1 /* 2 * linux/arch/arm/mm/mmu.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/init.h> 14 #include <linux/mman.h> 15 #include <linux/nodemask.h> 16 #include <linux/memblock.h> 17 #include <linux/fs.h> 18 #include <linux/vmalloc.h> 19 #include <linux/sizes.h> 20 21 #include <asm/cp15.h> 22 #include <asm/cputype.h> 23 #include <asm/sections.h> 24 #include <asm/cachetype.h> 25 #include <asm/sections.h> 26 #include <asm/setup.h> 27 #include <asm/smp_plat.h> 28 #include <asm/tlb.h> 29 #include <asm/highmem.h> 30 #include <asm/system_info.h> 31 #include <asm/traps.h> 32 #include <asm/procinfo.h> 33 #include <asm/memory.h> 34 35 #include <asm/mach/arch.h> 36 #include <asm/mach/map.h> 37 #include <asm/mach/pci.h> 38 #include <asm/fixmap.h> 39 40 #include "mm.h" 41 #include "tcm.h" 42 43 /* 44 * empty_zero_page is a special page that is used for 45 * zero-initialized data and COW. 46 */ 47 struct page *empty_zero_page; 48 EXPORT_SYMBOL(empty_zero_page); 49 50 /* 51 * The pmd table for the upper-most set of pages. 52 */ 53 pmd_t *top_pmd; 54 55 #define CPOLICY_UNCACHED 0 56 #define CPOLICY_BUFFERED 1 57 #define CPOLICY_WRITETHROUGH 2 58 #define CPOLICY_WRITEBACK 3 59 #define CPOLICY_WRITEALLOC 4 60 61 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; 62 static unsigned int ecc_mask __initdata = 0; 63 pgprot_t pgprot_user; 64 pgprot_t pgprot_kernel; 65 pgprot_t pgprot_hyp_device; 66 pgprot_t pgprot_s2; 67 pgprot_t pgprot_s2_device; 68 69 EXPORT_SYMBOL(pgprot_user); 70 EXPORT_SYMBOL(pgprot_kernel); 71 72 struct cachepolicy { 73 const char policy[16]; 74 unsigned int cr_mask; 75 pmdval_t pmd; 76 pteval_t pte; 77 pteval_t pte_s2; 78 }; 79 80 #ifdef CONFIG_ARM_LPAE 81 #define s2_policy(policy) policy 82 #else 83 #define s2_policy(policy) 0 84 #endif 85 86 static struct cachepolicy cache_policies[] __initdata = { 87 { 88 .policy = "uncached", 89 .cr_mask = CR_W|CR_C, 90 .pmd = PMD_SECT_UNCACHED, 91 .pte = L_PTE_MT_UNCACHED, 92 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED), 93 }, { 94 .policy = "buffered", 95 .cr_mask = CR_C, 96 .pmd = PMD_SECT_BUFFERED, 97 .pte = L_PTE_MT_BUFFERABLE, 98 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED), 99 }, { 100 .policy = "writethrough", 101 .cr_mask = 0, 102 .pmd = PMD_SECT_WT, 103 .pte = L_PTE_MT_WRITETHROUGH, 104 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH), 105 }, { 106 .policy = "writeback", 107 .cr_mask = 0, 108 .pmd = PMD_SECT_WB, 109 .pte = L_PTE_MT_WRITEBACK, 110 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK), 111 }, { 112 .policy = "writealloc", 113 .cr_mask = 0, 114 .pmd = PMD_SECT_WBWA, 115 .pte = L_PTE_MT_WRITEALLOC, 116 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK), 117 } 118 }; 119 120 #ifdef CONFIG_CPU_CP15 121 static unsigned long initial_pmd_value __initdata = 0; 122 123 /* 124 * Initialise the cache_policy variable with the initial state specified 125 * via the "pmd" value. This is used to ensure that on ARMv6 and later, 126 * the C code sets the page tables up with the same policy as the head 127 * assembly code, which avoids an illegal state where the TLBs can get 128 * confused. See comments in early_cachepolicy() for more information. 129 */ 130 void __init init_default_cache_policy(unsigned long pmd) 131 { 132 int i; 133 134 initial_pmd_value = pmd; 135 136 pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE; 137 138 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) 139 if (cache_policies[i].pmd == pmd) { 140 cachepolicy = i; 141 break; 142 } 143 144 if (i == ARRAY_SIZE(cache_policies)) 145 pr_err("ERROR: could not find cache policy\n"); 146 } 147 148 /* 149 * These are useful for identifying cache coherency problems by allowing 150 * the cache or the cache and writebuffer to be turned off. (Note: the 151 * write buffer should not be on and the cache off). 152 */ 153 static int __init early_cachepolicy(char *p) 154 { 155 int i, selected = -1; 156 157 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { 158 int len = strlen(cache_policies[i].policy); 159 160 if (memcmp(p, cache_policies[i].policy, len) == 0) { 161 selected = i; 162 break; 163 } 164 } 165 166 if (selected == -1) 167 pr_err("ERROR: unknown or unsupported cache policy\n"); 168 169 /* 170 * This restriction is partly to do with the way we boot; it is 171 * unpredictable to have memory mapped using two different sets of 172 * memory attributes (shared, type, and cache attribs). We can not 173 * change these attributes once the initial assembly has setup the 174 * page tables. 175 */ 176 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) { 177 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n", 178 cache_policies[cachepolicy].policy); 179 return 0; 180 } 181 182 if (selected != cachepolicy) { 183 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask); 184 cachepolicy = selected; 185 flush_cache_all(); 186 set_cr(cr); 187 } 188 return 0; 189 } 190 early_param("cachepolicy", early_cachepolicy); 191 192 static int __init early_nocache(char *__unused) 193 { 194 char *p = "buffered"; 195 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p); 196 early_cachepolicy(p); 197 return 0; 198 } 199 early_param("nocache", early_nocache); 200 201 static int __init early_nowrite(char *__unused) 202 { 203 char *p = "uncached"; 204 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p); 205 early_cachepolicy(p); 206 return 0; 207 } 208 early_param("nowb", early_nowrite); 209 210 #ifndef CONFIG_ARM_LPAE 211 static int __init early_ecc(char *p) 212 { 213 if (memcmp(p, "on", 2) == 0) 214 ecc_mask = PMD_PROTECTION; 215 else if (memcmp(p, "off", 3) == 0) 216 ecc_mask = 0; 217 return 0; 218 } 219 early_param("ecc", early_ecc); 220 #endif 221 222 #else /* ifdef CONFIG_CPU_CP15 */ 223 224 static int __init early_cachepolicy(char *p) 225 { 226 pr_warn("cachepolicy kernel parameter not supported without cp15\n"); 227 } 228 early_param("cachepolicy", early_cachepolicy); 229 230 static int __init noalign_setup(char *__unused) 231 { 232 pr_warn("noalign kernel parameter not supported without cp15\n"); 233 } 234 __setup("noalign", noalign_setup); 235 236 #endif /* ifdef CONFIG_CPU_CP15 / else */ 237 238 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN 239 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE 240 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE 241 242 static struct mem_type mem_types[] = { 243 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ 244 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | 245 L_PTE_SHARED, 246 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) | 247 s2_policy(L_PTE_S2_MT_DEV_SHARED) | 248 L_PTE_SHARED, 249 .prot_l1 = PMD_TYPE_TABLE, 250 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, 251 .domain = DOMAIN_IO, 252 }, 253 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ 254 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, 255 .prot_l1 = PMD_TYPE_TABLE, 256 .prot_sect = PROT_SECT_DEVICE, 257 .domain = DOMAIN_IO, 258 }, 259 [MT_DEVICE_CACHED] = { /* ioremap_cached */ 260 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, 261 .prot_l1 = PMD_TYPE_TABLE, 262 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, 263 .domain = DOMAIN_IO, 264 }, 265 [MT_DEVICE_WC] = { /* ioremap_wc */ 266 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, 267 .prot_l1 = PMD_TYPE_TABLE, 268 .prot_sect = PROT_SECT_DEVICE, 269 .domain = DOMAIN_IO, 270 }, 271 [MT_UNCACHED] = { 272 .prot_pte = PROT_PTE_DEVICE, 273 .prot_l1 = PMD_TYPE_TABLE, 274 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 275 .domain = DOMAIN_IO, 276 }, 277 [MT_CACHECLEAN] = { 278 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 279 .domain = DOMAIN_KERNEL, 280 }, 281 #ifndef CONFIG_ARM_LPAE 282 [MT_MINICLEAN] = { 283 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, 284 .domain = DOMAIN_KERNEL, 285 }, 286 #endif 287 [MT_LOW_VECTORS] = { 288 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 289 L_PTE_RDONLY, 290 .prot_l1 = PMD_TYPE_TABLE, 291 .domain = DOMAIN_USER, 292 }, 293 [MT_HIGH_VECTORS] = { 294 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 295 L_PTE_USER | L_PTE_RDONLY, 296 .prot_l1 = PMD_TYPE_TABLE, 297 .domain = DOMAIN_USER, 298 }, 299 [MT_MEMORY_RWX] = { 300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 301 .prot_l1 = PMD_TYPE_TABLE, 302 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 303 .domain = DOMAIN_KERNEL, 304 }, 305 [MT_MEMORY_RW] = { 306 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 307 L_PTE_XN, 308 .prot_l1 = PMD_TYPE_TABLE, 309 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 310 .domain = DOMAIN_KERNEL, 311 }, 312 [MT_ROM] = { 313 .prot_sect = PMD_TYPE_SECT, 314 .domain = DOMAIN_KERNEL, 315 }, 316 [MT_MEMORY_RWX_NONCACHED] = { 317 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 318 L_PTE_MT_BUFFERABLE, 319 .prot_l1 = PMD_TYPE_TABLE, 320 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, 321 .domain = DOMAIN_KERNEL, 322 }, 323 [MT_MEMORY_RW_DTCM] = { 324 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 325 L_PTE_XN, 326 .prot_l1 = PMD_TYPE_TABLE, 327 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, 328 .domain = DOMAIN_KERNEL, 329 }, 330 [MT_MEMORY_RWX_ITCM] = { 331 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, 332 .prot_l1 = PMD_TYPE_TABLE, 333 .domain = DOMAIN_KERNEL, 334 }, 335 [MT_MEMORY_RW_SO] = { 336 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 337 L_PTE_MT_UNCACHED | L_PTE_XN, 338 .prot_l1 = PMD_TYPE_TABLE, 339 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | 340 PMD_SECT_UNCACHED | PMD_SECT_XN, 341 .domain = DOMAIN_KERNEL, 342 }, 343 [MT_MEMORY_DMA_READY] = { 344 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | 345 L_PTE_XN, 346 .prot_l1 = PMD_TYPE_TABLE, 347 .domain = DOMAIN_KERNEL, 348 }, 349 }; 350 351 const struct mem_type *get_mem_type(unsigned int type) 352 { 353 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; 354 } 355 EXPORT_SYMBOL(get_mem_type); 356 357 #define PTE_SET_FN(_name, pteop) \ 358 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \ 359 void *data) \ 360 { \ 361 pte_t pte = pteop(*ptep); \ 362 \ 363 set_pte_ext(ptep, pte, 0); \ 364 return 0; \ 365 } \ 366 367 #define SET_MEMORY_FN(_name, callback) \ 368 int set_memory_##_name(unsigned long addr, int numpages) \ 369 { \ 370 unsigned long start = addr; \ 371 unsigned long size = PAGE_SIZE*numpages; \ 372 unsigned end = start + size; \ 373 \ 374 if (start < MODULES_VADDR || start >= MODULES_END) \ 375 return -EINVAL;\ 376 \ 377 if (end < MODULES_VADDR || end >= MODULES_END) \ 378 return -EINVAL; \ 379 \ 380 apply_to_page_range(&init_mm, start, size, callback, NULL); \ 381 flush_tlb_kernel_range(start, end); \ 382 return 0;\ 383 } 384 385 PTE_SET_FN(ro, pte_wrprotect) 386 PTE_SET_FN(rw, pte_mkwrite) 387 PTE_SET_FN(x, pte_mkexec) 388 PTE_SET_FN(nx, pte_mknexec) 389 390 SET_MEMORY_FN(ro, pte_set_ro) 391 SET_MEMORY_FN(rw, pte_set_rw) 392 SET_MEMORY_FN(x, pte_set_x) 393 SET_MEMORY_FN(nx, pte_set_nx) 394 395 /* 396 * Adjust the PMD section entries according to the CPU in use. 397 */ 398 static void __init build_mem_type_table(void) 399 { 400 struct cachepolicy *cp; 401 unsigned int cr = get_cr(); 402 pteval_t user_pgprot, kern_pgprot, vecs_pgprot; 403 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot; 404 int cpu_arch = cpu_architecture(); 405 int i; 406 407 if (cpu_arch < CPU_ARCH_ARMv6) { 408 #if defined(CONFIG_CPU_DCACHE_DISABLE) 409 if (cachepolicy > CPOLICY_BUFFERED) 410 cachepolicy = CPOLICY_BUFFERED; 411 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) 412 if (cachepolicy > CPOLICY_WRITETHROUGH) 413 cachepolicy = CPOLICY_WRITETHROUGH; 414 #endif 415 } 416 if (cpu_arch < CPU_ARCH_ARMv5) { 417 if (cachepolicy >= CPOLICY_WRITEALLOC) 418 cachepolicy = CPOLICY_WRITEBACK; 419 ecc_mask = 0; 420 } 421 422 if (is_smp()) { 423 if (cachepolicy != CPOLICY_WRITEALLOC) { 424 pr_warn("Forcing write-allocate cache policy for SMP\n"); 425 cachepolicy = CPOLICY_WRITEALLOC; 426 } 427 if (!