xref: /openbmc/linux/arch/arm/mm/mmu.c (revision db5b7169474882fabbd811a4cf5c1bae3157e677)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 
18 #include <asm/mach-types.h>
19 #include <asm/setup.h>
20 #include <asm/sizes.h>
21 #include <asm/tlb.h>
22 
23 #include <asm/mach/arch.h>
24 #include <asm/mach/map.h>
25 
26 #include "mm.h"
27 
28 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
29 
30 extern void _stext, _etext, __data_start, _end;
31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
32 
33 /*
34  * empty_zero_page is a special page that is used for
35  * zero-initialized data and COW.
36  */
37 struct page *empty_zero_page;
38 EXPORT_SYMBOL(empty_zero_page);
39 
40 /*
41  * The pmd table for the upper-most set of pages.
42  */
43 pmd_t *top_pmd;
44 
45 #define CPOLICY_UNCACHED	0
46 #define CPOLICY_BUFFERED	1
47 #define CPOLICY_WRITETHROUGH	2
48 #define CPOLICY_WRITEBACK	3
49 #define CPOLICY_WRITEALLOC	4
50 
51 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
52 static unsigned int ecc_mask __initdata = 0;
53 pgprot_t pgprot_user;
54 pgprot_t pgprot_kernel;
55 
56 EXPORT_SYMBOL(pgprot_user);
57 EXPORT_SYMBOL(pgprot_kernel);
58 
59 struct cachepolicy {
60 	const char	policy[16];
61 	unsigned int	cr_mask;
62 	unsigned int	pmd;
63 	unsigned int	pte;
64 };
65 
66 static struct cachepolicy cache_policies[] __initdata = {
67 	{
68 		.policy		= "uncached",
69 		.cr_mask	= CR_W|CR_C,
70 		.pmd		= PMD_SECT_UNCACHED,
71 		.pte		= L_PTE_MT_UNCACHED,
72 	}, {
73 		.policy		= "buffered",
74 		.cr_mask	= CR_C,
75 		.pmd		= PMD_SECT_BUFFERED,
76 		.pte		= L_PTE_MT_BUFFERABLE,
77 	}, {
78 		.policy		= "writethrough",
79 		.cr_mask	= 0,
80 		.pmd		= PMD_SECT_WT,
81 		.pte		= L_PTE_MT_WRITETHROUGH,
82 	}, {
83 		.policy		= "writeback",
84 		.cr_mask	= 0,
85 		.pmd		= PMD_SECT_WB,
86 		.pte		= L_PTE_MT_WRITEBACK,
87 	}, {
88 		.policy		= "writealloc",
89 		.cr_mask	= 0,
90 		.pmd		= PMD_SECT_WBWA,
91 		.pte		= L_PTE_MT_WRITEALLOC,
92 	}
93 };
94 
95 /*
96  * These are useful for identifying cache coherency
97  * problems by allowing the cache or the cache and
98  * writebuffer to be turned off.  (Note: the write
99  * buffer should not be on and the cache off).
100  */
101 static void __init early_cachepolicy(char **p)
102 {
103 	int i;
104 
105 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
106 		int len = strlen(cache_policies[i].policy);
107 
108 		if (memcmp(*p, cache_policies[i].policy, len) == 0) {
109 			cachepolicy = i;
110 			cr_alignment &= ~cache_policies[i].cr_mask;
111 			cr_no_alignment &= ~cache_policies[i].cr_mask;
112 			*p += len;
113 			break;
114 		}
115 	}
116 	if (i == ARRAY_SIZE(cache_policies))
117 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
118 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
119 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
120 		cachepolicy = CPOLICY_WRITEBACK;
121 	}
122 	flush_cache_all();
123 	set_cr(cr_alignment);
124 }
125 __early_param("cachepolicy=", early_cachepolicy);
126 
127 static void __init early_nocache(char **__unused)
128 {
129 	char *p = "buffered";
130 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
131 	early_cachepolicy(&p);
132 }
133 __early_param("nocache", early_nocache);
134 
135 static void __init early_nowrite(char **__unused)
136 {
137 	char *p = "uncached";
138 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
139 	early_cachepolicy(&p);
140 }
141 __early_param("nowb", early_nowrite);
142 
143 static void __init early_ecc(char **p)
144 {
145 	if (memcmp(*p, "on", 2) == 0) {
146 		ecc_mask = PMD_PROTECTION;
147 		*p += 2;
148 	} else if (memcmp(*p, "off", 3) == 0) {
149 		ecc_mask = 0;
150 		*p += 3;
151 	}
152 }
153 __early_param("ecc=", early_ecc);
154 
155 static int __init noalign_setup(char *__unused)
156 {
157 	cr_alignment &= ~CR_A;
