	.long	xscale_dma_flush_range
365
366ENTRY(cpu_xscale_dcache_clean_area)
3671:	mcr	p15, 0, r0, c7, c10, 1		@ clean D entry
368	add	r0, r0, #CACHELINESIZE
369	subs	r1, r1, #CACHELINESIZE
370	bhi	1b
371	mov	pc, lr
372
373/* ================================ CACHE LOCKING============================
374 *
375 * The XScale MicroArchitecture implements support for locking entries into
376 * the data and instruction cache.  The following functions implement the core
377 * low level instructions needed to accomplish the locking.  The developer's
378 * manual states that the code that performs the locking must be in non-cached
379 * memory.  To accomplish this, the code in xscale-cache-lock.c copies the
380 * following functions from the cache into a non-cached memory region that
381 * is allocated through consistent_alloc().
382 *
383 */
384	.align	5
385/*
386 * xscale_icache_lock
387 *
388 * r0: starting address to lock
389 * r1: end address to lock
390 */
391ENTRY(xscale_icache_lock)
392
393iLockLoop:
394	bic	r0, r0, #CACHELINESIZE - 1
395	mcr	p15, 0, r0, c9, c1, 0	@ lock into cache
396	cmp	r0, r1			@ are we done?
397	add	r0, r0, #CACHELINESIZE	@ advance to next cache line
398	bls	iLockLoop
399	mov	pc, lr
400
401/*
402 * xscale_icache_unlock
403 */
404ENTRY(xscale_icache_unlock)
405	mcr	p15, 0, r0, c9, c1, 1	@ Unlock icache
406	mov	pc, lr
407
408/*
409 * xscale_dcache_lock
410 *
411 * r0: starting address to lock
412 * r1: end address to lock
413 */
414ENTRY(xscale_dcache_lock)
415	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
416	mov	r2, #1
417	mcr	p15, 0, r2, c9, c2, 0	@ Put dcache in lock mode
418	cpwait	ip			@ Wait for completion
419
420	mrs	r2, cpsr
421	orr	r3, r2, #PSR_F_BIT | PSR_I_BIT
422dLockLoop:
423	msr	cpsr_c, r3
424	mcr	p15, 0, r0, c7, c10, 1	@ Write back line if it is dirty
425	mcr	p15, 0, r0, c7, c6, 1	@ Flush/invalidate line
426	msr	cpsr_c, r2
427	ldr	ip, [r0], #CACHELINESIZE @ Preload 32 bytes into cache from
428					@ location [r0]. Post-increment
429					@ r3 to next cache line
430	cmp	r0, r1			@ Are we done?
431	bls	dLockLoop
432
433	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
434	mov	r2, #0
435	mcr	p15, 0, r2, c9, c2, 0	@ Get out of lock mode
436	cpwait_ret lr, ip
437
438/*
439 * xscale_dcache_unlock
440 */
441ENTRY(xscale_dcache_unlock)
442	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
443	mcr	p15, 0, ip, c9, c2, 1	@ Unlock cache
444	mov	pc, lr
445
446/*
447 * Needed to determine the length of the code that needs to be copied.
448 */
449	.align	5
450ENTRY(xscale_cache_dummy)
451	mov	pc, lr
452
453/* ================================ TLB LOCKING==============================
454 *
455 * The XScale MicroArchitecture implements support for locking entries into
456 * the Instruction and Data TLBs.  The following functions provide the
457 * low level support for supporting these under Linux.  xscale-lock.c
458 * implements some higher level management code.  Most of the following
459 * is taken straight out of the Developer's Manual.