(initial_pmd_value & PMD_SECT_S)) { 428 pr_warn("Forcing shared mappings for SMP\n"); 429 initial_pmd_value |= PMD_SECT_S; 430 } 431 } 432 433 /* 434 * Strip out features not present on earlier architectures. 435 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those 436 * without extended page tables don't have the 'Shared' bit. 437 */ 438 if (cpu_arch < CPU_ARCH_ARMv5) 439 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 440 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); 441 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) 442 for (i = 0; i < ARRAY_SIZE(mem_types); i++) 443 mem_types[i].prot_sect &= ~PMD_SECT_S; 444 445 /* 446 * ARMv5 and lower, bit 4 must be set for page tables (was: cache 447 * "update-able on write" bit on ARM610). However, Xscale and 448 * Xscale3 require this bit to be cleared. 449 */ 450 if (cpu_is_xscale() || cpu_is_xsc3()) { 451 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 452 mem_types[i].prot_sect &= ~PMD_BIT4; 453 mem_types[i].prot_l1 &= ~PMD_BIT4; 454 } 455 } else if (cpu_arch < CPU_ARCH_ARMv6) { 456 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 457 if (mem_types[i].prot_l1) 458 mem_types[i].prot_l1 |= PMD_BIT4; 459 if (mem_types[i].prot_sect) 460 mem_types[i].prot_sect |= PMD_BIT4; 461 } 462 } 463 464 /* 465 * Mark the device areas according to the CPU/architecture. 466 */ 467 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { 468 if (!cpu_is_xsc3()) { 469 /* 470 * Mark device regions on ARMv6+ as execute-never 471 * to prevent speculative instruction fetches. 472 */ 473 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; 474 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; 475 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; 476 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; 477 478 /* Also setup NX memory mapping */ 479 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; 480 } 481 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 482 /* 483 * For ARMv7 with TEX remapping, 484 * - shared device is SXCB=1100 485 * - nonshared device is SXCB=0100 486 * - write combine device mem is SXCB=0001 487 * (Uncached Normal memory) 488 */ 489 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); 490 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); 491 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 492 } else if (cpu_is_xsc3()) { 493 /* 494 * For Xscale3, 495 * - shared device is TEXCB=00101 496 * - nonshared device is TEXCB=01000 497 * - write combine device mem is TEXCB=00100 498 * (Inner/Outer Uncacheable in xsc3 parlance) 499 */ 500 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; 501 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 502 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 503 } else { 504 /* 505 * For ARMv6 and ARMv7 without TEX remapping, 506 * - shared device is TEXCB=00001 507 * - nonshared device is TEXCB=01000 508 * - write combine device mem is TEXCB=00100 509 * (Uncached Normal in ARMv6 parlance). 510 */ 511 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; 512 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); 513 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); 514 } 515 } else { 516 /* 517 * On others, write combining is "Uncached/Buffered" 518 */ 519 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; 520 } 521 522 /* 523 * Now deal with the memory-type mappings 524 */ 525 cp = &cache_policies[cachepolicy]; 526 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; 527 s2_pgprot = cp->pte_s2; 528 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte; 529 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2; 530 531 /* 532 * We don't use domains on ARMv6 (since this causes problems with 533 * v6/v7 kernels), so we must use a separate memory type for user 534 * r/o, kernel r/w to map the vectors page. 535 */ 536 #ifndef CONFIG_ARM_LPAE 537 if (cpu_arch == CPU_ARCH_ARMv6) 538 vecs_pgprot |= L_PTE_MT_VECTORS; 539 #endif 540 541 /* 542 * ARMv6 and above have extended page tables. 543 */ 544 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { 545 #ifndef CONFIG_ARM_LPAE 546 /* 547 * Mark cache clean areas and XIP ROM read only 548 * from SVC mode and no access from userspace. 549 */ 550 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 551 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 552 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; 553 #endif 554 555 /* 556 * If the initial page tables were created with the S bit 557 * set, then we need to do the same here for the same 558 * reasons given in early_cachepolicy(). 