1 /* 2 * linux/arch/arm/mm/mmu.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/init.h> 14 #include <linux/bootmem.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 18 #include <asm/cputype.h> 19 #include <asm/mach-types.h> 20 #include <asm/sections.h> 21 #include <asm/cachetype.h> 22 #include <asm/setup.h> 23 #include <asm/sizes.h> 24 #include <asm/smp_plat.h> 25 #include <asm/tlb.h> 26 #include <asm/highmem.h> 27 28 #include <asm/mach/arch.h> 29 #include <asm/mach/map.h> 30 31 #include "mm.h" 32 33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 34 35 /* 36 * empty_zero_page is a special page that is used for 37 * zero-initialized data and COW. 38 */ 39 struct page *empty_zero_page; 40 EXPORT_SYMBOL(empty_zero_page); 41 42 /* 43 * The pmd table for the upper-most set of pages. 44 */ 45 pmd_t *top_pmd; 46 47 #define CPOLICY_UNCACHED 0 48 #define CPOLICY_BUFFERED 1 49 #define CPOLICY_WRITETHROUGH 2 50 #define CPOLICY_WRITEBACK 3 51 #define CPOLICY_WRITEALLOC 4 52 53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; 54 static unsigned int ecc_mask __initdata = 0; 55 pgprot_t pgprot_user; 56 pgprot_t pgprot_kernel; 57 58 EXPORT_SYMBOL(pgprot_user); 59 EXPORT_SYMBOL(pgprot_kernel); 60 61 struct cachepolicy { 62 const char policy[16]; 63 unsigned int cr_mask; 64 unsigned int pmd; 65 unsigned int pte; 66 }; 67 68 static struct cachepolicy cache_policies[] __initdata = { 69 { 70 .policy = "uncached", 71 .cr_mask = CR_W|CR_C, 72 .pmd = PMD_SECT_UNCACHED, 73 .pte = L_PTE_MT_UNCACHED, 74 }, { 75 .policy = "buffered", 76 .cr_mask = CR_C, 77 .pmd = PMD_SECT_BUFFERED, 78 .pte = L_PTE_MT_BUFFERABLE, 79 }, { 80 .policy = "writethrough", 81 .cr_mask = 0, 82 .pmd = PMD_SECT_WT, 83 .pte = L_PTE_MT_WRITETHROUGH, 84 }, { 85 .policy = "writeback", 86 .cr_mask = 0, 87 .pmd = PMD_SECT_WB, 88 .pte = L_PTE_MT_WRITEBACK, 89 }, { 90 .policy = "writealloc", 91 .cr_mask = 0, 92 .pmd = PMD_SECT_WBWA, 93 .pte = L_PTE_MT_WRITEALLOC, 94 } 95 }; 96 97 /* 98 * These are useful for identifying cache coherency 99 * problems by allowing the cache or the cache and 100 * writebuffer to be turned off. (Note: the write 101 * buffer should not be on and the cache off). 102 */ 103 static void __init early_cachepolicy(char **p) 104 { 105 int i; 106 107 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { 108 int len = strlen(cache_policies[i].policy); 109 110 if (memcmp(*p, cache_policies[i].policy, len) == 0) { 111 cachepolicy = i; 112 cr_alignment &= ~cache_policies[i].cr_mask; 113 cr_no_alignment &= ~cache_policies[i].cr_mask; 114 *p += len; 115 break; 116 } 117 } 118 if (i == ARRAY_SIZE(cache_policies)) 119 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); 120 /* 121 * This restriction is partly to do with the way we boot; it is 122 * unpredictable to have memory mapped using two different sets of 123 * memory attributes (shared, type, and cache attribs). We can not 124 * change these attributes once the initial assembly has setup the 125 * page tables. 126 */ 127 if (cpu_architecture() >= CPU_ARCH_ARMv6) { 128 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n"); 129 cachepolicy = CPOLICY_WRITEBACK; 130 } 131 flush_cache_all(); 132 set_cr(cr_alignment); 133 } 134 __early_param("cachepolicy=", early_cachepolicy); 135 136 static void __init early_nocache(char **__unused) 137 { 138 char *p = "buffered"; 139 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); 140 early_cachepolicy(&p); 141 } 142 __early_param("nocache", early_nocache); 143 144 static void __init early_nowrite(char **__unused) 145 { 146 char *p = "uncached"; 147 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); 148 early_cachepolicy(&p); 149 } 150 __early_param("nowb", early_nowrite); 151 152 static void __init early_ecc(char **p) 153 { 154 if (memcmp(*p, "on", 2) == 0) { 155 ecc_mask = PMD_PROTECTION; 156 *p += 2; 157 } else if (memcmp(*p, "off", 3) == 0) { 158 