xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 69dbdd819599e2f3b77c172e83af512845bca5ad)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
30 
31 #include "mm.h"
32 
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34 
35 /*
36  * empty_zero_page is a special page that is used for
37  * zero-initialized data and COW.
38  */
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
41 
42 /*
43  * The pmd table for the upper-most set of pages.
44  */
45 pmd_t *top_pmd;
46 
47 #define CPOLICY_UNCACHED	0
48 #define CPOLICY_BUFFERED	1
49 #define CPOLICY_WRITETHROUGH	2
50 #define CPOLICY_WRITEBACK	3
51 #define CPOLICY_WRITEALLOC	4
52 
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
57 
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
60 
61 struct cachepolicy {
62 	const char	policy[16];
63 	unsigned int	cr_mask;
64 	unsigned int	pmd;
65 	unsigned int	pte;
66 };
67 
68 static struct cachepolicy cache_policies[] __initdata = {
69 	{
70 		.policy		= "uncached",
71 		.cr_mask	= CR_W|CR_C,
72 		.pmd		= PMD_SECT_UNCACHED,
73 		.pte		= L_PTE_MT_UNCACHED,
74 	}, {
75 		.policy		= "buffered",
76 		.cr_mask	= CR_C,
77 		.pmd		= PMD_SECT_BUFFERED,
78 		.pte		= L_PTE_MT_BUFFERABLE,
79 	}, {
80 		.policy		= "writethrough",
81 		.cr_mask	= 0,
82 		.pmd		= PMD_SECT_WT,
83 		.pte		= L_PTE_MT_WRITETHROUGH,
84 	}, {
85 		.policy		= "writeback",
86 		.cr_mask	= 0,
87 		.pmd		= PMD_SECT_WB,
88 		.pte		= L_PTE_MT_WRITEBACK,
89 	}, {
90 		.policy		= "writealloc",
91 		.cr_mask	= 0,
92 		.pmd		= PMD_SECT_WBWA,
93 		.pte		= L_PTE_MT_WRITEALLOC,
94 	}
95 };
96 
97 /*
98  * These are useful for identifying cache coherency
99  * problems by allowing the cache or the cache and
100  * writebuffer to be turned off.  (Note: the write
101  * buffer should not be on and the cache off).
102  */
103 static int __init early_cachepolicy(char *p)
104 {
105 	int i;
106 
107 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 		int len = strlen(cache_policies[i].policy);
109 
110 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
111 			cachepolicy = i;
112 			cr_alignment &= ~cache_policies[i].cr_mask;
113 			cr_no_alignment &= ~cache_policies[i].cr_mask;
114 			break;
115 		}
116 	}
117 	if (i == ARRAY_SIZE(cache_policies))
118 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 	/*
120 	 * This restriction is partly to do with the way we boot; it is
121 	 * unpredictable to have memory mapped using two different sets of
122 	 * memory attributes (shared, type, and cache attribs).  We can not
123 	 * change these attributes once the initial assembly has setup the
124 	 * page tables.