158 	cr_no_alignment &= ~CR_A;
159 	set_cr(cr_alignment);
160 	return 1;
161 }
162 __setup("noalign", noalign_setup);
163 
164 #ifndef CONFIG_SMP
165 void adjust_cr(unsigned long mask, unsigned long set)
166 {
167 	unsigned long flags;
168 
169 	mask &= ~CR_A;
170 
171 	set &= mask;
172 
173 	local_irq_save(flags);
174 
175 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
176 	cr_alignment = (cr_alignment & ~mask) | set;
177 
178 	set_cr((get_cr() & ~mask) | set);
179 
180 	local_irq_restore(flags);
181 }
182 #endif
183 
184 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
185 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
186 
187 static struct mem_type mem_types[] = {
188 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
189 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
190 				  L_PTE_SHARED,
191 		.prot_l1	= PMD_TYPE_TABLE,
192 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
193 		.domain		= DOMAIN_IO,
194 	},
195 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
196 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
197 		.prot_l1	= PMD_TYPE_TABLE,
198 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_TEX(2),
199 		.domain		= DOMAIN_IO,
200 	},
201 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
202 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
203 		.prot_l1	= PMD_TYPE_TABLE,
204 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
205 		.domain		= DOMAIN_IO,
206 	},
207 	[MT_DEVICE_WC] = {	/* ioremap_wc */
208 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
209 		.prot_l1	= PMD_TYPE_TABLE,
210 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE,
211 		.domain		= DOMAIN_IO,
212 	},
213 	[MT_CACHECLEAN] = {
214 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
215 		.domain    = DOMAIN_KERNEL,
216 	},
217 	[MT_MINICLEAN] = {
218 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
219 		.domain    = DOMAIN_KERNEL,
220 	},
221 	[MT_LOW_VECTORS] = {
222 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
223 				L_PTE_EXEC,
224 		.prot_l1   = PMD_TYPE_TABLE,
225 		.domain    = DOMAIN_USER,
226 	},
227 	[MT_HIGH_VECTORS] = {
228 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
229 				L_PTE_USER | L_PTE_EXEC,
230 		.prot_l1   = PMD_TYPE_TABLE,
231 		.domain    = DOMAIN_USER,
232 	},
233 	[MT_MEMORY] = {
234 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
235 		.domain    = DOMAIN_KERNEL,
236 	},
237 	[MT_ROM] = {
238 		.prot_sect = PMD_TYPE_SECT,
239 		.domain    = DOMAIN_KERNEL,
240 	},
241 };
242 
243 const struct mem_type *get_mem_type(unsigned int type)
244 {
245 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
246 }
247 
248 /*
249  * Adjust the PMD section entries according to the CPU in use.
250  */
251 static void __init build_mem_type_table(void)
252 {
253 	struct cachepolicy *cp;
254 	unsigned int cr = get_cr();
255 	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
256 	int cpu_arch = cpu_architecture();
257 	int i;
258 
259 	if (cpu_arch < CPU_ARCH_ARMv6) {
260 #if defined(CONFIG_CPU_DCACHE_DISABLE)
261 		if (cachepolicy > CPOLICY_BUFFERED)
262 			cachepolicy = CPOLICY_BUFFERED;
263 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
264 		if (cachepolicy > CPOLICY_WRITETHROUGH)
265 			cachepolicy = CPOLICY_WRITETHROUGH;
266 #endif
267 	}
268 	if (cpu_arch < CPU_ARCH_ARMv5) {
269 		if (cachepolicy >= CPOLICY_WRITEALLOC)
270 			cachepolicy = CPOLICY_WRITEBACK;
271 		ecc_mask = 0;
272 	}
273 #ifdef CONFIG_SMP
274 	cachepolicy = CPOLICY_WRITEALLOC;
275 #endif
276 
277 	/*
278 	 * On non-Xscale3 ARMv5-and-older systems, use CB=01
279 	 * (Uncached/Buffered) for ioremap_wc() mappings.  On XScale3
280 	 * and ARMv6+, use TEXCB=00100 mappings (Inner/Outer Uncacheable
281 	 * in xsc3 parlance, Uncached Normal in ARMv6 parlance).