ecc_mask = 0; 159 *p += 3; 160 } 161 } 162 __early_param("ecc=", early_ecc); 163 164 static int __init noalign_setup(char *__unused) 165 { 166 cr_alignment &= ~CR_A; 167 cr_no_alignment &= ~CR_A; 168 set_cr(cr_alignment); 169 return 1; 170 } 171 __setup("noalign", noalign_setup); 172 173 #ifndef CONFIG_SMP 174 void adjust_cr(unsigned long mask, unsigned long set) 175 { 176 unsigned long flags; 177 178 mask &= ~CR_A; 179 180 set &= mask; 181 182 local_irq_save(flags); 183 184 cr_no_alignment = (cr_no_alignment & ~mask) | set; 185 cr_alignment = (cr_alignment & ~mask) | set; 186 187 set_cr((get_cr() & ~mask) | set); 188 189 local_irq_restore(flags); 190 } 191 #endif 192 193 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE 194 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE 195 196 static struct mem_type mem_types[] = { 197 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ 198 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | 199 L_PTE_SHARED, 200 .prot_l1 = PMD_TYPE_TABLE, 201 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, 202 .domain = DOMAIN_IO, 203 }, 204 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ 205 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, 206 .prot_l1 = PMD_TYPE_TABLE, 207 .prot_sect = PROT_SECT_DEVICE, 208 .domain = DOMAIN_IO, 209 }, 210 [MT_DEVICE_CACHED] = { /* ioremap_cached */ 211 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, 212 .prot_l1 = PMD_TYPE_TABLE, 213 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, 214 .domain = DOMAIN_IO, 215 }, 216 [MT_DEVICE_WC] = { /* ioremap_wc */ 217 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, 218 .prot_l1 = PMD_TYPE_TABLE, 219 .prot_sect = PROT_SECT_DEVICE, 220 .domain = DOMAIN_IO, 221 }, 222 [MT_UNCACHED] = { 223 .prot_pte = PROT_PTE_DEVICE, 224 .prot_l1 = PMD_TYPE_TABLE, 225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 226 .domain = DOMAIN_IO, 227 }, 228 [MT_CACHECLEAN] = { 229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 230 .domain = DOMAIN_KERNEL, 231 }, 232 [MT_MINICLEAN] = { 233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, 234 .domain = DOMAIN_KERNEL, 235 }, 236 [MT_LOW_VECTORS] = { 237 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 238 L_PTE_EXEC, 239 .prot_l1 = PMD_TYPE_TABLE, 240 .domain = DOMAIN_USER, 241 }, 242 [MT_HIGH_VECTORS] = { 243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 244 L_PTE_USER | L_PTE_EXEC, 245 .prot_l1 = PMD_TYPE_TABLE, 246 .domain = DOMAIN_USER, 247 }, 248 [MT_MEMORY] = { 249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 250 .domain = DOMAIN_KERNEL, 251 }, 252 [MT_ROM] = { 253 .prot_sect = PMD_TYPE_SECT, 254 .domain = DOMAIN_KERNEL, 255 }, 256 [MT_MEMORY_NONCACHED] = { 257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 258 .domain = DOMAIN_KERNEL, 259 }, 260 }; 261 262 const struct mem_type *get_mem_type(unsigned int type) 263 { 264 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; 265 } 266 EXPORT_SYMBOL(get_mem_type); 267 268 /* 269 * Adjust the PMD section entries according to the CPU in use. 270 */ 271 static void __init build_mem_type_table(void) 272 { 273 struct cachepolicy *cp; 274 unsigned int cr = get_cr(); 275 unsigned int user_pgprot, kern_pgprot, vecs_pgprot; 276 int cpu_arch = cpu_architecture(); 277 int i; 278 279 if (cpu_arch < CPU_ARCH_ARMv6) { 280 #if defined(CONFIG_CPU_DCACHE_DISABLE) 281 if (cachepolicy > CPOLICY_BUFFERED) 282 cachepolicy = CPOLICY_BUFFERED; 283 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) 284 if (cachepolicy > CPOLICY_WRITETHROUGH) 285 cachepolicy = CPOLICY_WRITETHROUGH; 286 #endif 287 } 288 if (cpu_arch < CPU_ARCH_ARMv5) { 289 if (cachepolicy >= CPOLICY_WRITEALLOC) 290 cachepolicy = CPOLICY_WRITEBACK; 291 ecc_mask = 0; 292 } 293 #ifdef CONFIG_SMP 294 cachepolicy = CPOLICY_WRITEALLOC; 295 #endif 296 297 /* 298 * Strip out features not present on earlier architectures. 