460 */
461
462/*
463 * Lock I-TLB entry
464 *
465 * r0: Virtual address to translate and lock
466 */
467	.align	5
468ENTRY(xscale_itlb_lock)
469	mrs	r2, cpsr
470	orr	r3, r2, #PSR_F_BIT | PSR_I_BIT
471	msr	cpsr_c, r3			@ Disable interrupts
472	mcr	p15, 0, r0, c8, c5, 1		@ Invalidate I-TLB entry
473	mcr	p15, 0, r0, c10, c4, 0		@ Translate and lock
474	msr	cpsr_c, r2			@ Restore interrupts
475	cpwait_ret lr, ip
476
477/*
478 * Lock D-TLB entry
479 *
480 * r0: Virtual address to translate and lock
481 */
482	.align	5
483ENTRY(xscale_dtlb_lock)
484	mrs	r2, cpsr
485	orr	r3, r2, #PSR_F_BIT | PSR_I_BIT
486	msr	cpsr_c, r3			@ Disable interrupts
487	mcr	p15, 0, r0, c8, c6, 1		@ Invalidate D-TLB entry
488	mcr	p15, 0, r0, c10, c8, 0		@ Translate and lock
489	msr	cpsr_c, r2			@ Restore interrupts
490	cpwait_ret lr, ip
491
492/*
493 * Unlock all I-TLB entries
494 */
495	.align	5
496ENTRY(xscale_itlb_unlock)
497	mcr	p15, 0, ip, c10, c4, 1		@ Unlock I-TLB
498	mcr	p15, 0, ip, c8, c5, 0		@ Invalidate I-TLB
499	cpwait_ret lr, ip
500
501/*
502 * Unlock all D-TLB entries
503 */
504ENTRY(xscale_dtlb_unlock)
505	mcr	p15, 0, ip, c10, c8, 1		@ Unlock D-TBL
506	mcr	p15, 0, ip, c8, c6, 0		@ Invalidate D-TLB
507	cpwait_ret lr, ip
508
509/* =============================== PageTable ============================== */
510
511#define PTE_CACHE_WRITE_ALLOCATE 0
512
513/*
514 * cpu_xscale_switch_mm(pgd)
515 *
516 * Set the translation base pointer to be as described by pgd.
517 *
518 * pgd: new page tables
519 */
520	.align	5
521ENTRY(cpu_xscale_switch_mm)
522	clean_d_cache r1, r2
523	mcr	p15, 0, ip, c7, c5, 0		@ Invalidate I cache & BTB
524	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
525	mcr	p15, 0, r0, c2, c0, 0		@ load page table pointer
526	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I & D TLBs
527	cpwait_ret lr, ip
528
529/*
530 * cpu_xscale_set_pte(ptep, pte)
531 *
532 * Set a PTE and flush it out
533 *
534 * Errata 40: must set memory to write-through for user read-only pages.
535 */
536	.align	5
537ENTRY(cpu_xscale_set_pte)
538	str	r1, [r0], #-2048		@ linux version
539
540	bic	r2, r1, #0xff0
541	orr	r2, r2, #PTE_TYPE_EXT		@ extended page
542
543	eor	r3, r1, #L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_WRITE | L_PTE_DIRTY
544
545	tst	r3, #L_PTE_USER			@ User?
546	orrne	r2, r2, #PTE_EXT_AP_URO_SRW	@ yes -> user r/o, system r/w
547
548	tst	r3, #L_PTE_WRITE | L_PTE_DIRTY	@ Write and Dirty?
549	orreq	r2, r2, #PTE_EXT_AP_UNO_SRW	@ yes -> user n/a, system r/w
550						@ combined with user -> user r/w
551
552	@
553	@ Handle the X bit.  We want to set this bit for the minicache
554	@ (U = E = B = W = 0, C = 1) or when write allocate is enabled,
555	@ and we have a writeable, cacheable region.  If we ignore the
556	@ U and E bits, we can allow user space to use the minicache as
557	@ well.
558	@
559	@  X = (C & ~W & ~B) | (C & W & B & write_allocate)
560	@
561	eor	ip, r1, #L_PTE_CACHEABLE
562	tst	ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
563#if PTE_CACHE_WRITE_ALLOCATE
564	eorne	ip, r1, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
565	tstne	ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
566#endif
567	orreq	r2, r2, #PTE_EXT_TEX(1)
568
569	@
570	@ Erratum 40: The B bit must be cleared for a user read-only
571	@ cacheable page.
572	@
573	@  B = B & ~(U & C & ~W)
574	@
575	and	ip, r1, #L_PTE_USER | L_PTE_WRITE | L_PTE_CACHEABLE
576	teq	ip, #L_PTE_USER | L_PTE_CACHEABLE
577	biceq	r2, r2, #PTE_BUFFERABLE
578
579	tst	r3, #L_PTE_PRESENT | L_PTE_YOUNG	@ Present and Young?
