xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 247055aa21ffef1c49dd64710d5e94c2aee19b58)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 #include <asm/traps.h>
28 
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
31 
32 #include "mm.h"
33 
34 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35 
36 /*
37  * empty_zero_page is a special page that is used for
38  * zero-initialized data and COW.
39  */
40 struct page *empty_zero_page;
41 EXPORT_SYMBOL(empty_zero_page);
42 
43 /*
44  * The pmd table for the upper-most set of pages.
45  */
46 pmd_t *top_pmd;
47 
48 #define CPOLICY_UNCACHED	0
49 #define CPOLICY_BUFFERED	1
50 #define CPOLICY_WRITETHROUGH	2
51 #define CPOLICY_WRITEBACK	3
52 #define CPOLICY_WRITEALLOC	4
53 
54 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
55 static unsigned int ecc_mask __initdata = 0;
56 pgprot_t pgprot_user;
57 pgprot_t pgprot_kernel;
58 
59 EXPORT_SYMBOL(pgprot_user);
60 EXPORT_SYMBOL(pgprot_kernel);
61 
62 struct cachepolicy {
63 	const char	policy[16];
64 	unsigned int	cr_mask;
65 	unsigned int	pmd;
66 	unsigned int	pte;
67 };
68 
69 static struct cachepolicy cache_policies[] __initdata = {
70 	{
71 		.policy		= "uncached",
72 		.cr_mask	= CR_W|CR_C,
73 		.pmd		= PMD_SECT_UNCACHED,
74 		.pte		= L_PTE_MT_UNCACHED,
75 	}, {
76 		.policy		= "buffered",
77 		.cr_mask	= CR_C,
78 		.pmd		= PMD_SECT_BUFFERED,
79 		.pte		= L_PTE_MT_BUFFERABLE,
80 	}, {
81 		.policy		= "writethrough",
82 		.cr_mask	= 0,
83 		.pmd		= PMD_SECT_WT,
84 		.pte		= L_PTE_MT_WRITETHROUGH,
85 	}, {
86 		.policy		= "writeback",
87 		.cr_mask	= 0,
88 		.pmd		= PMD_SECT_WB,
89 		.pte		= L_PTE_MT_WRITEBACK,
90 	}, {
91 		.policy		= "writealloc",
92 		.cr_mask	= 0,
93 		.pmd		= PMD_SECT_WBWA,
94 		.pte		= L_PTE_MT_WRITEALLOC,
95 	}
96 };
97 
98 /*
99  * These are useful for identifying cache coherency
100  * problems by allowing the cache or the cache and
101  * writebuffer to be turned off.  (Note: the write
102  * buffer should not be on and the cache off).
103  */
104 static int __init early_cachepolicy(char *p)
105 {
106 	int i;
107 
108 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
109 		int len = strlen(cache_policies[i].policy);
110 
111 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
112 			cachepolicy = i;
113 			cr_alignment &= ~cache_policies[i].cr_mask;
114 			cr_no_alignment &= ~cache_policies[i].cr_mask;
115 			break;
116 		}
117 	}
118 	if (i == ARRAY_SIZE(cache_policies))
119 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120 	/*
121 	 * This restriction is partly to do with the way we boot; it is
122 	 * unpredictable to have memory mapped using two different sets of
123 	 * memory attributes (shared, type, and cache attribs).  We can not
124 	 * change these attributes once the initial assembly has setup the
125 	 * page tables.