299 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those 300 * without extended page tables don't have the 'Shared' bit. 301 */ 302 if (cpu_arch < CPU_ARCH_ARMv5) 303 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 304 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); 305 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) 306 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 307 mem_types[i].prot_sect &= ~PMD_SECT_S; 308 309 /* 310 * ARMv5 and lower, bit 4 must be set for page tables (was: cache 311 * "update-able on write" bit on ARM610). However, Xscale and 312 * Xscale3 require this bit to be cleared. 313 */ 314 if (cpu_is_xscale() || cpu_is_xsc3()) { 315 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 316 mem_types[i].prot_sect &= ~PMD_BIT4; 317 mem_types[i].prot_l1 &= ~PMD_BIT4; 318 } 319 } else if (cpu_arch < CPU_ARCH_ARMv6) { 320 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 321 if (mem_types[i].prot_l1) 322 mem_types[i].prot_l1 |= PMD_BIT4; 323 if (mem_types[i].prot_sect) 324 mem_types[i].prot_sect |= PMD_BIT4; 325 } 326 } 327 328 /* 329 * Mark the device areas according to the CPU/architecture. 330 */ 331 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { 332 if (!cpu_is_xsc3()) { 333 /* 334 * Mark device regions on ARMv6+ as execute-never 335 * to prevent speculative instruction fetches. 336 */ 337 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; 338 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; 339 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; 340 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; 341 } 342 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 343 /* 344 * For ARMv7 with TEX remapping, 345 * - shared device is SXCB=1100 346 * - nonshared device is SXCB=0100 347 * - write combine device mem is SXCB=0001 348 * (Uncached Normal memory) 349 */ 350 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); 351 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); 352 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 353 } else if (cpu_is_xsc3()) { 354 /* 355 * For Xscale3, 356 * - shared device is TEXCB=00101 357 * - nonshared device is TEXCB=01000 358 * - write combine device mem is TEXCB=00100 359 * (Inner/Outer Uncacheable in xsc3 parlance) 360 */ 361 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; 362 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 363 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 364 } else { 365 /* 366 * For ARMv6 and ARMv7 without TEX remapping, 367 * - shared device is TEXCB=00001 368 * - nonshared device is TEXCB=01000 369 * - write combine device mem is TEXCB=00100 370 * (Uncached Normal in ARMv6 parlance). 371 */ 372 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; 373 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 374 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 375 } 376 } else { 377 /* 378 * On others, write combining is "Uncached/Buffered" 379 */ 380 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 381 } 382 383 /* 384 * Now deal with the memory-type mappings 385 */ 386 cp = &cache_policies[cachepolicy]; 387 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; 388 389 #ifndef CONFIG_SMP 390 /* 391 * Only use write-through for non-SMP systems 392 */ 393 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH) 394 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte; 395 #endif 396 397 /* 398 * Enable CPU-specific coherency if supported. 399 * (Only available on XSC3 at the moment.) 400 */ 401 if (arch_is_coherent() && cpu_is_xsc3()) 402 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; 403 404 /* 405 * ARMv6 and above have extended page tables. 406 */ 407 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { 408 /* 409 * Mark cache clean areas and XIP ROM read only 410 * from SVC mode and no access from userspace. 