559 */ 560 if (initial_pmd_value & PMD_SECT_S) { 561 user_pgprot |= L_PTE_SHARED; 562 kern_pgprot |= L_PTE_SHARED; 563 vecs_pgprot |= L_PTE_SHARED; 564 s2_pgprot |= L_PTE_SHARED; 565 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; 566 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; 567 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; 568 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; 569 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; 570 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; 571 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; 572 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; 573 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; 574 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; 575 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; 576 } 577 } 578 579 /* 580 * Non-cacheable Normal - intended for memory areas that must 581 * not cause dirty cache line writebacks when used 582 */ 583 if (cpu_arch >= CPU_ARCH_ARMv6) { 584 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { 585 /* Non-cacheable Normal is XCB = 001 */ 586 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 587 PMD_SECT_BUFFERED; 588 } else { 589 /* For both ARMv6 and non-TEX-remapping ARMv7 */ 590 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= 591 PMD_SECT_TEX(1); 592 } 593 } else { 594 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; 595 } 596 597 #ifdef CONFIG_ARM_LPAE 598 /* 599 * Do not generate access flag faults for the kernel mappings. 600 */ 601 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 602 mem_types[i].prot_pte |= PTE_EXT_AF; 603 if (mem_types[i].prot_sect) 604 mem_types[i].prot_sect |= PMD_SECT_AF; 605 } 606 kern_pgprot |= PTE_EXT_AF; 607 vecs_pgprot |= PTE_EXT_AF; 608 #endif 609 610 for (i = 0; i < 16; i++) { 611 pteval_t v = pgprot_val(protection_map[i]); 612 protection_map[i] = __pgprot(v | user_pgprot); 613 } 614 615 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; 616 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; 617 618 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); 619 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | 620 L_PTE_DIRTY | kern_pgprot); 621 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot); 622 pgprot_s2_device = __pgprot(s2_device_pgprot); 623 pgprot_hyp_device = __pgprot(hyp_device_pgprot); 624 625 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; 626 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; 627 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; 628 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; 629 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; 630 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; 631 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; 632 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; 633 mem_types[MT_ROM].prot_sect |= cp->pmd; 634 635 switch (cp->pmd) { 636 case PMD_SECT_WT: 637 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; 638 break; 639 case PMD_SECT_WB: 640 case PMD_SECT_WBWA: 641 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; 642 break; 643 } 644 pr_info("Memory policy: %sData cache %s\n", 645 ecc_mask ? "ECC enabled, " : "", cp->policy); 646 647 for (i = 0; i < ARRAY_SIZE(mem_types); i++) { 648 struct mem_type *t = &mem_types[i]; 649 if (t->prot_l1) 650 t->prot_l1 |= PMD_DOMAIN(t->domain); 651 if (t->prot_sect) 652 t->prot_sect |= PMD_DOMAIN(t->domain); 653 } 654 } 655 656 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE 657 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 658 unsigned long size, pgprot_t vma_prot) 659 { 660 if (!pfn_valid(pfn)) 661 return pgprot_noncached(vma_prot); 662 else if (file->f_flags & O_SYNC) 663 return pgprot_writecombine(vma_prot); 664 return vma_prot; 665 } 666 EXPORT_SYMBOL(phys_mem_access_prot); 667 #endif 668 669 #define vectors_base() (vectors_high() ? 0xffff0000 : 0) 670 671 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align) 672 { 673 void *ptr = __va(memblock_alloc(sz, align)); 674 memset(ptr, 0, sz); 675 return ptr; 676 } 677 678 static void __init *early_alloc(unsigned long sz) 679 { 680 return early_alloc_aligned(sz, sz); 681 } 682 683 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot) 684 { 685 if (pmd_none(*pmd)) { 686 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); 687 __pmd_populate(pmd, __pa(pte), prot); 688 } 689 BUG_ON(pmd_bad(*pmd)); 690 return pte_offset_kernel(pmd, addr); 691 } 692 693 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, 694 unsigned long end, unsigned long pfn, 695 const struct mem_type *type) 696 { 697 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1); 698 do { 699 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0); 700 pfn++; 701 } while (pte++, addr += PAGE_SIZE, addr != end); 702 } 703 704 static void __init __map_init_section(pmd_t *pmd, unsigned long addr, 705 unsigned long end, phys_addr_t phys, 706 const struct mem_type *type) 707 { 708 pmd_t *p = pmd; 709 710 #ifndef CONFIG_ARM_LPAE 711 /* 712 * In classic MMU format, puds and pmds are folded in to 713 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a 714 * group of L1 entries making up one logical pointer to 715 * an L2 table (2MB), where as PMDs refer to the individual 716 * L1 entries (1MB). Hence increment to get the correct 717 * offset for odd 1MB sections. 718 * (See arch/arm/include/asm/pgtable-2level.h) 719 */ 720 if (addr & SECTION_SIZE) 721 pmd++; 722 #endif 723 do { 724 *pmd = __pmd(phys | type->prot_sect); 725 phys += SECTION_SIZE; 726 } while (pmd++, addr += SECTION_SIZE, addr != end); 727 728 flush_pmd_entry(p); 729 } 730 731 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, 732 unsigned long end, phys_addr_t phys, 733 const struct mem_type *type) 734 { 735 pmd_t *pmd = pmd_offset(pud, addr); 736 unsigned long next; 737 738 do { 739 /* 740 * With LPAE, we must loop over to map 741 * all the pmds for the given range. 742 */ 743 next = pmd_addr_end(addr, end); 744 745 /* 746 * Try a section mapping - addr, next and phys must all be 747 * aligned to a section boundary. 