126 	 */
127 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129 		cachepolicy = CPOLICY_WRITEBACK;
130 	}
131 	flush_cache_all();
132 	set_cr(cr_alignment);
133 	return 0;
134 }
135 early_param("cachepolicy", early_cachepolicy);
136 
137 static int __init early_nocache(char *__unused)
138 {
139 	char *p = "buffered";
140 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
141 	early_cachepolicy(p);
142 	return 0;
143 }
144 early_param("nocache", early_nocache);
145 
146 static int __init early_nowrite(char *__unused)
147 {
148 	char *p = "uncached";
149 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
150 	early_cachepolicy(p);
151 	return 0;
152 }
153 early_param("nowb", early_nowrite);
154 
155 static int __init early_ecc(char *p)
156 {
157 	if (memcmp(p, "on", 2) == 0)
158 		ecc_mask = PMD_PROTECTION;
159 	else if (memcmp(p, "off", 3) == 0)
160 		ecc_mask = 0;
161 	return 0;
162 }
163 early_param("ecc", early_ecc);
164 
165 static int __init noalign_setup(char *__unused)
166 {
167 	cr_alignment &= ~CR_A;
168 	cr_no_alignment &= ~CR_A;
169 	set_cr(cr_alignment);
170 	return 1;
171 }
172 __setup("noalign", noalign_setup);
173 
174 #ifndef CONFIG_SMP
175 void adjust_cr(unsigned long mask, unsigned long set)
176 {
177 	unsigned long flags;
178 
179 	mask &= ~CR_A;
180 
181 	set &= mask;
182 
183 	local_irq_save(flags);
184 
185 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
186 	cr_alignment = (cr_alignment & ~mask) | set;
187 
188 	set_cr((get_cr() & ~mask) | set);
189 
190 	local_irq_restore(flags);
191 }
192 #endif
193 
194 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
195 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
196 
197 static struct mem_type mem_types[] = {
198 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
199 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
200 				  L_PTE_SHARED,
201 		.prot_l1	= PMD_TYPE_TABLE,
202 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
203 		.domain		= DOMAIN_IO,
204 	},
205 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
206 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
207 		.prot_l1	= PMD_TYPE_TABLE,
208 		.prot_sect	= PROT_SECT_DEVICE,
209 		.domain		= DOMAIN_IO,
210 	},
211 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
212 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
213 		.prot_l1	= PMD_TYPE_TABLE,
214 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
215 		.domain		= DOMAIN_IO,
216 	},
217 	[MT_DEVICE_WC] = {	/* ioremap_wc */
218 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
219 		.prot_l1	= PMD_TYPE_TABLE,
220 		.prot_sect	= PROT_SECT_DEVICE,
221 		.domain		= DOMAIN_IO,
222 	},
223 	[MT_UNCACHED] = {
224 		.prot_pte	= PROT_PTE_DEVICE,
225 		.prot_l1	= PMD_TYPE_TABLE,
226 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
227 		.domain		= DOMAIN_IO,
228 	},
229 	[MT_CACHECLEAN] = {
230 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
231 		.domain    = DOMAIN_KERNEL,
232 	},
233 	[MT_MINICLEAN] = {
234 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
235 		.domain    = DOMAIN_KERNEL,
236 	},
237 	[MT_LOW_VECTORS] = {
238 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
239 				L_PTE_EXEC,
240 		.prot_l1   = PMD_TYPE_TABLE,
241 		.domain    = DOMAIN_USER,
242 	},
243 	[MT_HIGH_VECTORS] = {
244 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245 				L_PTE_USER | L_PTE_EXEC,
246 		.prot_l1   = PMD_TYPE_TABLE,
247 		.domain    = DOMAIN_USER,
248 	},
249 	[MT_MEMORY] = {
250 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
251 				L_PTE_WRITE | L_PTE_EXEC,
252 		.prot_l1   = PMD_TYPE_TABLE,
253 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
254 		.domain    = DOMAIN_KERNEL,
255 	},
256 	[MT_ROM] = {
257 		.prot_sect = PMD_TYPE_SECT,
258 		.domain    = DOMAIN_KERNEL,
259 	},
260 	[MT_MEMORY_NONCACHED] = {
261 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
262 				L_PTE_WRITE | L_PTE_EXEC | L_PTE_MT_BUFFERABLE,
263 		.prot_l1   = PMD_TYPE_TABLE,
264 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
265 		.domain    = DOMAIN_KERNEL,
266 	},
267 	[MT_MEMORY_DTCM] = {
268 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
269 				L_PTE_WRITE,
270 		.prot_l1   = PMD_TYPE_TABLE,
271 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
272 		.domain    = DOMAIN_KERNEL,
273 	},
274 	[MT_MEMORY_ITCM] = {
275 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276 				L_PTE_WRITE | L_PTE_EXEC,
277 		.prot_l1   = PMD_TYPE_TABLE,
278 		.domain    = DOMAIN_KERNEL,
279 	},
280 };
281 
282 const struct mem_type *get_mem_type(unsigned int type)
283 {
284 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
285 }
286 EXPORT_SYMBOL(get_mem_type);
287 
288 /*
289  * Adjust the PMD section entries according to the CPU in use.