125 	 */
126 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128 		cachepolicy = CPOLICY_WRITEBACK;
129 	}
130 	flush_cache_all();
131 	set_cr(cr_alignment);
132 	return 0;
133 }
134 early_param("cachepolicy", early_cachepolicy);
135 
136 static int __init early_nocache(char *__unused)
137 {
138 	char *p = "buffered";
139 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 	early_cachepolicy(p);
141 	return 0;
142 }
143 early_param("nocache", early_nocache);
144 
145 static int __init early_nowrite(char *__unused)
146 {
147 	char *p = "uncached";
148 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149 	early_cachepolicy(p);
150 	return 0;
151 }
152 early_param("nowb", early_nowrite);
153 
154 static int __init early_ecc(char *p)
155 {
156 	if (memcmp(p, "on", 2) == 0)
157 		ecc_mask = PMD_PROTECTION;
158 	else if (memcmp(p, "off", 3) == 0)
159 		ecc_mask = 0;
160 	return 0;
161 }
162 early_param("ecc", early_ecc);
163 
164 static int __init noalign_setup(char *__unused)
165 {
166 	cr_alignment &= ~CR_A;
167 	cr_no_alignment &= ~CR_A;
168 	set_cr(cr_alignment);
169 	return 1;
170 }
171 __setup("noalign", noalign_setup);
172 
173 #ifndef CONFIG_SMP
174 void adjust_cr(unsigned long mask, unsigned long set)
175 {
176 	unsigned long flags;
177 
178 	mask &= ~CR_A;
179 
180 	set &= mask;
181 
182 	local_irq_save(flags);
183 
184 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 	cr_alignment = (cr_alignment & ~mask) | set;
186 
187 	set_cr((get_cr() & ~mask) | set);
188 
189 	local_irq_restore(flags);
190 }
191 #endif
192 
193 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
194 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195 
196 static struct mem_type mem_types[] = {
197 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
198 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 				  L_PTE_SHARED,
200 		.prot_l1	= PMD_TYPE_TABLE,
201 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
202 		.domain		= DOMAIN_IO,
203 	},
204 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206 		.prot_l1	= PMD_TYPE_TABLE,
207 		.prot_sect	= PROT_SECT_DEVICE,
208 		.domain		= DOMAIN_IO,
209 	},
210 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
211 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212 		.prot_l1	= PMD_TYPE_TABLE,
213 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
214 		.domain		= DOMAIN_IO,
215 	},
216 	[MT_DEVICE_WC] = {	/* ioremap_wc */
217 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218 		.prot_l1	= PMD_TYPE_TABLE,
219 		.prot_sect	= PROT_SECT_DEVICE,
220 		.domain		= DOMAIN_IO,
221 	},
222 	[MT_UNCACHED] = {
223 		.prot_pte	= PROT_PTE_DEVICE,
224 		.prot_l1	= PMD_TYPE_TABLE,
225 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
226 		.domain		= DOMAIN_IO,
227 	},
228 	[MT_CACHECLEAN] = {
229 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 		.domain    = DOMAIN_KERNEL,
231 	},
232 	[MT_MINICLEAN] = {
233 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234 		.domain    = DOMAIN_KERNEL,
235 	},
236 	[MT_LOW_VECTORS] = {
237 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238 				L_PTE_EXEC,
239 		.prot_l1   = PMD_TYPE_TABLE,
240 		.domain    = DOMAIN_USER,
241 	},
242 	[MT_HIGH_VECTORS] = {
243 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 				L_PTE_USER | L_PTE_EXEC,
245 		.prot_l1   = PMD_TYPE_TABLE,
246 		.domain    = DOMAIN_USER,
247 	},
248 	[MT_MEMORY] = {
249 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250 				L_PTE_WRITE | L_PTE_EXEC,
251 		.prot_l1   = PMD_TYPE_TABLE,
252 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
253 		.domain    = DOMAIN_KERNEL,
254 	},
255 	[MT_ROM] = {
256 		.prot_sect = PMD_TYPE_SECT,
257 		.domain    = DOMAIN_KERNEL,
258 	},
259 	[MT_MEMORY_NONCACHED] = {
260 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
261 				L_PTE_WRITE | L_PTE_EXEC | L_PTE_MT_BUFFERABLE,
262 		.prot_l1   = PMD_TYPE_TABLE,
263 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
264 		.domain    = DOMAIN_KERNEL,
265 	},
266 	[MT_MEMORY_DTCM] = {
267 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
268 				L_PTE_WRITE,
269 		.prot_l1   = PMD_TYPE_TABLE,
270 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
271 		.domain    = DOMAIN_KERNEL,
272 	},
273 	[MT_MEMORY_ITCM] = {
274 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
275 				L_PTE_WRITE | L_PTE_EXEC,
276 		.prot_l1   = PMD_TYPE_TABLE,
277 		.domain    = DOMAIN_KERNEL,
278 	},
279 };
280 
281 const struct mem_type *get_mem_type(unsigned int type)
282 {
283 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
284 }
285 EXPORT_SYMBOL(get_mem_type);
286 
287 /*
288  * Adjust the PMD section entries according to the CPU in use.