580	movne	r2, #0				@ no -> fault
581
582	str	r2, [r0]			@ hardware version
583	mov	ip, #0
584	mcr	p15, 0, r0, c7, c10, 1		@ Clean D cache line
585	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
586	mov	pc, lr
587
588
589	.ltorg
590
591	.align
592
593	__INIT
594
595	.type	__xscale_setup, #function
596__xscale_setup:
597	mcr	p15, 0, ip, c7, c7, 0		@ invalidate I, D caches & BTB
598	mcr	p15, 0, ip, c7, c10, 4		@ Drain Write (& Fill) Buffer
599	mcr	p15, 0, ip, c8, c7, 0		@ invalidate I, D TLBs
600#ifdef CONFIG_IWMMXT
601	mov	r0, #0				@ initially disallow access to CP0/CP1
602#else
603	mov	r0, #1				@ Allow access to CP0
604#endif
605	orr     r0, r0, #1 << 6			@ cp6 for IOP3xx and Bulverde
606	orr	r0, r0, #1 << 13		@ Its undefined whether this
607	mcr	p15, 0, r0, c15, c1, 0		@ affects USR or SVC modes
608	mrc	p15, 0, r0, c1, c0, 0		@ get control register
609	ldr	r5, xscale_cr1_clear
610	bic	r0, r0, r5
611	ldr	r5, xscale_cr1_set
612	orr	r0, r0, r5
613	mov	pc, lr
614	.size	__xscale_setup, . - __xscale_setup
615
616	/*
617	 *  R
618	 * .RVI ZFRS BLDP WCAM
619	 * ..11 1.01 .... .101
620	 *
621	 */
622	.type	xscale_cr1_clear, #object
623	.type	xscale_cr1_set, #object
624xscale_cr1_clear:
625	.word	0x3b07
626xscale_cr1_set:
627	.word	0x3905
628
629	__INITDATA
630
631/*
632 * Purpose : Function pointers used to access above functions - all calls
633 *	     come through these
634 */
635
636	.type	xscale_processor_functions, #object
637ENTRY(xscale_processor_functions)
638	.word	v5t_early_abort
639	.word	cpu_xscale_proc_init
640	.word	cpu_xscale_proc_fin
641	.word	cpu_xscale_reset
642	.word	cpu_xscale_do_idle
643	.word	cpu_xscale_dcache_clean_area
644	.word	cpu_xscale_switch_mm
645	.word	cpu_xscale_set_pte
646	.size	xscale_processor_functions, . - xscale_processor_functions
647
648	.section ".rodata"
649
650	.type	cpu_arch_name, #object
651cpu_arch_name:
652	.asciz	"armv5te"
653	.size	cpu_arch_name, . - cpu_arch_name
654
655	.type	cpu_elf_name, #object
656cpu_elf_name:
657	.asciz	"v5"
658	.size	cpu_elf_name, . - cpu_elf_name
659
660	.type	cpu_80200_name, #object
661cpu_80200_name:
662	.asciz	"XScale-80200"
663	.size	cpu_80200_name, . - cpu_80200_name
664
665	.type	cpu_8032x_name, #object
666cpu_8032x_name:
667	.asciz	"XScale-IOP8032x Family"
668	.size	cpu_8032x_name, . - cpu_8032x_name
669
670	.type	cpu_8033x_name, #object
671cpu_8033x_name:
672	.asciz	"XScale-IOP8033x Family"
673	.size	cpu_8033x_name, . - cpu_8033x_name
674
675	.type	cpu_pxa250_name, #object
676cpu_pxa250_name:
677	.asciz	"XScale-PXA250"
678	.size	cpu_pxa250_name, . - cpu_pxa250_name
679
680	.type	cpu_pxa210_name, #object
681cpu_pxa210_name:
682	.asciz	"XScale-PXA210"
683	.size	cpu_pxa210_name, . - cpu_pxa210_name
684
685	.type	cpu_ixp42x_name, #object
686cpu_ixp42x_name:
687	.asciz	"XScale-IXP42x Family"
688	.size	cpu_ixp42x_name, . - cpu_ixp42x_name
689
690	.type	cpu_ixp46x_name, #object
691cpu_ixp46x_name:
692	.asciz	"XScale-IXP46x Family"
693	.size	cpu_ixp46x_name, . - cpu_ixp46x_name
694
695	.type	cpu_ixp2400_name, #object
696cpu_ixp2400_name:
697	.asciz	"XScale-IXP2400"
698	.size	cpu_ixp2400_name, . - cpu_ixp2400_name
699
700	.type	cpu_ixp2800_name, #object
701cpu_ixp2800_name:
702	.asciz	"XScale-IXP2800"
703	.size	cpu_ixp2800_name, . - cpu_ixp2800_name
704