290  */
291 static void __init build_mem_type_table(void)
292 {
293 	struct cachepolicy *cp;
294 	unsigned int cr = get_cr();
295 	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
296 	int cpu_arch = cpu_architecture();
297 	int i;
298 
299 	if (cpu_arch < CPU_ARCH_ARMv6) {
300 #if defined(CONFIG_CPU_DCACHE_DISABLE)
301 		if (cachepolicy > CPOLICY_BUFFERED)
302 			cachepolicy = CPOLICY_BUFFERED;
303 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
304 		if (cachepolicy > CPOLICY_WRITETHROUGH)
305 			cachepolicy = CPOLICY_WRITETHROUGH;
306 #endif
307 	}
308 	if (cpu_arch < CPU_ARCH_ARMv5) {
309 		if (cachepolicy >= CPOLICY_WRITEALLOC)
310 			cachepolicy = CPOLICY_WRITEBACK;
311 		ecc_mask = 0;
312 	}
313 	if (is_smp())
314 		cachepolicy = CPOLICY_WRITEALLOC;
315 
316 	/*
317 	 * Strip out features not present on earlier architectures.
318 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
319 	 * without extended page tables don't have the 'Shared' bit.
320 	 */
321 	if (cpu_arch < CPU_ARCH_ARMv5)
322 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
323 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
324 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
325 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
326 			mem_types[i].prot_sect &= ~PMD_SECT_S;
327 
328 	/*
329 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
330 	 * "update-able on write" bit on ARM610).  However, Xscale and
331 	 * Xscale3 require this bit to be cleared.
332 	 */
333 	if (cpu_is_xscale() || cpu_is_xsc3()) {
334 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
335 			mem_types[i].prot_sect &= ~PMD_BIT4;
336 			mem_types[i].prot_l1 &= ~PMD_BIT4;
337 		}
338 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
339 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
340 			if (mem_types[i].prot_l1)
341 				mem_types[i].prot_l1 |= PMD_BIT4;
342 			if (mem_types[i].prot_sect)
343 				mem_types[i].prot_sect |= PMD_BIT4;
344 		}
345 	}
346 
347 	/*
348 	 * Mark the device areas according to the CPU/architecture.
349 	 */
350 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
351 		if (!cpu_is_xsc3()) {
352 			/*
353 			 * Mark device regions on ARMv6+ as execute-never
354 			 * to prevent speculative instruction fetches.
355 			 */
356 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
357 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
358 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
359 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
360 		}
361 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
362 			/*
363 			 * For ARMv7 with TEX remapping,
364 			 * - shared device is SXCB=1100
365 			 * - nonshared device is SXCB=0100
366 			 * - write combine device mem is SXCB=0001
367 			 * (Uncached Normal memory)
368 			 */
369 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
370 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
371 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
372 		} else if (cpu_is_xsc3()) {
373 			/*
374 			 * For Xscale3,
375 			 * - shared device is TEXCB=00101
376 			 * - nonshared device is TEXCB=01000
377 			 * - write combine device mem is TEXCB=00100
378 			 * (Inner/Outer Uncacheable in xsc3 parlance)
379 			 */
380 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
381 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
382 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
383 		} else {
384 			/*
385 			 * For ARMv6 and ARMv7 without TEX remapping,
386 			 * - shared device is TEXCB=00001
387 			 * - nonshared device is TEXCB=01000
388 			 * - write combine device mem is TEXCB=00100
389 			 * (Uncached Normal in ARMv6 parlance).
390 			 */
391 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
392 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
393 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
394 		}
395 	} else {
396 		/*
397 		 * On others, write combining is "Uncached/Buffered"
398 		 */
399 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
400 	}
401 
402 	/*
403 	 * Now deal with the memory-type mappings
404 	 */
405 	cp = &cache_policies[cachepolicy];
406 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
407 
408 	/*
409 	 * Only use write-through for non-SMP systems
410 	 */
411 	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
412 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
413 
414 	/*
415 	 * Enable CPU-specific coherency if supported.