411 */ 412 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 413 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 414 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 415 416 #ifdef CONFIG_SMP 417 /* 418 * Mark memory with the "shared" attribute for SMP systems 419 */ 420 user_pgprot |= L_PTE_SHARED; 421 kern_pgprot |= L_PTE_SHARED; 422 vecs_pgprot |= L_PTE_SHARED; 423 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; 424 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S; 425 #endif 426 } 427 428 /* 429 * Non-cacheable Normal - intended for memory areas that must 430 * not cause dirty cache line writebacks when used 431 */ 432 if (cpu_arch >= CPU_ARCH_ARMv6) { 433 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 434 /* Non-cacheable Normal is XCB = 001 */ 435 mem_types[MT_MEMORY_NONCACHED].prot_sect |= 436 PMD_SECT_BUFFERED; 437 } else { 438 /* For both ARMv6 and non-TEX-remapping ARMv7 */ 439 mem_types[MT_MEMORY_NONCACHED].prot_sect |= 440 PMD_SECT_TEX(1); 441 } 442 } else { 443 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; 444 } 445 446 for (i = 0; i < 16; i++) { 447 unsigned long v = pgprot_val(protection_map[i]); 448 protection_map[i] = __pgprot(v | user_pgprot); 449 } 450 451 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; 452 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; 453 454 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); 455 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | 456 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot); 457 458 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; 459 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; 460 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; 461 mem_types[MT_ROM].prot_sect |= cp->pmd; 462 463 switch (cp->pmd) { 464 case PMD_SECT_WT: 465 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; 466 break; 467 case PMD_SECT_WB: 468 case PMD_SECT_WBWA: 469 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; 470 break; 471 } 472 printk("Memory policy: ECC %sabled, Data cache %s\n", 473 ecc_mask ? "en" : "dis", cp->policy); 474 475 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 476 struct mem_type *t = &mem_types[i]; 477 if (t->prot_l1) 478 t->prot_l1 |= PMD_DOMAIN(t->domain); 479 if (t->prot_sect) 480 t->prot_sect |= PMD_DOMAIN(t->domain); 481 } 482 } 483 484 #define vectors_base() (vectors_high() ? 0xffff0000 : 0) 485 486 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, 487 unsigned long end, unsigned long pfn, 488 const struct mem_type *type) 489 { 490 pte_t *pte; 491 492 if (pmd_none(*pmd)) { 493 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t)); 494 __pmd_populate(pmd, __pa(pte) | type->prot_l1); 495 } 496 497 pte = pte_offset_kernel(pmd, addr); 498 do { 499 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0); 500 pfn++; 501 } while (pte++, addr += PAGE_SIZE, addr != end); 502 } 503 504 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr, 505 unsigned long end, unsigned long phys, 506 const struct mem_type *type) 507 { 508 pmd_t *pmd = pmd_offset(pgd, addr); 509 510 /* 511 * Try a section mapping - end, addr and phys must all be aligned 512 * to a section boundary. Note that PMDs refer to the individual 513 * L1 entries, whereas PGDs refer to a group of L1 entries making 514 * up one logical pointer to an L2 table. 515 */ 516 if (((addr | end | phys) & ~SECTION_MASK) == 0) { 517 pmd_t *p = pmd; 518 519 if (addr & SECTION_SIZE) 520 pmd++; 521 522 do { 523 *pmd = __pmd(phys | type->prot_sect); 524 phys += SECTION_SIZE; 525 } while (pmd++, addr += SECTION_SIZE, addr != end); 526 527 flush_pmd_entry(p); 528 } else { 529 /* 530 * No need to loop; pte's aren't interested in the 531 * individual L1 entries. 