289  */
290 static void __init build_mem_type_table(void)
291 {
292 	struct cachepolicy *cp;
293 	unsigned int cr = get_cr();
294 	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
295 	int cpu_arch = cpu_architecture();
296 	int i;
297 
298 	if (cpu_arch < CPU_ARCH_ARMv6) {
299 #if defined(CONFIG_CPU_DCACHE_DISABLE)
300 		if (cachepolicy > CPOLICY_BUFFERED)
301 			cachepolicy = CPOLICY_BUFFERED;
302 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
303 		if (cachepolicy > CPOLICY_WRITETHROUGH)
304 			cachepolicy = CPOLICY_WRITETHROUGH;
305 #endif
306 	}
307 	if (cpu_arch < CPU_ARCH_ARMv5) {
308 		if (cachepolicy >= CPOLICY_WRITEALLOC)
309 			cachepolicy = CPOLICY_WRITEBACK;
310 		ecc_mask = 0;
311 	}
312 	if (is_smp())
313 		cachepolicy = CPOLICY_WRITEALLOC;
314 
315 	/*
316 	 * Strip out features not present on earlier architectures.
317 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
318 	 * without extended page tables don't have the 'Shared' bit.
319 	 */
320 	if (cpu_arch < CPU_ARCH_ARMv5)
321 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
322 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
323 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
324 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
325 			mem_types[i].prot_sect &= ~PMD_SECT_S;
326 
327 	/*
328 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
329 	 * "update-able on write" bit on ARM610).  However, Xscale and
330 	 * Xscale3 require this bit to be cleared.
331 	 */
332 	if (cpu_is_xscale() || cpu_is_xsc3()) {
333 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
334 			mem_types[i].prot_sect &= ~PMD_BIT4;
335 			mem_types[i].prot_l1 &= ~PMD_BIT4;
336 		}
337 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
338 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
339 			if (mem_types[i].prot_l1)
340 				mem_types[i].prot_l1 |= PMD_BIT4;
341 			if (mem_types[i].prot_sect)
342 				mem_types[i].prot_sect |= PMD_BIT4;
343 		}
344 	}
345 
346 	/*
347 	 * Mark the device areas according to the CPU/architecture.
348 	 */
349 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
350 		if (!cpu_is_xsc3()) {
351 			/*
352 			 * Mark device regions on ARMv6+ as execute-never
353 			 * to prevent speculative instruction fetches.
354 			 */
355 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
356 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
357 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
358 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
359 		}
360 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
361 			/*
362 			 * For ARMv7 with TEX remapping,
363 			 * - shared device is SXCB=1100
364 			 * - nonshared device is SXCB=0100
365 			 * - write combine device mem is SXCB=0001
366 			 * (Uncached Normal memory)
367 			 */
368 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
369 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
370 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
371 		} else if (cpu_is_xsc3()) {
372 			/*
373 			 * For Xscale3,
374 			 * - shared device is TEXCB=00101
375 			 * - nonshared device is TEXCB=01000
376 			 * - write combine device mem is TEXCB=00100
377 			 * (Inner/Outer Uncacheable in xsc3 parlance)
378 			 */
379 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
380 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
381 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
382 		} else {
383 			/*
384 			 * For ARMv6 and ARMv7 without TEX remapping,
385 			 * - shared device is TEXCB=00001
386 			 * - nonshared device is TEXCB=01000
387 			 * - write combine device mem is TEXCB=00100
388 			 * (Uncached Normal in ARMv6 parlance).
389 			 */
390 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
391 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
392 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
393 		}
394 	} else {
395 		/*
396 		 * On others, write combining is "Uncached/Buffered"
397 		 */
398 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
399 	}
400 
401 	/*
402 	 * Now deal with the memory-type mappings
403 	 */
404 	cp = &cache_policies[cachepolicy];
405 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
406 
407 	/*
408 	 * Only use write-through for non-SMP systems
409 	 */
410 	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
411 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
412 
413 	/*
414 	 * Enable CPU-specific coherency if supported.
415 	 * (Only available on XSC3 at the moment.)