416 	 * (Only available on XSC3 at the moment.)
417 	 */
418 	if (arch_is_coherent() && cpu_is_xsc3()) {
419 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
420 		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
421 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
422 		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
423 	}
424 	/*
425 	 * ARMv6 and above have extended page tables.
426 	 */
427 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
428 		/*
429 		 * Mark cache clean areas and XIP ROM read only
430 		 * from SVC mode and no access from userspace.
431 		 */
432 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
433 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
434 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
435 
436 		if (is_smp()) {
437 			/*
438 			 * Mark memory with the "shared" attribute
439 			 * for SMP systems
440 			 */
441 			user_pgprot |= L_PTE_SHARED;
442 			kern_pgprot |= L_PTE_SHARED;
443 			vecs_pgprot |= L_PTE_SHARED;
444 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
445 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
446 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
447 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
448 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
449 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
450 			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
451 			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
452 		}
453 	}
454 
455 	/*
456 	 * Non-cacheable Normal - intended for memory areas that must
457 	 * not cause dirty cache line writebacks when used
458 	 */
459 	if (cpu_arch >= CPU_ARCH_ARMv6) {
460 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
461 			/* Non-cacheable Normal is XCB = 001 */
462 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
463 				PMD_SECT_BUFFERED;
464 		} else {
465 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
466 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
467 				PMD_SECT_TEX(1);
468 		}
469 	} else {
470 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
471 	}
472 
473 	for (i = 0; i < 16; i++) {
474 		unsigned long v = pgprot_val(protection_map[i]);
475 		protection_map[i] = __pgprot(v | user_pgprot);
476 	}
477 
478 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
479 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
480 
481 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
482 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
483 				 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
484 
485 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
486 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
487 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
488 	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
489 	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
490 	mem_types[MT_ROM].prot_sect |= cp->pmd;
491 
492 	switch (cp->pmd) {
493 	case PMD_SECT_WT:
494 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
495 		break;
496 	case PMD_SECT_WB:
497 	case PMD_SECT_WBWA:
498 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
499 		break;
500 	}
501 	printk("Memory policy: ECC %sabled, Data cache %s\n",
502 		ecc_mask ? "en" : "dis", cp->policy);
503 
504 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
505 		struct mem_type *t = &mem_types[i];
506 		if (t->prot_l1)
507 			t->prot_l1 |= PMD_DOMAIN(t->domain);
508 		if (t->prot_sect)
509 			t->prot_sect |= PMD_DOMAIN(t->domain);
510 	}
511 }
512 
513 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
514 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
515 			      unsigned long size, pgprot_t vma_prot)
516 {
517 	if (!pfn_valid(pfn))
518 		return pgprot_noncached(vma_prot);
519 	else if (file->f_flags & O_SYNC)
520 		return pgprot_writecombine(vma_prot);
521 	return vma_prot;
522 }
523 EXPORT_SYMBOL(phys_mem_access_prot);
524 #endif
525 
526 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
527 
528 static void __init *early_alloc(unsigned long sz)
529 {
530 	void *ptr = __va(memblock_alloc(sz, sz));
531 	memset(ptr, 0, sz);
532 	return ptr;
533 }
534 
535 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
536 {
537 	if (pmd_none(*pmd)) {
538 		pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
539 		__pmd_populate(pmd, __pa(pte) | prot);
540 	}
541 	BUG_ON(pmd_bad(*pmd));
542 	return pte_offset_kernel(pmd, addr);
543 }
544 
545 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
546 				  unsigned long end, unsigned long pfn,
547 				  const struct mem_type *type)
548 {
549 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
550 	do {
551 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
552 		pfn++;
553 	} while (pte++, addr += PAGE_SIZE, addr != end);
554 }
555 
556 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
557 				      unsigned long end, unsigned long phys,
558 				      const struct mem_type *type)
559 {
560 	pmd_t *pmd = pmd_offset(pgd, addr);
561 
562 	/*
563 	 * Try a section mapping - end, addr and phys must all be aligned
564 	 * to a section boundary.  Note that PMDs refer to the individual
565 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
566 	 * up one logical pointer to an L2 table.