532 */ 533 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type); 534 } 535 } 536 537 static void __init create_36bit_mapping(struct map_desc *md, 538 const struct mem_type *type) 539 { 540 unsigned long phys, addr, length, end; 541 pgd_t *pgd; 542 543 addr = md->virtual; 544 phys = (unsigned long)__pfn_to_phys(md->pfn); 545 length = PAGE_ALIGN(md->length); 546 547 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { 548 printk(KERN_ERR "MM: CPU does not support supersection " 549 "mapping for 0x%08llx at 0x%08lx\n", 550 __pfn_to_phys((u64)md->pfn), addr); 551 return; 552 } 553 554 /* N.B. ARMv6 supersections are only defined to work with domain 0. 555 * Since domain assignments can in fact be arbitrary, the 556 * 'domain == 0' check below is required to insure that ARMv6 557 * supersections are only allocated for domain 0 regardless 558 * of the actual domain assignments in use. 559 */ 560 if (type->domain) { 561 printk(KERN_ERR "MM: invalid domain in supersection " 562 "mapping for 0x%08llx at 0x%08lx\n", 563 __pfn_to_phys((u64)md->pfn), addr); 564 return; 565 } 566 567 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { 568 printk(KERN_ERR "MM: cannot create mapping for " 569 "0x%08llx at 0x%08lx invalid alignment\n", 570 __pfn_to_phys((u64)md->pfn), addr); 571 return; 572 } 573 574 /* 575 * Shift bits [35:32] of address into bits [23:20] of PMD 576 * (See ARMv6 spec). 577 */ 578 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); 579 580 pgd = pgd_offset_k(addr); 581 end = addr + length; 582 do { 583 pmd_t *pmd = pmd_offset(pgd, addr); 584 int i; 585 586 for (i = 0; i < 16; i++) 587 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER); 588 589 addr += SUPERSECTION_SIZE; 590 phys += SUPERSECTION_SIZE; 591 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; 592 } while (addr != end); 593 } 594 595 /* 596 * Create the page directory entries and any necessary 597 * page tables for the mapping specified by `md'. We 598 * are able to cope here with varying sizes and address 599 * offsets, and we take full advantage of sections and 600 * supersections. 601 */ 602 void __init create_mapping(struct map_desc *md) 603 { 604 unsigned long phys, addr, length, end; 605 const struct mem_type *type; 606 pgd_t *pgd; 607 608 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { 609 printk(KERN_WARNING "BUG: not creating mapping for " 610 "0x%08llx at 0x%08lx in user region\n", 611 __pfn_to_phys((u64)md->pfn), md->virtual); 612 return; 613 } 614 615 if ((md->type == MT_DEVICE || md->type == MT_ROM) && 616 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { 617 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx " 618 "overlaps vmalloc space\n", 619 __pfn_to_phys((u64)md->pfn), md->virtual); 620 } 621 622 type = &mem_types[md->type]; 623 624 /* 625 * Catch 36-bit addresses 626 */ 627 if (md->pfn >= 0x100000) { 628 create_36bit_mapping(md, type); 629 return; 630 } 631 632 addr = md->virtual & PAGE_MASK; 633 phys = (unsigned long)__pfn_to_phys(md->pfn); 634 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 635 636 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { 637 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " 638 "be mapped using pages, ignoring.\n", 639 __pfn_to_phys(md->pfn), addr); 640 return; 641 } 642 643 pgd = pgd_offset_k(addr); 644 end = addr + length; 645 do { 646 unsigned long next = pgd_addr_end(addr, end); 647 648 alloc_init_section(pgd, addr, next, phys, type); 649 650 phys += next - addr; 651 addr = next; 652 } while (pgd++, addr != end); 653 } 654 655 /* 656 * Create the architecture specific mappings 657 */ 658 void __init iotable_init(struct map_desc *io_desc, int nr) 659 { 660 int i; 661 662 for (i = 0; i < nr; i++) 663 create_mapping(io_desc + i); 664 } 665 666 static unsigned long __initdata vmalloc_reserve = SZ_128M; 667 668 /* 669 * vmalloc=size forces the vmalloc area to be exactly 'size' 670 * bytes. This can be used to increase (or decrease) the vmalloc 671 * area - the default is 128m. 672 */ 673 static void __init early_vmalloc(char **arg) 674 { 675 vmalloc_reserve = memparse(*arg, arg); 676 677 if (vmalloc_reserve < SZ_16M) { 678 vmalloc_reserve = SZ_16M; 679 printk(KERN_WARNING 680 "vmalloc area too small, limiting to %luMB\n", 681 vmalloc_reserve >> 20); 682 } 683 684 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { 685 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); 686 printk(KERN_WARNING 687 "vmalloc area is too big, limiting to %luMB\n", 688 vmalloc_reserve >> 20); 689 } 690 } 691 __early_param("vmalloc=", early_vmalloc); 692 693 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve) 694 695 static void __init sanity_check_meminfo(void) 696 { 697 int i, j, highmem = 0; 698 699 for (i = 0, j = 0; i < meminfo.nr_banks; i++) { 700 struct membank *bank = &meminfo.bank[j]; 701 *bank = meminfo.bank[i]; 702 703 #ifdef CONFIG_HIGHMEM 704 if (__va(bank->start) > VMALLOC_MIN || 705 __va(bank->start) < (void *)PAGE_OFFSET) 706 highmem = 1; 707 708 bank->highmem = highmem; 709 710 /* 711 * Split those memory banks which are partially overlapping 712 * the vmalloc area greatly simplifying things later. 713 */ 714 if (__va(bank->start) < VMALLOC_MIN && 715 bank->size > VMALLOC_MIN - __va(bank->start)) { 716 if (meminfo.nr_banks >= NR_BANKS) { 717 printk(KERN_CRIT "NR_BANKS too low, " 718 "ignoring high memory\n"); 719 } else { 720 memmove(bank + 1, bank, 721 (meminfo.nr_banks - i) * sizeof(*bank)); 722 meminfo.nr_banks++; 723 i++; 724 bank[1].size -= VMALLOC_MIN - __va(bank->start); 725 bank[1].start = __pa(VMALLOC_MIN - 1) + 1; 726 bank[1].highmem = highmem = 1; 727 j++; 728 } 729 bank->size = VMALLOC_MIN - __va(bank->start); 730 } 731 #else 732 bank->highmem = highmem; 733 734 /* 735 * Check whether this memory bank would entirely overlap 736 * the vmalloc area. 737 */ 738 if (__va(bank->start) >= VMALLOC_MIN || 739 __va(bank->start) < (void *)PAGE_OFFSET) { 740 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx " 741 "(vmalloc region overlap).\n", 742 bank->start, bank->start + bank->size - 1); 743 continue; 744 } 745 746 /* 747 * Check whether this memory bank would partially overlap 748 * the vmalloc area. 749 */ 750 if (__va(bank->start + bank->size) > VMALLOC_MIN || 751 __va(bank->start + bank->size) < __va(bank->start)) { 752 unsigned long newsize = VMALLOC_MIN - __va(bank->start); 753 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx " 754 "to -%.8lx (vmalloc region overlap).\n", 755 bank->start, bank->start + bank->size - 1, 756 bank->start + newsize - 1); 757 bank->size = newsize; 758 } 759 #endif 760 j++; 761 } 762 #ifdef CONFIG_HIGHMEM 763 if (highmem) { 764 const char *reason = NULL; 765 766 if (cache_is_vipt_aliasing()) { 767 /* 768 * Interactions between kmap and other mappings 769 * make highmem support with aliasing VIPT caches 770 * rather difficult. 771 */ 772 reason = "with VIPT aliasing cache"; 773 #ifdef CONFIG_SMP 774 } else if (tlb_ops_need_broadcast()) { 775 /* 776 * kmap_high needs to occasionally flush TLB entries, 777 * however, if the TLB entries need to be broadcast 778 * we may deadlock: 779 * kmap_high(irqs off)->flush_all_zero_pkmaps-> 780 * flush_tlb_kernel_range->smp_call_function_many 781 * (must not be called with irqs off) 782 */ 783 reason = "without hardware TLB ops broadcasting"; 784 #endif 785 } 786 if (reason) { 787 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n", 788 reason); 789 while (j > 0 && meminfo.bank[j - 1].highmem) 790 j--; 791 } 792 } 793 #endif 794 meminfo.nr_banks = j; 795 } 796 797 static inline void prepare_page_table(void) 798 { 799 unsigned long addr; 800 801 /* 802 * Clear out all the mappings below the kernel image. 803 */ 804 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE) 805 pmd_clear(pmd_off_k(addr)); 806 807 #ifdef CONFIG_XIP_KERNEL 808 /* The XIP kernel is mapped in the module area -- skip over it */ 809 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK; 810 #endif 811 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) 812 pmd_clear(pmd_off_k(addr)); 813 814 /* 815 * Clear out all the kernel space mappings, except for the first 816 * memory bank, up to the end of the vmalloc region. 