705	.type	cpu_pxa255_name, #object
706cpu_pxa255_name:
707	.asciz	"XScale-PXA255"
708	.size	cpu_pxa255_name, . - cpu_pxa255_name
709
710	.type	cpu_pxa270_name, #object
711cpu_pxa270_name:
712	.asciz	"XScale-PXA270"
713	.size	cpu_pxa270_name, . - cpu_pxa270_name
714
715	.align
716
717	.section ".proc.info", #alloc, #execinstr
718
719	.type	__80200_proc_info,#object
720__80200_proc_info:
721	.long	0x69052000
722	.long	0xfffffff0
723	.long   PMD_TYPE_SECT | \
724		PMD_SECT_BUFFERABLE | \
725		PMD_SECT_CACHEABLE | \
726		PMD_SECT_AP_WRITE | \
727		PMD_SECT_AP_READ
728	b	__xscale_setup
729	.long	cpu_arch_name
730	.long	cpu_elf_name
731	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
732	.long	cpu_80200_name
733	.long	xscale_processor_functions
734	.long	v4wbi_tlb_fns
735	.long	xscale_mc_user_fns
736	.long	xscale_cache_fns
737	.size	__80200_proc_info, . - __80200_proc_info
738
739	.type	__8032x_proc_info,#object
740__8032x_proc_info:
741	.long	0x69052420
742	.long	0xfffff5e0      @ mask should accomodate IOP80219 also
743	.long   PMD_TYPE_SECT | \
744		PMD_SECT_BUFFERABLE | \
745		PMD_SECT_CACHEABLE | \
746		PMD_SECT_AP_WRITE | \
747		PMD_SECT_AP_READ
748	b	__xscale_setup
749	.long	cpu_arch_name
750	.long	cpu_elf_name
751	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
752	.long	cpu_8032x_name
753	.long	xscale_processor_functions
754	.long	v4wbi_tlb_fns
755	.long	xscale_mc_user_fns
756	.long	xscale_cache_fns
757	.size	__8032x_proc_info, . - __8032x_proc_info
758
759	.type	__8033x_proc_info,#object
760__8033x_proc_info:
761	.long	0x69054010
762	.long	0xffffff30
763	.long   PMD_TYPE_SECT | \
764		PMD_SECT_BUFFERABLE | \
765		PMD_SECT_CACHEABLE | \
766		PMD_SECT_AP_WRITE | \
767		PMD_SECT_AP_READ
768	b	__xscale_setup
769	.long	cpu_arch_name
770	.long	cpu_elf_name
771	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
772	.long	cpu_8033x_name
773	.long	xscale_processor_functions
774	.long	v4wbi_tlb_fns
775	.long	xscale_mc_user_fns
776	.long	xscale_cache_fns
777	.size	__8033x_proc_info, . - __8033x_proc_info
778
779	.type	__pxa250_proc_info,#object
780__pxa250_proc_info:
781	.long	0x69052100
782	.long	0xfffff7f0
783	.long   PMD_TYPE_SECT | \
784		PMD_SECT_BUFFERABLE | \
785		PMD_SECT_CACHEABLE | \
786		PMD_SECT_AP_WRITE | \
787		PMD_SECT_AP_READ
788	b	__xscale_setup
789	.long	cpu_arch_name
790	.long	cpu_elf_name
791	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
792	.long	cpu_pxa250_name
793	.long	xscale_processor_functions
794	.long	v4wbi_tlb_fns
795	.long	xscale_mc_user_fns
796	.long	xscale_cache_fns
797	.size	__pxa250_proc_info, . - __pxa250_proc_info
798
799	.type	__pxa210_proc_info,#object
800__pxa210_proc_info:
801	.long	0x69052120
802	.long	0xfffff3f0
803	.long   PMD_TYPE_SECT | \
804		PMD_SECT_BUFFERABLE | \
805		PMD_SECT_CACHEABLE | \
806		PMD_SECT_AP_WRITE | \
807		PMD_SECT_AP_READ
808	b	__xscale_setup
809	.long	cpu_arch_name
810	.long	cpu_elf_name
811	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
812	.long	cpu_pxa210_name
813	.long	xscale_processor_functions
814	.long	v4wbi_tlb_fns
815	.long	xscale_mc_user_fns
816	.long	xscale_cache_fns
817	.size	__pxa210_proc_info, . - __pxa210_proc_info
818
819	.type	__ixp2400_proc_info, #object
820__ixp2400_proc_info:
821	.long   0x69054190
822	.long   0xfffffff0