416 	 */
417 	if (arch_is_coherent() && cpu_is_xsc3()) {
418 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
419 		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
420 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
421 		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
422 	}
423 	/*
424 	 * ARMv6 and above have extended page tables.
425 	 */
426 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
427 		/*
428 		 * Mark cache clean areas and XIP ROM read only
429 		 * from SVC mode and no access from userspace.
430 		 */
431 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
432 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
433 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
434 
435 		if (is_smp()) {
436 			/*
437 			 * Mark memory with the "shared" attribute
438 			 * for SMP systems
439 			 */
440 			user_pgprot |= L_PTE_SHARED;
441 			kern_pgprot |= L_PTE_SHARED;
442 			vecs_pgprot |= L_PTE_SHARED;
443 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
444 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
445 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
446 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
447 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
448 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
449 			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
450 			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
451 		}
452 	}
453 
454 	/*
455 	 * Non-cacheable Normal - intended for memory areas that must
456 	 * not cause dirty cache line writebacks when used
457 	 */
458 	if (cpu_arch >= CPU_ARCH_ARMv6) {
459 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
460 			/* Non-cacheable Normal is XCB = 001 */
461 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
462 				PMD_SECT_BUFFERED;
463 		} else {
464 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
465 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
466 				PMD_SECT_TEX(1);
467 		}
468 	} else {
469 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
470 	}
471 
472 	for (i = 0; i < 16; i++) {
473 		unsigned long v = pgprot_val(protection_map[i]);
474 		protection_map[i] = __pgprot(v | user_pgprot);
475 	}
476 
477 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
478 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
479 
480 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
481 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
482 				 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
483 
484 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
485 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
486 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
487 	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
488 	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
489 	mem_types[MT_ROM].prot_sect |= cp->pmd;
490 
491 	switch (cp->pmd) {
492 	case PMD_SECT_WT:
493 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
494 		break;
495 	case PMD_SECT_WB:
496 	case PMD_SECT_WBWA:
497 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
498 		break;
499 	}
500 	printk("Memory policy: ECC %sabled, Data cache %s\n",
501 		ecc_mask ? "en" : "dis", cp->policy);
502 
503 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
504 		struct mem_type *t = &mem_types[i];
505 		if (t->prot_l1)
506 			t->prot_l1 |= PMD_DOMAIN(t->domain);
507 		if (t->prot_sect)
508 			t->prot_sect |= PMD_DOMAIN(t->domain);
509 	}
510 }
511 
512 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
513 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
514 			      unsigned long size, pgprot_t vma_prot)
515 {
516 	if (!pfn_valid(pfn))
517 		return pgprot_noncached(vma_prot);
518 	else if (file->f_flags & O_SYNC)
519 		return pgprot_writecombine(vma_prot);
520 	return vma_prot;
521 }
522 EXPORT_SYMBOL(phys_mem_access_prot);
523 #endif
524 
525 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
526 
527 static void __init *early_alloc(unsigned long sz)
528 {
529 	void *ptr = __va(memblock_alloc(sz, sz));
530 	memset(ptr, 0, sz);
531 	return ptr;
532 }
533 
534 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
535 {
536 	if (pmd_none(*pmd)) {
537 		pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
538 		__pmd_populate(pmd, __pa(pte) | prot);
539 	}
540 	BUG_ON(pmd_bad(*pmd));
541 	return pte_offset_kernel(pmd, addr);
542 }
543 
544 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
545 				  unsigned long end, unsigned long pfn,
546 				  const struct mem_type *type)
547 {
548 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
549 	do {
550 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
551 		pfn++;
552 	} while (pte++, addr += PAGE_SIZE, addr != end);
553 }
554 
555 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
556 				      unsigned long end, unsigned long phys,
557 				      const struct mem_type *type)
558 {
559 	pmd_t *pmd = pmd_offset(pgd, addr);
560 
561 	/*
562 	 * Try a section mapping - end, addr and phys must all be aligned
563 	 * to a section boundary.  Note that PMDs refer to the individual
564 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
565 	 * up one logical pointer to an L2 table.