567 	 */
568 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
569 		pmd_t *p = pmd;
570 
571 		if (addr & SECTION_SIZE)
572 			pmd++;
573 
574 		do {
575 			*pmd = __pmd(phys | type->prot_sect);
576 			phys += SECTION_SIZE;
577 		} while (pmd++, addr += SECTION_SIZE, addr != end);
578 
579 		flush_pmd_entry(p);
580 	} else {
581 		/*
582 		 * No need to loop; pte's aren't interested in the
583 		 * individual L1 entries.
584 		 */
585 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
586 	}
587 }
588 
589 static void __init create_36bit_mapping(struct map_desc *md,
590 					const struct mem_type *type)
591 {
592 	unsigned long phys, addr, length, end;
593 	pgd_t *pgd;
594 
595 	addr = md->virtual;
596 	phys = (unsigned long)__pfn_to_phys(md->pfn);
597 	length = PAGE_ALIGN(md->length);
598 
599 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
600 		printk(KERN_ERR "MM: CPU does not support supersection "
601 		       "mapping for 0x%08llx at 0x%08lx\n",
602 		       __pfn_to_phys((u64)md->pfn), addr);
603 		return;
604 	}
605 
606 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
607 	 *	Since domain assignments can in fact be arbitrary, the
608 	 *	'domain == 0' check below is required to insure that ARMv6
609 	 *	supersections are only allocated for domain 0 regardless
610 	 *	of the actual domain assignments in use.
611 	 */
612 	if (type->domain) {
613 		printk(KERN_ERR "MM: invalid domain in supersection "
614 		       "mapping for 0x%08llx at 0x%08lx\n",
615 		       __pfn_to_phys((u64)md->pfn), addr);
616 		return;
617 	}
618 
619 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
620 		printk(KERN_ERR "MM: cannot create mapping for "
621 		       "0x%08llx at 0x%08lx invalid alignment\n",
622 		       __pfn_to_phys((u64)md->pfn), addr);
623 		return;
624 	}
625 
626 	/*
627 	 * Shift bits [35:32] of address into bits [23:20] of PMD
628 	 * (See ARMv6 spec).
629 	 */
630 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
631 
632 	pgd = pgd_offset_k(addr);
633 	end = addr + length;
634 	do {
635 		pmd_t *pmd = pmd_offset(pgd, addr);
636 		int i;
637 
638 		for (i = 0; i < 16; i++)
639 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
640 
641 		addr += SUPERSECTION_SIZE;
642 		phys += SUPERSECTION_SIZE;
643 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
644 	} while (addr != end);
645 }
646 
647 /*
648  * Create the page directory entries and any necessary
649  * page tables for the mapping specified by `md'.  We
650  * are able to cope here with varying sizes and address
651  * offsets, and we take full advantage of sections and
652  * supersections.
653  */
654 static void __init create_mapping(struct map_desc *md)
655 {
656 	unsigned long phys, addr, length, end;
657 	const struct mem_type *type;
658 	pgd_t *pgd;
659 
660 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
661 		printk(KERN_WARNING "BUG: not creating mapping for "
662 		       "0x%08llx at 0x%08lx in user region\n",
663 		       __pfn_to_phys((u64)md->pfn), md->virtual);
664 		return;
665 	}
666 
667 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
668 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
669 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
670 		       "overlaps vmalloc space\n",
671 		       __pfn_to_phys((u64)md->pfn), md->virtual);
672 	}
673 
674 	type = &mem_types[md->type];
675 
676 	/*
677 	 * Catch 36-bit addresses
678 	 */
679 	if (md->pfn >= 0x100000) {
680 		create_36bit_mapping(md, type);
681 		return;
682 	}
683 
684 	addr = md->virtual & PAGE_MASK;
685 	phys = (unsigned long)__pfn_to_phys(md->pfn);
686 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
687 
688 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
689 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
690 		       "be mapped using pages, ignoring.\n",
691 		       __pfn_to_phys(md->pfn), addr);
692 		return;
693 	}
694 
695 	pgd = pgd_offset_k(addr);
696 	end = addr + length;
697 	do {
698 		unsigned long next = pgd_addr_end(addr, end);
699 
700 		alloc_init_section(pgd, addr, next, phys, type);
701 
702 		phys += next - addr;
703 		addr = next;
704 	} while (pgd++, addr != end);
705 }
706 
707 /*
708  * Create the architecture specific mappings
709  */
710 void __init iotable_init(struct map_desc *io_desc, int nr)
711 {
712 	int i;
713 
714 	for (i = 0; i < nr; i++)
715 		create_mapping(io_desc + i);
716 }
717 
718 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
719 
720 /*
721  * vmalloc=size forces the vmalloc area to be exactly 'size'
722  * bytes. This can be used to increase (or decrease) the vmalloc
723  * area - the default is 128m.