823	.long   PMD_TYPE_SECT | \
824		PMD_SECT_BUFFERABLE | \
825		PMD_SECT_CACHEABLE | \
826		PMD_SECT_AP_WRITE | \
827		PMD_SECT_AP_READ
828	b       __xscale_setup
829	.long   cpu_arch_name
830	.long   cpu_elf_name
831	.long   HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
832	.long   cpu_ixp2400_name
833	.long   xscale_processor_functions
834	.long	v4wbi_tlb_fns
835	.long	xscale_mc_user_fns
836	.long	xscale_cache_fns
837	.size   __ixp2400_proc_info, . - __ixp2400_proc_info
838
839	.type	__ixp2800_proc_info, #object
840__ixp2800_proc_info:
841	.long   0x690541a0
842	.long   0xfffffff0
843	.long   PMD_TYPE_SECT | \
844		PMD_SECT_BUFFERABLE | \
845		PMD_SECT_CACHEABLE | \
846		PMD_SECT_AP_WRITE | \
847		PMD_SECT_AP_READ
848	b       __xscale_setup
849	.long   cpu_arch_name
850	.long   cpu_elf_name
851	.long   HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
852	.long   cpu_ixp2800_name
853	.long   xscale_processor_functions
854	.long	v4wbi_tlb_fns
855	.long	xscale_mc_user_fns
856	.long	xscale_cache_fns
857	.size   __ixp2800_proc_info, . - __ixp2800_proc_info
858
859	.type	__ixp42x_proc_info, #object
860__ixp42x_proc_info:
861	.long   0x690541c0
862	.long   0xffffffc0
863	.long   PMD_TYPE_SECT | \
864		PMD_SECT_BUFFERABLE | \
865		PMD_SECT_CACHEABLE | \
866		PMD_SECT_AP_WRITE | \
867		PMD_SECT_AP_READ
868	b       __xscale_setup
869	.long   cpu_arch_name
870	.long   cpu_elf_name
871	.long   HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
872	.long   cpu_ixp42x_name
873	.long   xscale_processor_functions
874	.long	v4wbi_tlb_fns
875	.long	xscale_mc_user_fns
876	.long	xscale_cache_fns
877	.size   __ixp42x_proc_info, . - __ixp42x_proc_info
878
879	.type	__ixp46x_proc_info, #object
880__ixp46x_proc_info:
881	.long   0x69054200
882	.long   0xffffff00
883	.long   0x00000c0e
884	b       __xscale_setup
885	.long   cpu_arch_name
886	.long   cpu_elf_name
887	.long   HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
888	.long   cpu_ixp46x_name
889	.long   xscale_processor_functions
890	.long	v4wbi_tlb_fns
891	.long	xscale_mc_user_fns
892	.long	xscale_cache_fns
893	.size   __ixp46x_proc_info, . - __ixp46x_proc_info
894
895	.type	__pxa255_proc_info,#object
896__pxa255_proc_info:
897	.long	0x69052d00
898	.long	0xfffffff0
899	.long   PMD_TYPE_SECT | \
900		PMD_SECT_BUFFERABLE | \
901		PMD_SECT_CACHEABLE | \
902		PMD_SECT_AP_WRITE | \
903		PMD_SECT_AP_READ
904	b	__xscale_setup
905	.long	cpu_arch_name
906	.long	cpu_elf_name
907	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
908	.long	cpu_pxa255_name
909	.long	xscale_processor_functions
910	.long	v4wbi_tlb_fns
911	.long	xscale_mc_user_fns
912	.long	xscale_cache_fns
913	.size	__pxa255_proc_info, . - __pxa255_proc_info
914
915	.type	__pxa270_proc_info,#object
916__pxa270_proc_info:
917	.long	0x69054110
918	.long	0xfffffff0
919	.long   PMD_TYPE_SECT | \
920		PMD_SECT_BUFFERABLE | \
921		PMD_SECT_CACHEABLE | \
922		PMD_SECT_AP_WRITE | \
923		PMD_SECT_AP_READ
924	b	__xscale_setup
925	.long	cpu_arch_name
926	.long	cpu_elf_name
927	.long	HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
928	.long	cpu_pxa270_name
929	.long	xscale_processor_functions
930	.long	v4wbi_tlb_fns
931	.long	xscale_mc_user_fns
932	.long	xscale_cache_fns
933	.size	__pxa270_proc_info, . - __pxa270_proc_info
934
935