566 	 */
567 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
568 		pmd_t *p = pmd;
569 
570 		if (addr & SECTION_SIZE)
571 			pmd++;
572 
573 		do {
574 			*pmd = __pmd(phys | type->prot_sect);
575 			phys += SECTION_SIZE;
576 		} while (pmd++, addr += SECTION_SIZE, addr != end);
577 
578 		flush_pmd_entry(p);
579 	} else {
580 		/*
581 		 * No need to loop; pte's aren't interested in the
582 		 * individual L1 entries.
583 		 */
584 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
585 	}
586 }
587 
588 static void __init create_36bit_mapping(struct map_desc *md,
589 					const struct mem_type *type)
590 {
591 	unsigned long phys, addr, length, end;
592 	pgd_t *pgd;
593 
594 	addr = md->virtual;
595 	phys = (unsigned long)__pfn_to_phys(md->pfn);
596 	length = PAGE_ALIGN(md->length);
597 
598 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
599 		printk(KERN_ERR "MM: CPU does not support supersection "
600 		       "mapping for 0x%08llx at 0x%08lx\n",
601 		       __pfn_to_phys((u64)md->pfn), addr);
602 		return;
603 	}
604 
605 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
606 	 *	Since domain assignments can in fact be arbitrary, the
607 	 *	'domain == 0' check below is required to insure that ARMv6
608 	 *	supersections are only allocated for domain 0 regardless
609 	 *	of the actual domain assignments in use.
610 	 */
611 	if (type->domain) {
612 		printk(KERN_ERR "MM: invalid domain in supersection "
613 		       "mapping for 0x%08llx at 0x%08lx\n",
614 		       __pfn_to_phys((u64)md->pfn), addr);
615 		return;
616 	}
617 
618 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
619 		printk(KERN_ERR "MM: cannot create mapping for "
620 		       "0x%08llx at 0x%08lx invalid alignment\n",
621 		       __pfn_to_phys((u64)md->pfn), addr);
622 		return;
623 	}
624 
625 	/*
626 	 * Shift bits [35:32] of address into bits [23:20] of PMD
627 	 * (See ARMv6 spec).
628 	 */
629 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
630 
631 	pgd = pgd_offset_k(addr);
632 	end = addr + length;
633 	do {
634 		pmd_t *pmd = pmd_offset(pgd, addr);
635 		int i;
636 
637 		for (i = 0; i < 16; i++)
638 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
639 
640 		addr += SUPERSECTION_SIZE;
641 		phys += SUPERSECTION_SIZE;
642 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
643 	} while (addr != end);
644 }
645 
646 /*
647  * Create the page directory entries and any necessary
648  * page tables for the mapping specified by `md'.  We
649  * are able to cope here with varying sizes and address
650  * offsets, and we take full advantage of sections and
651  * supersections.
652  */
653 static void __init create_mapping(struct map_desc *md)
654 {
655 	unsigned long phys, addr, length, end;
656 	const struct mem_type *type;
657 	pgd_t *pgd;
658 
659 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
660 		printk(KERN_WARNING "BUG: not creating mapping for "
661 		       "0x%08llx at 0x%08lx in user region\n",
662 		       __pfn_to_phys((u64)md->pfn), md->virtual);
663 		return;
664 	}
665 
666 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
667 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
668 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
669 		       "overlaps vmalloc space\n",
670 		       __pfn_to_phys((u64)md->pfn), md->virtual);
671 	}
672 
673 	type = &mem_types[md->type];
674 
675 	/*
676 	 * Catch 36-bit addresses
677 	 */
678 	if (md->pfn >= 0x100000) {
679 		create_36bit_mapping(md, type);
680 		return;
681 	}
682 
683 	addr = md->virtual & PAGE_MASK;
684 	phys = (unsigned long)__pfn_to_phys(md->pfn);
685 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
686 
687 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
688 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
689 		       "be mapped using pages, ignoring.\n",
690 		       __pfn_to_phys(md->pfn), addr);
691 		return;
692 	}
693 
694 	pgd = pgd_offset_k(addr);
695 	end = addr + length;
696 	do {
697 		unsigned long next = pgd_addr_end(addr, end);
698 
699 		alloc_init_section(pgd, addr, next, phys, type);
700 
701 		phys += next - addr;
702 		addr = next;
703 	} while (pgd++, addr != end);
704 }
705 
706 /*
707  * Create the architecture specific mappings
708  */
709 void __init iotable_init(struct map_desc *io_desc, int nr)
710 {
711 	int i;
712 
713 	for (i = 0; i < nr; i++)
714 		create_mapping(io_desc + i);
715 }
716 
717 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
718 
719 /*
720  * vmalloc=size forces the vmalloc area to be exactly 'size'
721  * bytes. This can be used to increase (or decrease) the vmalloc
722  * area - the default is 128m.