817 */ 818 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0])); 819 addr < VMALLOC_END; addr += PGDIR_SIZE) 820 pmd_clear(pmd_off_k(addr)); 821 } 822 823 /* 824 * Reserve the various regions of node 0 825 */ 826 void __init reserve_node_zero(pg_data_t *pgdat) 827 { 828 unsigned long res_size = 0; 829 830 /* 831 * Register the kernel text and data with bootmem. 832 * Note that this can only be in node 0. 833 */ 834 #ifdef CONFIG_XIP_KERNEL 835 reserve_bootmem_node(pgdat, __pa(_data), _end - _data, 836 BOOTMEM_DEFAULT); 837 #else 838 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext, 839 BOOTMEM_DEFAULT); 840 #endif 841 842 /* 843 * Reserve the page tables. These are already in use, 844 * and can only be in node 0. 845 */ 846 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), 847 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT); 848 849 /* 850 * Hmm... This should go elsewhere, but we really really need to 851 * stop things allocating the low memory; ideally we need a better 852 * implementation of GFP_DMA which does not assume that DMA-able 853 * memory starts at zero. 854 */ 855 if (machine_is_integrator() || machine_is_cintegrator()) 856 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; 857 858 /* 859 * These should likewise go elsewhere. They pre-reserve the 860 * screen memory region at the start of main system memory. 861 */ 862 if (machine_is_edb7211()) 863 res_size = 0x00020000; 864 if (machine_is_p720t()) 865 res_size = 0x00014000; 866 867 /* H1940 and RX3715 need to reserve this for suspend */ 868 869 if (machine_is_h1940() || machine_is_rx3715()) { 870 reserve_bootmem_node(pgdat, 0x30003000, 0x1000, 871 BOOTMEM_DEFAULT); 872 reserve_bootmem_node(pgdat, 0x30081000, 0x1000, 873 BOOTMEM_DEFAULT); 874 } 875 876 if (machine_is_palmld() || machine_is_palmtx()) { 877 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000, 878 BOOTMEM_EXCLUSIVE); 879 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000, 880 BOOTMEM_EXCLUSIVE); 881 } 882 883 if (machine_is_treo680() || machine_is_centro()) { 884 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000, 885 BOOTMEM_EXCLUSIVE); 886 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000, 887 BOOTMEM_EXCLUSIVE); 888 } 889 890 if (machine_is_palmt5()) 891 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000, 892 BOOTMEM_EXCLUSIVE); 893 894 /* 895 * U300 - This platform family can share physical memory 896 * between two ARM cpus, one running Linux and the other 897 * running another OS. 898 */ 899 if (machine_is_u300()) { 900 #ifdef CONFIG_MACH_U300_SINGLE_RAM 901 #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \ 902 CONFIG_MACH_U300_2MB_ALIGNMENT_FIX 903 res_size = 0x00100000; 904 #endif 905 #endif 906 } 907 908 #ifdef CONFIG_SA1111 909 /* 910 * Because of the SA1111 DMA bug, we want to preserve our 911 * precious DMA-able memory... 912 */ 913 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; 914 #endif 915 if (res_size) 916 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size, 917 BOOTMEM_DEFAULT); 918 } 919 920 /* 921 * Set up device the mappings. Since we clear out the page tables for all 922 * mappings above VMALLOC_END, we will remove any debug device mappings. 923 * This means you have to be careful how you debug this function, or any 924 * called function. This means you can't use any function or debugging 925 * method which may touch any device, otherwise the kernel _will_ crash. 926 */ 927 static void __init devicemaps_init(struct machine_desc *mdesc) 928 { 929 struct map_desc map; 930 unsigned long addr; 931 void *vectors; 932 933 /* 934 * Allocate the vector page early. 