748 */ 749 if (type->prot_sect && 750 ((addr | next | phys) & ~SECTION_MASK) == 0) { 751 __map_init_section(pmd, addr, next, phys, type); 752 } else { 753 alloc_init_pte(pmd, addr, next, 754 __phys_to_pfn(phys), type); 755 } 756 757 phys += next - addr; 758 759 } while (pmd++, addr = next, addr != end); 760 } 761 762 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr, 763 unsigned long end, phys_addr_t phys, 764 const struct mem_type *type) 765 { 766 pud_t *pud = pud_offset(pgd, addr); 767 unsigned long next; 768 769 do { 770 next = pud_addr_end(addr, end); 771 alloc_init_pmd(pud, addr, next, phys, type); 772 phys += next - addr; 773 } while (pud++, addr = next, addr != end); 774 } 775 776 #ifndef CONFIG_ARM_LPAE 777 static void __init create_36bit_mapping(struct map_desc *md, 778 const struct mem_type *type) 779 { 780 unsigned long addr, length, end; 781 phys_addr_t phys; 782 pgd_t *pgd; 783 784 addr = md->virtual; 785 phys = __pfn_to_phys(md->pfn); 786 length = PAGE_ALIGN(md->length); 787 788 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { 789 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n", 790 (long long)__pfn_to_phys((u64)md->pfn), addr); 791 return; 792 } 793 794 /* N.B. ARMv6 supersections are only defined to work with domain 0. 795 * Since domain assignments can in fact be arbitrary, the 796 * 'domain == 0' check below is required to insure that ARMv6 797 * supersections are only allocated for domain 0 regardless 798 * of the actual domain assignments in use. 799 */ 800 if (type->domain) { 801 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n", 802 (long long)__pfn_to_phys((u64)md->pfn), addr); 803 return; 804 } 805 806 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { 807 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n", 808 (long long)__pfn_to_phys((u64)md->pfn), addr); 809 return; 810 } 811 812 /* 813 * Shift bits [35:32] of address into bits [23:20] of PMD 814 * (See ARMv6 spec). 815 */ 816 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); 817 818 pgd = pgd_offset_k(addr); 819 end = addr + length; 820 do { 821 pud_t *pud = pud_offset(pgd, addr); 822 pmd_t *pmd = pmd_offset(pud, addr); 823 int i; 824 825 for (i = 0; i < 16; i++) 826 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER); 827 828 addr += SUPERSECTION_SIZE; 829 phys += SUPERSECTION_SIZE; 830 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; 831 } while (addr != end); 832 } 833 #endif /* !CONFIG_ARM_LPAE */ 834 835 /* 836 * Create the page directory entries and any necessary 837 * page tables for the mapping specified by `md'. We 838 * are able to cope here with varying sizes and address 839 * offsets, and we take full advantage of sections and 840 * supersections. 841 */ 842 static void __init create_mapping(struct map_desc *md) 843 { 844 unsigned long addr, length, end; 845 phys_addr_t phys; 846 const struct mem_type *type; 847 pgd_t *pgd; 848 849 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { 850 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n", 851 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 852 return; 853 } 854 855 if ((md->type == MT_DEVICE || md->type == MT_ROM) && 856 md->virtual >= PAGE_OFFSET && 857 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { 858 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n", 859 (long long)__pfn_to_phys((u64)md->pfn), md->virtual); 860 } 861 862 type = &mem_types[md->type]; 863 864 #ifndef CONFIG_ARM_LPAE 865 /* 866 * Catch 36-bit addresses 867 */ 868 if (md->pfn >= 0x100000) { 869 create_36bit_mapping(md, type); 870 return; 871 } 872 #endif 873 874 addr = md->virtual & PAGE_MASK; 875 phys = __pfn_to_phys(md->pfn); 876 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 877 878 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { 879 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n", 880 (long long)__pfn_to_phys(md->pfn), addr); 881 return; 882 } 883 884 pgd = pgd_offset_k(addr); 885 end = addr + length; 886 do { 887 unsigned long next = pgd_addr_end(addr, end); 888 889 alloc_init_pud(pgd, addr, next, phys, type); 890 891 phys += next - addr; 892 addr = next; 893 } while (pgd++, addr != end); 894 } 895 896 /* 897 * Create the architecture specific mappings 898 */ 899 void __init iotable_init(struct map_desc *io_desc, int nr) 900 { 901 struct map_desc *md; 902 struct vm_struct *vm; 903 struct static_vm *svm; 904 905 if (!nr) 906 return; 907 908 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm)); 909 910 for (md = io_desc; nr; md++, nr--) { 911 create_mapping(md); 912 913 vm = &svm->vm; 914 vm->addr = (void *)(md->virtual & PAGE_MASK); 915 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); 916 vm->phys_addr = __pfn_to_phys(md->pfn); 917 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 918 vm->flags |= VM_ARM_MTYPE(md->type); 919 vm->caller = iotable_init; 920 add_static_vm_early(svm++); 921 } 922 } 923 924 void __init vm_reserve_area_early(unsigned long addr, unsigned long size, 925 void *caller) 926 { 927 struct vm_struct *vm; 928 struct static_vm *svm; 929 930 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm)); 931 932 vm = &svm->vm; 933 vm->addr = (void *)addr; 934 vm->size = size; 935 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; 936 vm->caller = caller; 937 add_static_vm_early(svm); 938 } 939 940 #ifndef CONFIG_ARM_LPAE 941 942 /* 943 * The Linux PMD is made of two consecutive section entries covering 2MB 944 * (see definition in include/asm/pgtable-2level.h). However a call to 945 * create_mapping() may optimize static mappings by using individual 946 * 1MB section mappings. This leaves the actual PMD potentially half 947 * initialized if the top or bottom section entry isn't used, leaving it 948 * open to problems if a subsequent ioremap() or vmalloc() tries to use 949 * the virtual space left free by that unused section entry. 