723  */
724 static int __init early_vmalloc(char *arg)
725 {
726 	unsigned long vmalloc_reserve = memparse(arg, NULL);
727 
728 	if (vmalloc_reserve < SZ_16M) {
729 		vmalloc_reserve = SZ_16M;
730 		printk(KERN_WARNING
731 			"vmalloc area too small, limiting to %luMB\n",
732 			vmalloc_reserve >> 20);
733 	}
734 
735 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
736 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
737 		printk(KERN_WARNING
738 			"vmalloc area is too big, limiting to %luMB\n",
739 			vmalloc_reserve >> 20);
740 	}
741 
742 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
743 	return 0;
744 }
745 early_param("vmalloc", early_vmalloc);
746 
747 static phys_addr_t lowmem_limit __initdata = 0;
748 
749 static void __init sanity_check_meminfo(void)
750 {
751 	int i, j, highmem = 0;
752 
753 	lowmem_limit = __pa(vmalloc_min - 1) + 1;
754 	memblock_set_current_limit(lowmem_limit);
755 
756 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
757 		struct membank *bank = &meminfo.bank[j];
758 		*bank = meminfo.bank[i];
759 
760 #ifdef CONFIG_HIGHMEM
761 		if (__va(bank->start) > vmalloc_min ||
762 		    __va(bank->start) < (void *)PAGE_OFFSET)
763 			highmem = 1;
764 
765 		bank->highmem = highmem;
766 
767 		/*
768 		 * Split those memory banks which are partially overlapping
769 		 * the vmalloc area greatly simplifying things later.
770 		 */
771 		if (__va(bank->start) < vmalloc_min &&
772 		    bank->size > vmalloc_min - __va(bank->start)) {
773 			if (meminfo.nr_banks >= NR_BANKS) {
774 				printk(KERN_CRIT "NR_BANKS too low, "
775 						 "ignoring high memory\n");
776 			} else {
777 				memmove(bank + 1, bank,
778 					(meminfo.nr_banks - i) * sizeof(*bank));
779 				meminfo.nr_banks++;
780 				i++;
781 				bank[1].size -= vmalloc_min - __va(bank->start);
782 				bank[1].start = __pa(vmalloc_min - 1) + 1;
783 				bank[1].highmem = highmem = 1;
784 				j++;
785 			}
786 			bank->size = vmalloc_min - __va(bank->start);
787 		}
788 #else
789 		bank->highmem = highmem;
790 
791 		/*
792 		 * Check whether this memory bank would entirely overlap
793 		 * the vmalloc area.
794 		 */
795 		if (__va(bank->start) >= vmalloc_min ||
796 		    __va(bank->start) < (void *)PAGE_OFFSET) {
797 			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
798 			       "(vmalloc region overlap).\n",
799 			       bank->start, bank->start + bank->size - 1);
800 			continue;
801 		}
802 
803 		/*
804 		 * Check whether this memory bank would partially overlap
805 		 * the vmalloc area.
806 		 */
807 		if (__va(bank->start + bank->size) > vmalloc_min ||
808 		    __va(bank->start + bank->size) < __va(bank->start)) {
809 			unsigned long newsize = vmalloc_min - __va(bank->start);
810 			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
811 			       "to -%.8lx (vmalloc region overlap).\n",
812 			       bank->start, bank->start + bank->size - 1,
813 			       bank->start + newsize - 1);
814 			bank->size = newsize;
815 		}
816 #endif
817 		j++;
818 	}
819 #ifdef CONFIG_HIGHMEM
820 	if (highmem) {
821 		const char *reason = NULL;
822 
823 		if (cache_is_vipt_aliasing()) {
824 			/*
825 			 * Interactions between kmap and other mappings
826 			 * make highmem support with aliasing VIPT caches
827 			 * rather difficult.