935 */ 936 vectors = alloc_bootmem_low_pages(PAGE_SIZE); 937 938 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) 939 pmd_clear(pmd_off_k(addr)); 940 941 /* 942 * Map the kernel if it is XIP. 943 * It is always first in the modulearea. 944 */ 945 #ifdef CONFIG_XIP_KERNEL 946 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); 947 map.virtual = MODULES_VADDR; 948 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK; 949 map.type = MT_ROM; 950 create_mapping(&map); 951 #endif 952 953 /* 954 * Map the cache flushing regions. 955 */ 956 #ifdef FLUSH_BASE 957 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 958 map.virtual = FLUSH_BASE; 959 map.length = SZ_1M; 960 map.type = MT_CACHECLEAN; 961 create_mapping(&map); 962 #endif 963 #ifdef FLUSH_BASE_MINICACHE 964 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); 965 map.virtual = FLUSH_BASE_MINICACHE; 966 map.length = SZ_1M; 967 map.type = MT_MINICLEAN; 968 create_mapping(&map); 969 #endif 970 971 /* 972 * Create a mapping for the machine vectors at the high-vectors 973 * location (0xffff0000). If we aren't using high-vectors, also 974 * create a mapping at the low-vectors virtual address. 975 */ 976 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 977 map.virtual = 0xffff0000; 978 map.length = PAGE_SIZE; 979 map.type = MT_HIGH_VECTORS; 980 create_mapping(&map); 981 982 if (!vectors_high()) { 983 map.virtual = 0; 984 map.type = MT_LOW_VECTORS; 985 create_mapping(&map); 986 } 987 988 /* 989 * Ask the machine support to map in the statically mapped devices. 990 */ 991 if (mdesc->map_io) 992 mdesc->map_io(); 993 994 /* 995 * Finally flush the caches and tlb to ensure that we're in a 996 * consistent state wrt the writebuffer. This also ensures that 997 * any write-allocated cache lines in the vector page are written 998 * back. After this point, we can start to touch devices again. 999 */ 1000 local_flush_tlb_all(); 1001 flush_cache_all(); 1002 } 1003 1004 static void __init kmap_init(void) 1005 { 1006 #ifdef CONFIG_HIGHMEM 1007 pmd_t *pmd = pmd_off_k(PKMAP_BASE); 1008 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t)); 1009 BUG_ON(!pmd_none(*pmd) || !pte); 1010 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE); 1011 pkmap_page_table = pte + PTRS_PER_PTE; 1012 #endif 1013 } 1014 1015 /* 1016 * paging_init() sets up the page tables, initialises the zone memory 1017 * maps, and sets up the zero page, bad page and bad page tables. 1018 */ 1019 void __init paging_init(struct machine_desc *mdesc) 1020 { 1021 void *zero_page; 1022 1023 build_mem_type_table(); 1024 sanity_check_meminfo(); 1025 prepare_page_table(); 1026 bootmem_init(); 1027 devicemaps_init(mdesc); 1028 kmap_init(); 1029 1030 top_pmd = pmd_off_k(0xffff0000); 1031 1032 /* 1033 * allocate the zero page. Note that this always succeeds and 1034 * returns a zeroed result. 1035 */ 1036 zero_page = alloc_bootmem_low_pages(PAGE_SIZE); 1037 empty_zero_page = virt_to_page(zero_page); 1038 __flush_dcache_page(NULL, empty_zero_page); 1039 } 1040 1041 /* 1042 * In order to soft-boot, we need to insert a 1:1 mapping in place of 1043 * the user-mode pages. This will then ensure that we have predictable 1044 * results when turning the mmu off 1045 */ 1046 void setup_mm_for_reboot(char mode) 1047 { 1048 unsigned long base_pmdval; 1049 pgd_t *pgd; 1050 int i; 1051 1052 if (current->mm && current->mm->pgd) 1053 pgd = current->mm->pgd; 1054 else 1055 pgd = init_mm.pgd; 1056 1057 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT; 1058 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale()) 1059 base_pmdval |= PMD_BIT4; 1060 1061 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) { 1062 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval; 1063 pmd_t *pmd; 1064 1065 pmd = pmd_off(pgd, i << PGDIR_SHIFT); 1066 pmd[0] = __pmd(pmdval); 1067 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1))); 1068 flush_pmd_entry(pmd); 1069 } 1070 } 1071