950 * 951 * Let's avoid the issue by inserting dummy vm entries covering the unused 952 * PMD halves once the static mappings are in place. 953 */ 954 955 static void __init pmd_empty_section_gap(unsigned long addr) 956 { 957 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); 958 } 959 960 static void __init fill_pmd_gaps(void) 961 { 962 struct static_vm *svm; 963 struct vm_struct *vm; 964 unsigned long addr, next = 0; 965 pmd_t *pmd; 966 967 list_for_each_entry(svm, &static_vmlist, list) { 968 vm = &svm->vm; 969 addr = (unsigned long)vm->addr; 970 if (addr < next) 971 continue; 972 973 /* 974 * Check if this vm starts on an odd section boundary. 975 * If so and the first section entry for this PMD is free 976 * then we block the corresponding virtual address. 977 */ 978 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 979 pmd = pmd_off_k(addr); 980 if (pmd_none(*pmd)) 981 pmd_empty_section_gap(addr & PMD_MASK); 982 } 983 984 /* 985 * Then check if this vm ends on an odd section boundary. 986 * If so and the second section entry for this PMD is empty 987 * then we block the corresponding virtual address. 988 */ 989 addr += vm->size; 990 if ((addr & ~PMD_MASK) == SECTION_SIZE) { 991 pmd = pmd_off_k(addr) + 1; 992 if (pmd_none(*pmd)) 993 pmd_empty_section_gap(addr); 994 } 995 996 /* no need to look at any vm entry until we hit the next PMD */ 997 next = (addr + PMD_SIZE - 1) & PMD_MASK; 998 } 999 } 1000 1001 #else 1002 #define fill_pmd_gaps() do { } while (0) 1003 #endif 1004 1005 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) 1006 static void __init pci_reserve_io(void) 1007 { 1008 struct static_vm *svm; 1009 1010 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); 1011 if (svm) 1012 return; 1013 1014 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); 1015 } 1016 #else 1017 #define pci_reserve_io() do { } while (0) 1018 #endif 1019 1020 #ifdef CONFIG_DEBUG_LL 1021 void __init debug_ll_io_init(void) 1022 { 1023 struct map_desc map; 1024 1025 debug_ll_addr(&map.pfn, &map.virtual); 1026 if (!map.pfn || !map.virtual) 1027 return; 1028 map.pfn = __phys_to_pfn(map.pfn); 1029 map.virtual &= PAGE_MASK; 1030 map.length = PAGE_SIZE; 1031 map.type = MT_DEVICE; 1032 iotable_init(&map, 1); 1033 } 1034 #endif 1035 1036 static void * __initdata vmalloc_min = 1037 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET); 1038 1039 /* 1040 * vmalloc=size forces the vmalloc area to be exactly 'size' 1041 * bytes. This can be used to increase (or decrease) the vmalloc 1042 * area - the default is 240m. 1043 */ 1044 static int __init early_vmalloc(char *arg) 1045 { 1046 unsigned long vmalloc_reserve = memparse(arg, NULL); 1047 1048 if (vmalloc_reserve < SZ_16M) { 1049 vmalloc_reserve = SZ_16M; 1050 pr_warn("vmalloc area too small, limiting to %luMB\n", 1051 vmalloc_reserve >> 20); 1052 } 1053 1054 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { 1055 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); 1056 pr_warn("vmalloc area is too big, limiting to %luMB\n", 1057 vmalloc_reserve >> 20); 1058 } 1059 1060 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); 1061 return 0; 1062 } 1063 early_param("vmalloc", early_vmalloc); 1064 1065 phys_addr_t arm_lowmem_limit __initdata = 0; 1066 1067 void __init sanity_check_meminfo(void) 1068 { 1069 phys_addr_t memblock_limit = 0; 1070 int highmem = 0; 1071 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1; 1072 struct memblock_region *reg; 1073 1074 for_each_memblock(memory, reg) { 1075 phys_addr_t block_start = reg->base; 1076 phys_addr_t block_end = reg->base + reg->size; 1077 phys_addr_t size_limit = reg->size; 1078 1079 if (reg->base >= vmalloc_limit) 1080 highmem = 1; 1081 else 1082 size_limit = vmalloc_limit - reg->base; 1083 1084 1085 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { 1086 1087 if (highmem) { 1088 pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n", 1089 &block_start, &block_end); 1090 memblock_remove(reg->base, reg->size); 1091 continue; 1092 } 1093 1094 if (reg->size > size_limit) { 1095 phys_addr_t overlap_size = reg->size - size_limit; 1096 1097 pr_notice("Truncating RAM at %pa-%pa to -%pa", 1098 &block_start, &block_end, &vmalloc_limit); 1099 memblock_remove(vmalloc_limit, overlap_size); 1100 block_end = vmalloc_limit; 1101 } 1102 } 1103 1104 if (!highmem) { 1105 if (block_end > arm_lowmem_limit) { 1106 if (reg->size > size_limit) 1107 arm_lowmem_limit = vmalloc_limit; 1108 else 1109 arm_lowmem_limit = block_end; 1110 } 1111 1112 /* 1113 * Find the first non-section-aligned page, and point 1114 * memblock_limit at it. This relies on rounding the 1115 * limit down to be section-aligned, which happens at 1116 * the end of this function. 1117 * 1118 * With this algorithm, the start or end of almost any 1119 * bank can be non-section-aligned. The only exception 1120 * is that the start of the bank 0 must be section- 1121 * aligned, since otherwise memory would need to be 1122 * allocated when mapping the start of bank 0, which 1123 * occurs before any free memory is mapped. 1124 */ 1125 if (!memblock_limit) { 1126 if (!IS_ALIGNED(block_start, SECTION_SIZE)) 1127 memblock_limit = block_start; 1128 else if (!IS_ALIGNED(block_end, SECTION_SIZE)) 1129 memblock_limit = arm_lowmem_limit; 1130 } 1131 1132 } 1133 } 1134 1135 high_memory = __va(arm_lowmem_limit - 1) + 1; 1136 1137 /* 1138 * Round the memblock limit down to a section size. This 1139 * helps to ensure that we will allocate memory from the 1140 * last full section, which should be mapped. 