828 			 */
829 			reason = "with VIPT aliasing cache";
830 		} else if (is_smp() && tlb_ops_need_broadcast()) {
831 			/*
832 			 * kmap_high needs to occasionally flush TLB entries,
833 			 * however, if the TLB entries need to be broadcast
834 			 * we may deadlock:
835 			 *  kmap_high(irqs off)->flush_all_zero_pkmaps->
836 			 *  flush_tlb_kernel_range->smp_call_function_many
837 			 *   (must not be called with irqs off)
838 			 */
839 			reason = "without hardware TLB ops broadcasting";
840 		}
841 		if (reason) {
842 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
843 				reason);
844 			while (j > 0 && meminfo.bank[j - 1].highmem)
845 				j--;
846 		}
847 	}
848 #endif
849 	meminfo.nr_banks = j;
850 }
851 
852 static inline void prepare_page_table(void)
853 {
854 	unsigned long addr;
855 	phys_addr_t end;
856 
857 	/*
858 	 * Clear out all the mappings below the kernel image.
859 	 */
860 	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
861 		pmd_clear(pmd_off_k(addr));
862 
863 #ifdef CONFIG_XIP_KERNEL
864 	/* The XIP kernel is mapped in the module area -- skip over it */
865 	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
866 #endif
867 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
868 		pmd_clear(pmd_off_k(addr));
869 
870 	/*
871 	 * Find the end of the first block of lowmem.
872 	 */
873 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
874 	if (end >= lowmem_limit)
875 		end = lowmem_limit;
876 
877 	/*
878 	 * Clear out all the kernel space mappings, except for the first
879 	 * memory bank, up to the end of the vmalloc region.
880 	 */
881 	for (addr = __phys_to_virt(end);
882 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
883 		pmd_clear(pmd_off_k(addr));
884 }
885 
886 /*
887  * Reserve the special regions of memory
888  */
889 void __init arm_mm_memblock_reserve(void)
890 {
891 	/*
892 	 * Reserve the page tables.  These are already in use,
893 	 * and can only be in node 0.
894 	 */
895 	memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
896 
897 #ifdef CONFIG_SA1111
898 	/*
899 	 * Because of the SA1111 DMA bug, we want to preserve our
900 	 * precious DMA-able memory...
901 	 */
902 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
903 #endif
904 }
905 
906 /*
907  * Set up device the mappings.  Since we clear out the page tables for all
908  * mappings above VMALLOC_END, we will remove any debug device mappings.
909  * This means you have to be careful how you debug this function, or any
910  * called function.  This means you can't use any function or debugging
911  * method which may touch any device, otherwise the kernel _will_ crash.
912  */
913 static void __init devicemaps_init(struct machine_desc *mdesc)
914 {
915 	struct map_desc map;
916 	unsigned long addr;
917 	void *vectors;
918 
919 	/*
920 	 * Allocate the vector page early.
921 	 */
922 	vectors = early_alloc(PAGE_SIZE);
923 
924 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
925 		pmd_clear(pmd_off_k(addr));
926 
927 	/*
928 	 * Map the kernel if it is XIP.
929 	 * It is always first in the modulearea.
930 	 */
931 #ifdef CONFIG_XIP_KERNEL
932 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
933 	map.virtual = MODULES_VADDR;
934 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
935 	map.type = MT_ROM;
936 	create_mapping(&map);
937 #endif
938 
939 	/*
940 	 * Map the cache flushing regions.