282 	 */
283 	if (cpu_is_xsc3() || cpu_arch >= CPU_ARCH_ARMv6) {
284 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
285 		mem_types[MT_DEVICE_WC].prot_sect &= ~PMD_SECT_BUFFERABLE;
286 	}
287 
288 	/*
289 	 * ARMv5 and lower, bit 4 must be set for page tables.
290 	 * (was: cache "update-able on write" bit on ARM610)
291 	 * However, Xscale cores require this bit to be cleared.
292 	 */
293 	if (cpu_is_xscale()) {
294 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
295 			mem_types[i].prot_sect &= ~PMD_BIT4;
296 			mem_types[i].prot_l1 &= ~PMD_BIT4;
297 		}
298 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
299 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
300 			if (mem_types[i].prot_l1)
301 				mem_types[i].prot_l1 |= PMD_BIT4;
302 			if (mem_types[i].prot_sect)
303 				mem_types[i].prot_sect |= PMD_BIT4;
304 		}
305 	}
306 
307 	cp = &cache_policies[cachepolicy];
308 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
309 
310 #ifndef CONFIG_SMP
311 	/*
312 	 * Only use write-through for non-SMP systems
313 	 */
314 	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
315 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
316 #endif
317 
318 	/*
319 	 * Enable CPU-specific coherency if supported.
320 	 * (Only available on XSC3 at the moment.)
321 	 */
322 	if (arch_is_coherent()) {
323 		if (cpu_is_xsc3()) {
324 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
325 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
326 		}
327 	}
328 
329 	/*
330 	 * ARMv6 and above have extended page tables.
331 	 */
332 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
333 		/*
334 		 * Mark cache clean areas and XIP ROM read only
335 		 * from SVC mode and no access from userspace.
336 		 */
337 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
338 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
339 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
340 
341 		/*
342 		 * Mark the device area as "shared device"
343 		 */
344 		mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
345 
346 #ifdef CONFIG_SMP
347 		/*
348 		 * Mark memory with the "shared" attribute for SMP systems
349 		 */
350 		user_pgprot |= L_PTE_SHARED;
351 		kern_pgprot |= L_PTE_SHARED;
352 		vecs_pgprot |= L_PTE_SHARED;
353 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
354 #endif
355 	}
356 
357 	for (i = 0; i < 16; i++) {
358 		unsigned long v = pgprot_val(protection_map[i]);
359 		protection_map[i] = __pgprot(v | user_pgprot);
360 	}
361 
362 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
363 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
364 
365 	if (cpu_arch < CPU_ARCH_ARMv5)
366 		mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
367 
368 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
369 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
370 				 L_PTE_DIRTY | L_PTE_WRITE |
371 				 L_PTE_EXEC | kern_pgprot);
372 
373 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
374 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
375 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
376 	mem_types[MT_ROM].prot_sect |= cp->pmd;
377 
378 	switch (cp->pmd) {
379 	case PMD_SECT_WT:
380 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
381 		break;
382 	case PMD_SECT_WB:
383 	case PMD_SECT_WBWA:
384 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
385 		break;
386 	}
387 	printk("Memory policy: ECC %sabled, Data cache %s\n",
388 		ecc_mask ? "en" : "dis", cp->policy);
389 
390 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
391 		struct mem_type *t = &mem_types[i];
392 		if (t->prot_l1)
393 			t->prot_l1 |= PMD_DOMAIN(t->domain);
394 		if (t->prot_sect)
395 			t->prot_sect |= PMD_DOMAIN(t->domain);
396 	}
397 }
398 
399 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
400 
401 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
402 				  unsigned long end, unsigned long pfn,
403 				  const struct mem_type *type)
404 {
405 	pte_t *pte;
406 
407 	if (pmd_none(*pmd)) {
408 		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
409 		__pmd_populate(pmd, __pa(pte) | type->prot_l1);
410 	}
411 
412 	pte = pte_offset_kernel(pmd, addr);
413 	do {
414 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
415 		pfn++;
416 	} while (pte++, addr += PAGE_SIZE, addr != end);
417 }
418 
419 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
420 				      unsigned long end, unsigned long phys,
421 				      const struct mem_type *type)
422 {
423 	pmd_t *pmd = pmd_offset(pgd, addr);
424 
425 	/*
426 	 * Try a section mapping - end, addr and phys must all be aligned
427 	 * to a section boundary.  Note that PMDs refer to the individual
428 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
429 	 * up one logical pointer to an L2 table.