1141 */ 1142 if (memblock_limit) 1143 memblock_limit = round_down(memblock_limit, SECTION_SIZE); 1144 if (!memblock_limit) 1145 memblock_limit = arm_lowmem_limit; 1146 1147 memblock_set_current_limit(memblock_limit); 1148 } 1149 1150 static inline void prepare_page_table(void) 1151 { 1152 unsigned long addr; 1153 phys_addr_t end; 1154 1155 /* 1156 * Clear out all the mappings below the kernel image. 1157 */ 1158 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) 1159 pmd_clear(pmd_off_k(addr)); 1160 1161 #ifdef CONFIG_XIP_KERNEL 1162 /* The XIP kernel is mapped in the module area -- skip over it */ 1163 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK; 1164 #endif 1165 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) 1166 pmd_clear(pmd_off_k(addr)); 1167 1168 /* 1169 * Find the end of the first block of lowmem. 1170 */ 1171 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; 1172 if (end >= arm_lowmem_limit) 1173 end = arm_lowmem_limit; 1174 1175 /* 1176 * Clear out all the kernel space mappings, except for the first 1177 * memory bank, up to the vmalloc region. 1178 */ 1179 for (addr = __phys_to_virt(end); 1180 addr < VMALLOC_START; addr += PMD_SIZE) 1181 pmd_clear(pmd_off_k(addr)); 1182 } 1183 1184 #ifdef CONFIG_ARM_LPAE 1185 /* the first page is reserved for pgd */ 1186 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \ 1187 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) 1188 #else 1189 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) 1190 #endif 1191 1192 /* 1193 * Reserve the special regions of memory 1194 */ 1195 void __init arm_mm_memblock_reserve(void) 1196 { 1197 /* 1198 * Reserve the page tables. These are already in use, 1199 * and can only be in node 0. 1200 */ 1201 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); 1202 1203 #ifdef CONFIG_SA1111 1204 /* 1205 * Because of the SA1111 DMA bug, we want to preserve our 1206 * precious DMA-able memory... 1207 */ 1208 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); 1209 #endif 1210 } 1211 1212 /* 1213 * Set up the device mappings. Since we clear out the page tables for all 1214 * mappings above VMALLOC_START, we will remove any debug device mappings. 1215 * This means you have to be careful how you debug this function, or any 1216 * called function. This means you can't use any function or debugging 1217 * method which may touch any device, otherwise the kernel _will_ crash. 1218 */ 1219 static void __init devicemaps_init(const struct machine_desc *mdesc) 1220 { 1221 struct map_desc map; 1222 unsigned long addr; 1223 void *vectors; 1224 1225 /* 1226 * Allocate the vector page early. 1227 */ 1228 vectors = early_alloc(PAGE_SIZE * 2); 1229 1230 early_trap_init(vectors); 1231 1232 for (addr = VMALLOC_START; addr; addr += PMD_SIZE) 1233 pmd_clear(pmd_off_k(addr)); 1234 1235 /* 1236 * Map the kernel if it is XIP. 1237 * It is always first in the modulearea. 1238 */ 1239 #ifdef CONFIG_XIP_KERNEL 1240 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); 1241 map.virtual = MODULES_VADDR; 1242 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK; 1243 map.type = MT_ROM; 1244 create_mapping(&map); 1245 #endif 1246 1247 /* 1248 * Map the cache flushing regions. 1249 */ 1250 #ifdef FLUSH_BASE 1251 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 1252 map.virtual = FLUSH_BASE; 1253 map.length = SZ_1M; 1254 map.type = MT_CACHECLEAN; 1255 create_mapping(&map); 1256 #endif 1257 #ifdef FLUSH_BASE_MINICACHE 1258 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); 1259 map.virtual = FLUSH_BASE_MINICACHE; 1260 map.length = SZ_1M; 1261 map.type = MT_MINICLEAN; 1262 create_mapping(&map); 1263 #endif 1264 1265 /* 1266 * Create a mapping for the machine vectors at the high-vectors 1267 * location (0xffff0000). If we aren't using high-vectors, also 1268 * create a mapping at the low-vectors virtual address. 1269 */ 1270 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 1271 map.virtual = 0xffff0000; 1272 map.length = PAGE_SIZE; 1273 #ifdef CONFIG_KUSER_HELPERS 1274 map.type = MT_HIGH_VECTORS; 1275 #else 1276 map.type = MT_LOW_VECTORS; 1277 #endif 1278 create_mapping(&map); 1279 1280 if (!vectors_high()) { 1281 map.virtual = 0; 1282 map.length = PAGE_SIZE * 2; 1283 map.type = MT_LOW_VECTORS; 1284 create_mapping(&map); 1285 } 1286 1287 /* Now create a kernel read-only mapping */ 1288 map.pfn += 1; 1289 map.virtual = 0xffff0000 + PAGE_SIZE; 1290 map.length = PAGE_SIZE; 1291 map.type = MT_LOW_VECTORS; 1292 create_mapping(&map); 1293 1294 /* 1295 * Ask the machine support to map in the statically mapped devices. 1296 */ 1297 if (mdesc->map_io) 1298 mdesc->map_io(); 1299 else 1300 debug_ll_io_init(); 1301 fill_pmd_gaps(); 1302 1303 /* Reserve fixed i/o space in VMALLOC region */ 1304 pci_reserve_io(); 1305 1306 /* 1307 * Finally flush the caches and tlb to ensure that we're in a 1308 * consistent state wrt the writebuffer. This also ensures that 1309 * any write-allocated cache lines in the vector page are written 1310 * back. After this point, we can start to touch devices again. 