941 	 */
942 #ifdef FLUSH_BASE
943 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
944 	map.virtual = FLUSH_BASE;
945 	map.length = SZ_1M;
946 	map.type = MT_CACHECLEAN;
947 	create_mapping(&map);
948 #endif
949 #ifdef FLUSH_BASE_MINICACHE
950 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
951 	map.virtual = FLUSH_BASE_MINICACHE;
952 	map.length = SZ_1M;
953 	map.type = MT_MINICLEAN;
954 	create_mapping(&map);
955 #endif
956 
957 	/*
958 	 * Create a mapping for the machine vectors at the high-vectors
959 	 * location (0xffff0000).  If we aren't using high-vectors, also
960 	 * create a mapping at the low-vectors virtual address.
961 	 */
962 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
963 	map.virtual = 0xffff0000;
964 	map.length = PAGE_SIZE;
965 	map.type = MT_HIGH_VECTORS;
966 	create_mapping(&map);
967 
968 	if (!vectors_high()) {
969 		map.virtual = 0;
970 		map.type = MT_LOW_VECTORS;
971 		create_mapping(&map);
972 	}
973 
974 	/*
975 	 * Ask the machine support to map in the statically mapped devices.
976 	 */
977 	if (mdesc->map_io)
978 		mdesc->map_io();
979 
980 	/*
981 	 * Finally flush the caches and tlb to ensure that we're in a
982 	 * consistent state wrt the writebuffer.  This also ensures that
983 	 * any write-allocated cache lines in the vector page are written
984 	 * back.  After this point, we can start to touch devices again.
985 	 */
986 	local_flush_tlb_all();
987 	flush_cache_all();
988 }
989 
990 static void __init kmap_init(void)
991 {
992 #ifdef CONFIG_HIGHMEM
993 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
994 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
995 #endif
996 }
997 
998 static void __init map_lowmem(void)
999 {
1000 	struct memblock_region *reg;
1001 
1002 	/* Map all the lowmem memory banks. */
1003 	for_each_memblock(memory, reg) {
1004 		phys_addr_t start = reg->base;
1005 		phys_addr_t end = start + reg->size;
1006 		struct map_desc map;
1007 
1008 		if (end > lowmem_limit)
1009 			end = lowmem_limit;
1010 		if (start >= end)
1011 			break;
1012 
1013 		map.pfn = __phys_to_pfn(start);
1014 		map.virtual = __phys_to_virt(start);
1015 		map.length = end - start;
1016 		map.type = MT_MEMORY;
1017 
1018 		create_mapping(&map);
1019 	}
1020 }
1021 
1022 /*
1023  * paging_init() sets up the page tables, initialises the zone memory
1024  * maps, and sets up the zero page, bad page and bad page tables.
1025  */
1026 void __init paging_init(struct machine_desc *mdesc)
1027 {
1028 	void *zero_page;
1029 
1030 	build_mem_type_table();
1031 	sanity_check_meminfo();
1032 	prepare_page_table();
1033 	map_lowmem();
1034 	devicemaps_init(mdesc);
1035 	kmap_init();
1036 
1037 	top_pmd = pmd_off_k(0xffff0000);
1038 
1039 	/* allocate the zero page. */
1040 	zero_page = early_alloc(PAGE_SIZE);
1041 
1042 	bootmem_init();
1043 
1044 	empty_zero_page = virt_to_page(zero_page);
1045 	__flush_dcache_page(NULL, empty_zero_page);
1046 }
1047 
1048 /*
1049  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1050  * the user-mode pages.  This will then ensure that we have predictable
1051  * results when turning the mmu off
1052  */
1053 void setup_mm_for_reboot(char mode)
1054 {
1055 	unsigned long base_pmdval;
1056 	pgd_t *pgd;
1057 	int i;
1058 
1059 	/*
1060 	 * We need to access to user-mode page tables here. For kernel threads
1061 	 * we don't have any user-mode mappings so we use the context that we
1062 	 * "borrowed".
1063 	 */
1064 	pgd = current->active_mm->pgd;
1065 
1066 	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1067 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1068 		base_pmdval |= PMD_BIT4;
1069 
1070 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1071 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1072 		pmd_t *pmd;
1073 
1074 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1075 		pmd[0] = __pmd(pmdval);
1076 		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1077 		flush_pmd_entry(pmd);
1078 	}
1079 
1080 	local_flush_tlb_all();
1081 }
1082