430 	 */
431 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
432 		pmd_t *p = pmd;
433 
434 		if (addr & SECTION_SIZE)
435 			pmd++;
436 
437 		do {
438 			*pmd = __pmd(phys | type->prot_sect);
439 			phys += SECTION_SIZE;
440 		} while (pmd++, addr += SECTION_SIZE, addr != end);
441 
442 		flush_pmd_entry(p);
443 	} else {
444 		/*
445 		 * No need to loop; pte's aren't interested in the
446 		 * individual L1 entries.
447 		 */
448 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
449 	}
450 }
451 
452 static void __init create_36bit_mapping(struct map_desc *md,
453 					const struct mem_type *type)
454 {
455 	unsigned long phys, addr, length, end;
456 	pgd_t *pgd;
457 
458 	addr = md->virtual;
459 	phys = (unsigned long)__pfn_to_phys(md->pfn);
460 	length = PAGE_ALIGN(md->length);
461 
462 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
463 		printk(KERN_ERR "MM: CPU does not support supersection "
464 		       "mapping for 0x%08llx at 0x%08lx\n",
465 		       __pfn_to_phys((u64)md->pfn), addr);
466 		return;
467 	}
468 
469 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
470 	 *	Since domain assignments can in fact be arbitrary, the
471 	 *	'domain == 0' check below is required to insure that ARMv6
472 	 *	supersections are only allocated for domain 0 regardless
473 	 *	of the actual domain assignments in use.
474 	 */
475 	if (type->domain) {
476 		printk(KERN_ERR "MM: invalid domain in supersection "
477 		       "mapping for 0x%08llx at 0x%08lx\n",
478 		       __pfn_to_phys((u64)md->pfn), addr);
479 		return;
480 	}
481 
482 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
483 		printk(KERN_ERR "MM: cannot create mapping for "
484 		       "0x%08llx at 0x%08lx invalid alignment\n",
485 		       __pfn_to_phys((u64)md->pfn), addr);
486 		return;
487 	}
488 
489 	/*
490 	 * Shift bits [35:32] of address into bits [23:20] of PMD
491 	 * (See ARMv6 spec).
492 	 */
493 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
494 
495 	pgd = pgd_offset_k(addr);
496 	end = addr + length;
497 	do {
498 		pmd_t *pmd = pmd_offset(pgd, addr);
499 		int i;
500 
501 		for (i = 0; i < 16; i++)
502 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
503 
504 		addr += SUPERSECTION_SIZE;
505 		phys += SUPERSECTION_SIZE;
506 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
507 	} while (addr != end);
508 }
509 
510 /*
511  * Create the page directory entries and any necessary
512  * page tables for the mapping specified by `md'.  We
513  * are able to cope here with varying sizes and address
514  * offsets, and we take full advantage of sections and
515  * supersections.
516  */
517 void __init create_mapping(struct map_desc *md)
518 {
519 	unsigned long phys, addr, length, end;
520 	const struct mem_type *type;
521 	pgd_t *pgd;
522 
523 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
524 		printk(KERN_WARNING "BUG: not creating mapping for "
525 		       "0x%08llx at 0x%08lx in user region\n",
526 		       __pfn_to_phys((u64)md->pfn), md->virtual);
527 		return;
528 	}
529 
530 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
531 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
532 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
533 		       "overlaps vmalloc space\n",
534 		       __pfn_to_phys((u64)md->pfn), md->virtual);
535 	}
536 
537 	type = &mem_types[md->type];
538 
539 	/*
540 	 * Catch 36-bit addresses
541 	 */
542 	if (md->pfn >= 0x100000) {
543 		create_36bit_mapping(md, type);
544 		return;
545 	}
546 
547 	addr = md->virtual & PAGE_MASK;
548 	phys = (unsigned long)__pfn_to_phys(md->pfn);
549 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
550 
551 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
552 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
553 		       "be mapped using pages, ignoring.\n",
554 		       __pfn_to_phys(md->pfn), addr);
555 		return;
556 	}
557 
558 	pgd = pgd_offset_k(addr);
559 	end = addr + length;
560 	do {
561 		unsigned long next = pgd_addr_end(addr, end);
562 
563 		alloc_init_section(pgd, addr, next, phys, type);
564 
565 		phys += next - addr;
566 		addr = next;
567 	} while (pgd++, addr != end);
568 }
569 
570 /*
571  * Create the architecture specific mappings
572  */
573 void __init iotable_init(struct map_desc *io_desc, int nr)
574 {
575 	int i;
576 
577 	for (i = 0; i < nr; i++)
578 		create_mapping(io_desc + i);
579 }
580 
581 static int __init check_membank_valid(struct membank *mb)
582 {
583 	/*
584 	 * Check whether this memory region has non-zero size.