724  */
725 static int __init early_vmalloc(char *arg)
726 {
727 	unsigned long vmalloc_reserve = memparse(arg, NULL);
728 
729 	if (vmalloc_reserve < SZ_16M) {
730 		vmalloc_reserve = SZ_16M;
731 		printk(KERN_WARNING
732 			"vmalloc area too small, limiting to %luMB\n",
733 			vmalloc_reserve >> 20);
734 	}
735 
736 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
737 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
738 		printk(KERN_WARNING
739 			"vmalloc area is too big, limiting to %luMB\n",
740 			vmalloc_reserve >> 20);
741 	}
742 
743 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
744 	return 0;
745 }
746 early_param("vmalloc", early_vmalloc);
747 
748 static phys_addr_t lowmem_limit __initdata = 0;
749 
750 static void __init sanity_check_meminfo(void)
751 {
752 	int i, j, highmem = 0;
753 
754 	lowmem_limit = __pa(vmalloc_min - 1) + 1;
755 	memblock_set_current_limit(lowmem_limit);
756 
757 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
758 		struct membank *bank = &meminfo.bank[j];
759 		*bank = meminfo.bank[i];
760 
761 #ifdef CONFIG_HIGHMEM
762 		if (__va(bank->start) > vmalloc_min ||
763 		    __va(bank->start) < (void *)PAGE_OFFSET)
764 			highmem = 1;
765 
766 		bank->highmem = highmem;
767 
768 		/*
769 		 * Split those memory banks which are partially overlapping
770 		 * the vmalloc area greatly simplifying things later.
771 		 */
772 		if (__va(bank->start) < vmalloc_min &&
773 		    bank->size > vmalloc_min - __va(bank->start)) {
774 			if (meminfo.nr_banks >= NR_BANKS) {
775 				printk(KERN_CRIT "NR_BANKS too low, "
776 						 "ignoring high memory\n");
777 			} else {
778 				memmove(bank + 1, bank,
779 					(meminfo.nr_banks - i) * sizeof(*bank));
780 				meminfo.nr_banks++;
781 				i++;
782 				bank[1].size -= vmalloc_min - __va(bank->start);
783 				bank[1].start = __pa(vmalloc_min - 1) + 1;
784 				bank[1].highmem = highmem = 1;
785 				j++;
786 			}
787 			bank->size = vmalloc_min - __va(bank->start);
788 		}
789 #else
790 		bank->highmem = highmem;
791 
792 		/*
793 		 * Check whether this memory bank would entirely overlap
794 		 * the vmalloc area.
795 		 */
796 		if (__va(bank->start) >= vmalloc_min ||
797 		    __va(bank->start) < (void *)PAGE_OFFSET) {
798 			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
799 			       "(vmalloc region overlap).\n",
800 			       bank->start, bank->start + bank->size - 1);
801 			continue;
802 		}
803 
804 		/*
805 		 * Check whether this memory bank would partially overlap
806 		 * the vmalloc area.