1311 */ 1312 local_flush_tlb_all(); 1313 flush_cache_all(); 1314 } 1315 1316 static void __init kmap_init(void) 1317 { 1318 #ifdef CONFIG_HIGHMEM 1319 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), 1320 PKMAP_BASE, _PAGE_KERNEL_TABLE); 1321 1322 fixmap_page_table = early_pte_alloc(pmd_off_k(FIXADDR_START), 1323 FIXADDR_START, _PAGE_KERNEL_TABLE); 1324 #endif 1325 } 1326 1327 static void __init map_lowmem(void) 1328 { 1329 struct memblock_region *reg; 1330 unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE); 1331 unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); 1332 1333 /* Map all the lowmem memory banks. */ 1334 for_each_memblock(memory, reg) { 1335 phys_addr_t start = reg->base; 1336 phys_addr_t end = start + reg->size; 1337 struct map_desc map; 1338 1339 if (end > arm_lowmem_limit) 1340 end = arm_lowmem_limit; 1341 if (start >= end) 1342 break; 1343 1344 if (end < kernel_x_start || start >= kernel_x_end) { 1345 map.pfn = __phys_to_pfn(start); 1346 map.virtual = __phys_to_virt(start); 1347 map.length = end - start; 1348 map.type = MT_MEMORY_RWX; 1349 1350 create_mapping(&map); 1351 } else { 1352 /* This better cover the entire kernel */ 1353 if (start < kernel_x_start) { 1354 map.pfn = __phys_to_pfn(start); 1355 map.virtual = __phys_to_virt(start); 1356 map.length = kernel_x_start - start; 1357 map.type = MT_MEMORY_RW; 1358 1359 create_mapping(&map); 1360 } 1361 1362 map.pfn = __phys_to_pfn(kernel_x_start); 1363 map.virtual = __phys_to_virt(kernel_x_start); 1364 map.length = kernel_x_end - kernel_x_start; 1365 map.type = MT_MEMORY_RWX; 1366 1367 create_mapping(&map); 1368 1369 if (kernel_x_end < end) { 1370 map.pfn = __phys_to_pfn(kernel_x_end); 1371 map.virtual = __phys_to_virt(kernel_x_end); 1372 map.length = end - kernel_x_end; 1373 map.type = MT_MEMORY_RW; 1374 1375 create_mapping(&map); 1376 } 1377 } 1378 } 1379 } 1380 1381 #ifdef CONFIG_ARM_LPAE 1382 /* 1383 * early_paging_init() recreates boot time page table setup, allowing machines 1384 * to switch over to a high (>4G) address space on LPAE systems 1385 */ 1386 void __init early_paging_init(const struct machine_desc *mdesc, 1387 struct proc_info_list *procinfo) 1388 { 1389 pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags; 1390 unsigned long map_start, map_end; 1391 pgd_t *pgd0, *pgdk; 1392 pud_t *pud0, *pudk, *pud_start; 1393 pmd_t *pmd0, *pmdk; 1394 phys_addr_t phys; 1395 int i; 1396 1397 if (!(mdesc->init_meminfo)) 1398 return; 1399 1400 /* remap kernel code and data */ 1401 map_start = init_mm.start_code & PMD_MASK; 1402 map_end = ALIGN(init_mm.brk, PMD_SIZE); 1403 1404 /* get a handle on things... */ 1405 pgd0 = pgd_offset_k(0); 1406 pud_start = pud0 = pud_offset(pgd0, 0); 1407 pmd0 = pmd_offset(pud0, 0); 1408 1409 pgdk = pgd_offset_k(map_start); 1410 pudk = pud_offset(pgdk, map_start); 1411 pmdk = pmd_offset(pudk, map_start); 1412 1413 mdesc->init_meminfo(); 1414 1415 /* Run the patch stub to update the constants */ 1416 fixup_pv_table(&__pv_table_begin, 1417 (&__pv_table_end - &__pv_table_begin) << 2); 1418 1419 /* 1420 * Cache cleaning operations for self-modifying code 1421 * We should clean the entries by MVA but running a 1422 * for loop over every pv_table entry pointer would 1423 * just complicate the code. 1424 */ 1425 flush_cache_louis(); 1426 dsb(ishst); 1427 isb(); 1428 1429 /* 1430 * FIXME: This code is not architecturally compliant: we modify 1431 * the mappings in-place, indeed while they are in use by this 1432 * very same code. This may lead to unpredictable behaviour of 1433 * the CPU. 1434 * 1435 * Even modifying the mappings in a separate page table does 1436 * not resolve this. 1437 * 1438 * The architecture strongly recommends that when a mapping is 1439 * changed, that it is changed by first going via an invalid 1440 * mapping and back to the new mapping. This is to ensure that 1441 * no TLB conflicts (caused by the TLB having more than one TLB 1442 * entry match a translation) can occur. However, doing that 1443 * here will result in unmapping the code we are running. 1444 */ 1445 pr_warn("WARNING: unsafe modification of in-place page tables - tainting kernel\n"); 1446 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 1447 1448 /* 1449 * Remap level 1 table. This changes the physical addresses 1450 * used to refer to the level 2 page tables to the high 1451 * physical address alias, leaving everything else the same. 1452 */ 1453 for (i = 0; i < PTRS_PER_PGD; pud0++, i++) { 1454 set_pud(pud0, 1455 __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER)); 1456 pmd0 += PTRS_PER_PMD; 1457 } 1458 1459 /* 1460 * Remap the level 2 table, pointing the mappings at the high 1461 * physical address alias of these pages. 1462 */ 1463 phys = __pa(map_start); 1464 do { 1465 *pmdk++ = __pmd(phys | pmdprot); 1466 phys += PMD_SIZE; 1467 } while (phys < map_end); 1468 1469 /* 1470 * Ensure that the above updates are flushed out of the cache. 1471 * This is not strictly correct; on a system where the caches 1472 * are coherent with each other, but the MMU page table walks 1473 * may not be coherent, flush_cache_all() may be a no-op, and 1474 * this will fail. 1475 */ 1476 flush_cache_all(); 1477 1478 /* 1479 * Re-write the TTBR values to point them at the high physical 1480 * alias of the page tables. We expect __va() will work on 1481 * cpu_get_pgd(), which returns the value of TTBR0. 1482 */ 1483 cpu_switch_mm(pgd0, &init_mm); 1484 cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET); 1485 1486 /* Finally flush any stale TLB values. */ 1487 local_flush_bp_all(); 1488 local_flush_tlb_all(); 1489 } 1490 1491 #else 1492 1493 void __init early_paging_init(const struct machine_desc *mdesc, 1494 struct proc_info_list *procinfo) 1495 { 1496 if (mdesc->init_meminfo) 1497 mdesc->init_meminfo(); 1498 } 1499 1500 #endif 1501 1502 /* 1503 * paging_init() sets up the page tables, initialises the zone memory 1504 * maps, and sets up the zero page, bad page and bad page tables. 1505 */ 1506 void __init paging_init(const struct machine_desc *mdesc) 1507 { 1508 void *zero_page; 1509 1510 build_mem_type_table(); 1511 prepare_page_table(); 1512 map_lowmem(); 1513 dma_contiguous_remap(); 1514 devicemaps_init(mdesc); 1515 kmap_init(); 1516 tcm_init(); 1517 1518 top_pmd = pmd_off_k(0xffff0000); 1519 1520 /* allocate the zero page. */ 1521 zero_page = early_alloc(PAGE_SIZE); 1522 1523 bootmem_init(); 1524 1525 empty_zero_page = virt_to_page(zero_page); 1526 __flush_dcache_page(NULL, empty_zero_page); 1527 } 1528