585 	 */
586 	if (mb->size == 0)
587 		return 0;
588 
589 	/*
590 	 * Check whether this memory region would entirely overlap
591 	 * the vmalloc area.
592 	 */
593 	if (phys_to_virt(mb->start) >= VMALLOC_MIN) {
594 		printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
595 			"(vmalloc region overlap).\n",
596 			mb->start, mb->start + mb->size - 1);
597 		return 0;
598 	}
599 
600 	/*
601 	 * Check whether this memory region would partially overlap
602 	 * the vmalloc area.
603 	 */
604 	if (phys_to_virt(mb->start + mb->size) < phys_to_virt(mb->start) ||
605 	    phys_to_virt(mb->start + mb->size) > VMALLOC_MIN) {
606 		unsigned long newsize = VMALLOC_MIN - phys_to_virt(mb->start);
607 
608 		printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
609 			"to -%.8lx (vmalloc region overlap).\n",
610 			mb->start, mb->start + mb->size - 1,
611 			mb->start + newsize - 1);
612 		mb->size = newsize;
613 	}
614 
615 	return 1;
616 }
617 
618 static void __init sanity_check_meminfo(struct meminfo *mi)
619 {
620 	int i;
621 	int j;
622 
623 	for (i = 0, j = 0; i < mi->nr_banks; i++) {
624 		if (check_membank_valid(&mi->bank[i]))
625 			mi->bank[j++] = mi->bank[i];
626 	}
627 	mi->nr_banks = j;
628 }
629 
630 static inline void prepare_page_table(struct meminfo *mi)
631 {
632 	unsigned long addr;
633 
634 	/*
635 	 * Clear out all the mappings below the kernel image.
636 	 */
637 	for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
638 		pmd_clear(pmd_off_k(addr));
639 
640 #ifdef CONFIG_XIP_KERNEL
641 	/* The XIP kernel is mapped in the module area -- skip over it */
642 	addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
643 #endif
644 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
645 		pmd_clear(pmd_off_k(addr));
646 
647 	/*
648 	 * Clear out all the kernel space mappings, except for the first
649 	 * memory bank, up to the end of the vmalloc region.
650 	 */
651 	for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
652 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
653 		pmd_clear(pmd_off_k(addr));
654 }
655 
656 /*
657  * Reserve the various regions of node 0
658  */
659 void __init reserve_node_zero(pg_data_t *pgdat)
660 {
661 	unsigned long res_size = 0;
662 
663 	/*
664 	 * Register the kernel text and data with bootmem.
665 	 * Note that this can only be in node 0.
666 	 */
667 #ifdef CONFIG_XIP_KERNEL
668 	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
669 			BOOTMEM_DEFAULT);
670 #else
671 	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
672 			BOOTMEM_DEFAULT);
673 #endif
674 
675 	/*
676 	 * Reserve the page tables.  These are already in use,
677 	 * and can only be in node 0.
678 	 */
679 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
680 			     PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
681 
682 	/*
683 	 * Hmm... This should go elsewhere, but we really really need to
684 	 * stop things allocating the low memory; ideally we need a better
685 	 * implementation of GFP_DMA which does not assume that DMA-able
686 	 * memory starts at zero.
687 	 */
688 	if (machine_is_integrator() || machine_is_cintegrator())
689 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
690 
691 	/*
692 	 * These should likewise go elsewhere.  They pre-reserve the
693 	 * screen memory region at the start of main system memory.
694 	 */
695 	if (machine_is_edb7211())
696 		res_size = 0x00020000;
697 	if (machine_is_p720t())
698 		res_size = 0x00014000;
699 
700 	/* H1940 and RX3715 need to reserve this for suspend */
701 
702 	if (machine_is_h1940() || machine_is_rx3715()) {
703 		reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
704 				BOOTMEM_DEFAULT);
705 		reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
706 				BOOTMEM_DEFAULT);
707 	}
708 
709 #ifdef CONFIG_SA1111
710 	/*
711 	 * Because of the SA1111 DMA bug, we want to preserve our
712 	 * precious DMA-able memory...