807 		 */
808 		if (__va(bank->start + bank->size) > vmalloc_min ||
809 		    __va(bank->start + bank->size) < __va(bank->start)) {
810 			unsigned long newsize = vmalloc_min - __va(bank->start);
811 			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
812 			       "to -%.8lx (vmalloc region overlap).\n",
813 			       bank->start, bank->start + bank->size - 1,
814 			       bank->start + newsize - 1);
815 			bank->size = newsize;
816 		}
817 #endif
818 		j++;
819 	}
820 #ifdef CONFIG_HIGHMEM
821 	if (highmem) {
822 		const char *reason = NULL;
823 
824 		if (cache_is_vipt_aliasing()) {
825 			/*
826 			 * Interactions between kmap and other mappings
827 			 * make highmem support with aliasing VIPT caches
828 			 * rather difficult.
829 			 */
830 			reason = "with VIPT aliasing cache";
831 		} else if (is_smp() && tlb_ops_need_broadcast()) {
832 			/*
833 			 * kmap_high needs to occasionally flush TLB entries,
834 			 * however, if the TLB entries need to be broadcast
835 			 * we may deadlock:
836 			 *  kmap_high(irqs off)->flush_all_zero_pkmaps->
837 			 *  flush_tlb_kernel_range->smp_call_function_many
838 			 *   (must not be called with irqs off)
839 			 */
840 			reason = "without hardware TLB ops broadcasting";
841 		}
842 		if (reason) {
843 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
844 				reason);
845 			while (j > 0 && meminfo.bank[j - 1].highmem)
846 				j--;
847 		}
848 	}
849 #endif
850 	meminfo.nr_banks = j;
851 }
852 
853 static inline void prepare_page_table(void)
854 {
855 	unsigned long addr;
856 	phys_addr_t end;
857 
858 	/*
859 	 * Clear out all the mappings below the kernel image.
860 	 */
861 	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
862 		pmd_clear(pmd_off_k(addr));
863 
864 #ifdef CONFIG_XIP_KERNEL
865 	/* The XIP kernel is mapped in the module area -- skip over it */
866 	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
867 #endif
868 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
869 		pmd_clear(pmd_off_k(addr));
870 
871 	/*
872 	 * Find the end of the first block of lowmem.
873 	 */
874 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
875 	if (end >= lowmem_limit)
876 		end = lowmem_limit;
877 
878 	/*
879 	 * Clear out all the kernel space mappings, except for the first
880 	 * memory bank, up to the end of the vmalloc region.
881 	 */
882 	for (addr = __phys_to_virt(end);
883 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
884 		pmd_clear(pmd_off_k(addr));
885 }
886 
887 /*
888  * Reserve the special regions of memory
889  */
890 void __init arm_mm_memblock_reserve(void)
891 {
892 	/*
893 	 * Reserve the page tables.  These are already in use,
894 	 * and can only be in node 0.
895 	 */
896 	memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
897 
898 #ifdef CONFIG_SA1111
899 	/*
900 	 * Because of the SA1111 DMA bug, we want to preserve our
901 	 * precious DMA-able memory...
902 	 */
903 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
904 #endif
905 }
906 
907 /*
908  * Set up device the mappings.  Since we clear out the page tables for all
909  * mappings above VMALLOC_END, we will remove any debug device mappings.
910  * This means you have to be careful how you debug this function, or any
911  * called function.  This means you can't use any function or debugging
912  * method which may touch any device, otherwise the kernel _will_ crash.
913  */
914 static void __init devicemaps_init(struct machine_desc *mdesc)
915 {
916 	struct map_desc map;
917 	unsigned long addr;
918 
919 	/*
920 	 * Allocate the vector page early.
921 	 */
922 	vectors_page = early_alloc(PAGE_SIZE);
923 
924 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
925 		pmd_clear(pmd_off_k(addr));
926 
927 	/*
928 	 * Map the kernel if it is XIP.
929 	 * It is always first in the modulearea.
930 	 */
931 #ifdef CONFIG_XIP_KERNEL
932 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
933 	map.virtual = MODULES_VADDR;
934 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
935 	map.type = MT_ROM;
936 	create_mapping(&map);
937 #endif
938 
939 	/*
940 	 * Map the cache flushing regions.