713 	 */
714 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
715 #endif
716 	if (res_size)
717 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
718 				BOOTMEM_DEFAULT);
719 }
720 
721 /*
722  * Set up device the mappings.  Since we clear out the page tables for all
723  * mappings above VMALLOC_END, we will remove any debug device mappings.
724  * This means you have to be careful how you debug this function, or any
725  * called function.  This means you can't use any function or debugging
726  * method which may touch any device, otherwise the kernel _will_ crash.
727  */
728 static void __init devicemaps_init(struct machine_desc *mdesc)
729 {
730 	struct map_desc map;
731 	unsigned long addr;
732 	void *vectors;
733 
734 	/*
735 	 * Allocate the vector page early.
736 	 */
737 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
738 	BUG_ON(!vectors);
739 
740 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
741 		pmd_clear(pmd_off_k(addr));
742 
743 	/*
744 	 * Map the kernel if it is XIP.
745 	 * It is always first in the modulearea.
746 	 */
747 #ifdef CONFIG_XIP_KERNEL
748 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
749 	map.virtual = MODULE_START;
750 	map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
751 	map.type = MT_ROM;
752 	create_mapping(&map);
753 #endif
754 
755 	/*
756 	 * Map the cache flushing regions.
757 	 */
758 #ifdef FLUSH_BASE
759 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
760 	map.virtual = FLUSH_BASE;
761 	map.length = SZ_1M;
762 	map.type = MT_CACHECLEAN;
763 	create_mapping(&map);
764 #endif
765 #ifdef FLUSH_BASE_MINICACHE
766 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
767 	map.virtual = FLUSH_BASE_MINICACHE;
768 	map.length = SZ_1M;
769 	map.type = MT_MINICLEAN;
770 	create_mapping(&map);
771 #endif
772 
773 	/*
774 	 * Create a mapping for the machine vectors at the high-vectors
775 	 * location (0xffff0000).  If we aren't using high-vectors, also
776 	 * create a mapping at the low-vectors virtual address.
777 	 */
778 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
779 	map.virtual = 0xffff0000;
780 	map.length = PAGE_SIZE;
781 	map.type = MT_HIGH_VECTORS;
782 	create_mapping(&map);
783 
784 	if (!vectors_high()) {
785 		map.virtual = 0;
786 		map.type = MT_LOW_VECTORS;
787 		create_mapping(&map);
788 	}
789 
790 	/*
791 	 * Ask the machine support to map in the statically mapped devices.
792 	 */
793 	if (mdesc->map_io)
794 		mdesc->map_io();
795 
796 	/*
797 	 * Finally flush the caches and tlb to ensure that we're in a
798 	 * consistent state wrt the writebuffer.  This also ensures that
799 	 * any write-allocated cache lines in the vector page are written
800 	 * back.  After this point, we can start to touch devices again.
801 	 */
802 	local_flush_tlb_all();
803 	flush_cache_all();
804 }
805 
806 /*
807  * paging_init() sets up the page tables, initialises the zone memory
808  * maps, and sets up the zero page, bad page and bad page tables.
809  */
810 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
811 {
812 	void *zero_page;
813 
814 	build_mem_type_table();
815 	sanity_check_meminfo(mi);
816 	prepare_page_table(mi);
817 	bootmem_init(mi);
818 	devicemaps_init(mdesc);
819 
820 	top_pmd = pmd_off_k(0xffff0000);
821 
822 	/*
823 	 * allocate the zero page.  Note that we count on this going ok.
824 	 */
825 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
826 	memzero(zero_page, PAGE_SIZE);
827 	empty_zero_page = virt_to_page(zero_page);
828 	flush_dcache_page(empty_zero_page);
829 }
830 
831 /*
832  * In order to soft-boot, we need to insert a 1:1 mapping in place of
833  * the user-mode pages.  This will then ensure that we have predictable
834  * results when turning the mmu off
835  */
836 void setup_mm_for_reboot(char mode)
837 {
838 	unsigned long base_pmdval;
839 	pgd_t *pgd;
840 	int i;
841 
842 	if (current->mm && current->mm->pgd)
843 		pgd = current->mm->pgd;
844 	else
845 		pgd = init_mm.pgd;
846 
847 	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
848 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
849 		base_pmdval |= PMD_BIT4;
850 
851 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
852 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
853 		pmd_t *pmd;
854 
855 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
856 		pmd[0] = __pmd(pmdval);
857 		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
858 		flush_pmd_entry(pmd);
859 	}
860 }
861