941 	 */
942 #ifdef FLUSH_BASE
943 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
944 	map.virtual = FLUSH_BASE;
945 	map.length = SZ_1M;
946 	map.type = MT_CACHECLEAN;
947 	create_mapping(&map);
948 #endif
949 #ifdef FLUSH_BASE_MINICACHE
950 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
951 	map.virtual = FLUSH_BASE_MINICACHE;
952 	map.length = SZ_1M;
953 	map.type = MT_MINICLEAN;
954 	create_mapping(&map);
955 #endif
956 
957 	/*
958 	 * Create a mapping for the machine vectors at the high-vectors
959 	 * location (0xffff0000).  If we aren't using high-vectors, also
960 	 * create a mapping at the low-vectors virtual address.
961 	 */
962 	map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
963 	map.virtual = 0xffff0000;
964 	map.length = PAGE_SIZE;
965 	map.type = MT_HIGH_VECTORS;
966 	create_mapping(&map);
967 
968 	if (!vectors_high()) {
969 		map.virtual = 0;
970 		map.type = MT_LOW_VECTORS;
971 		create_mapping(&map);
972 	}
973 
974 	/*
975 	 * Ask the machine support to map in the statically mapped devices.
976 	 */
977 	if (mdesc->map_io)
978 		mdesc->map_io();
979 
980 	/*
981 	 * Finally flush the caches and tlb to ensure that we're in a
982 	 * consistent state wrt the writebuffer.  This also ensures that
983 	 * any write-allocated cache lines in the vector page are written
984 	 * back.  After this point, we can start to touch devices again.
985 	 */
986 	local_flush_tlb_all();
987 	flush_cache_all();
988 }
989 
990 static void __init kmap_init(void)
991 {
992 #ifdef CONFIG_HIGHMEM
993 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
994 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
995 #endif
996 }
997 
998 static void __init map_lowmem(void)
999 {
1000 	struct memblock_region *reg;
1001 
1002 	/* Map all the lowmem memory banks. */
1003 	for_each_memblock(memory, reg) {
1004 		phys_addr_t start = reg->base;
1005 		phys_addr_t end = start + reg->size;
1006 		struct map_desc map;
1007 
1008 		if (end > lowmem_limit)
1009 			end = lowmem_limit;
1010 		if (start >= end)
1011 			break;
1012 
1013 		map.pfn = __phys_to_pfn(start);
1014 		map.virtual = __phys_to_virt(start);
1015 		map.length = end - start;
1016 		map.type = MT_MEMORY;
1017 
1018 		create_mapping(&map);
1019 	}
1020 }
1021 
1022 /*
1023  * paging_init() sets up the page tables, initialises the zone memory
1024  * maps, and sets up the zero page, bad page and bad page tables.
1025  */
1026 void __init paging_init(struct machine_desc *mdesc)
1027 {
1028 	void *zero_page;
1029 
1030 	build_mem_type_table();
1031 	sanity_check_meminfo();
1032 	prepare_page_table();
1033 	map_lowmem();
1034 	devicemaps_init(mdesc);
1035 	kmap_init();
1036 
1037 	top_pmd = pmd_off_k(0xffff0000);
1038 
1039 	/* allocate the zero page. */
1040 	zero_page = early_alloc(PAGE_SIZE);
1041 
1042 	bootmem_init();
1043 
1044 	empty_zero_page = virt_to_page(zero_page);
1045 	__flush_dcache_page(NULL, empty_zero_page);
1046 }
1047 
1048 /*
1049  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1050  * the user-mode pages.  This will then ensure that we have predictable
1051  * results when turning the mmu off
1052  */
1053 void setup_mm_for_reboot(char mode)
1054 {
1055 	unsigned long base_pmdval;
1056 	pgd_t *pgd;
1057 	int i;
1058 
1059 	/*
1060 	 * We need to access to user-mode page tables here. For kernel threads
1061 	 * we don't have any user-mode mappings so we use the context that we
1062 	 * "borrowed".
1063 	 */
1064 	pgd = current->active_mm->pgd;
1065 
1066 	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1067 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1068 		base_pmdval |= PMD_BIT4;
1069 
1070 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1071 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1072 		pmd_t *pmd;
1073 
1074 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1075 		pmd[0] = __pmd(pmdval);
1076 		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1077 		flush_pmd_entry(pmd);
1078 	}
1079 
1080 	local_flush_tlb_all();
1081 }
1082