xref: /openbmc/linux/arch/arm/mm/mmu.c (revision 14904927fcef6bb881fd995b478a0d2e700c1818)
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 
20 #include <asm/cp15.h>
21 #include <asm/cputype.h>
22 #include <asm/sections.h>
23 #include <asm/cachetype.h>
24 #include <asm/setup.h>
25 #include <asm/sizes.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31 
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 
35 #include "mm.h"
36 
37 /*
38  * empty_zero_page is a special page that is used for
39  * zero-initialized data and COW.
40  */
41 struct page *empty_zero_page;
42 EXPORT_SYMBOL(empty_zero_page);
43 
44 /*
45  * The pmd table for the upper-most set of pages.
46  */
47 pmd_t *top_pmd;
48 
49 #define CPOLICY_UNCACHED	0
50 #define CPOLICY_BUFFERED	1
51 #define CPOLICY_WRITETHROUGH	2
52 #define CPOLICY_WRITEBACK	3
53 #define CPOLICY_WRITEALLOC	4
54 
55 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56 static unsigned int ecc_mask __initdata = 0;
57 pgprot_t pgprot_user;
58 pgprot_t pgprot_kernel;
59 
60 EXPORT_SYMBOL(pgprot_user);
61 EXPORT_SYMBOL(pgprot_kernel);
62 
63 struct cachepolicy {
64 	const char	policy[16];
65 	unsigned int	cr_mask;
66 	pmdval_t	pmd;
67 	pteval_t	pte;
68 };
69 
70 static struct cachepolicy cache_policies[] __initdata = {
71 	{
72 		.policy		= "uncached",
73 		.cr_mask	= CR_W|CR_C,
74 		.pmd		= PMD_SECT_UNCACHED,
75 		.pte		= L_PTE_MT_UNCACHED,
76 	}, {
77 		.policy		= "buffered",
78 		.cr_mask	= CR_C,
79 		.pmd		= PMD_SECT_BUFFERED,
80 		.pte		= L_PTE_MT_BUFFERABLE,
81 	}, {
82 		.policy		= "writethrough",
83 		.cr_mask	= 0,
84 		.pmd		= PMD_SECT_WT,
85 		.pte		= L_PTE_MT_WRITETHROUGH,
86 	}, {
87 		.policy		= "writeback",
88 		.cr_mask	= 0,
89 		.pmd		= PMD_SECT_WB,
90 		.pte		= L_PTE_MT_WRITEBACK,
91 	}, {
92 		.policy		= "writealloc",
93 		.cr_mask	= 0,
94 		.pmd		= PMD_SECT_WBWA,
95 		.pte		= L_PTE_MT_WRITEALLOC,
96 	}
97 };
98 
99 /*
100  * These are useful for identifying cache coherency
101  * problems by allowing the cache or the cache and
102  * writebuffer to be turned off.  (Note: the write
103  * buffer should not be on and the cache off).
104  */
105 static int __init early_cachepolicy(char *p)
106 {
107 	int i;
108 
109 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110 		int len = strlen(cache_policies[i].policy);
111 
112 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
113 			cachepolicy = i;
114 			cr_alignment &= ~cache_policies[i].cr_mask;
115 			cr_no_alignment &= ~cache_policies[i].cr_mask;
116 			break;
117 		}
118 	}
119 	if (i == ARRAY_SIZE(cache_policies))
120 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121 	/*
122 	 * This restriction is partly to do with the way we boot; it is
123 	 * unpredictable to have memory mapped using two different sets of
124 	 * memory attributes (shared, type, and cache attribs).  We can not
125 	 * change these attributes once the initial assembly has setup the
126 	 * page tables.
127 	 */
128 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130 		cachepolicy = CPOLICY_WRITEBACK;
131 	}
132 	flush_cache_all();
133 	set_cr(cr_alignment);
134 	return 0;
135 }
136 early_param("cachepolicy", early_cachepolicy);
137 
138 static int __init early_nocache(char *__unused)
139 {
140 	char *p = "buffered";
141 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142 	early_cachepolicy(p);
143 	return 0;
144 }
145 early_param("nocache", early_nocache);
146 
147 static int __init early_nowrite(char *__unused)
148 {
149 	char *p = "uncached";
150 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151 	early_cachepolicy(p);
152 	return 0;
153 }
154 early_param("nowb", early_nowrite);
155 
156 #ifndef CONFIG_ARM_LPAE
157 static int __init early_ecc(char *p)
158 {
159 	if (memcmp(p, "on", 2) == 0)
160 		ecc_mask = PMD_PROTECTION;
161 	else if (memcmp(p, "off", 3) == 0)
162 		ecc_mask = 0;
163 	return 0;
164 }
165 early_param("ecc", early_ecc);
166 #endif
167 
168 static int __init noalign_setup(char *__unused)
169 {
170 	cr_alignment &= ~CR_A;
171 	cr_no_alignment &= ~CR_A;
172 	set_cr(cr_alignment);
173 	return 1;
174 }
175 __setup("noalign", noalign_setup);
176 
177 #ifndef CONFIG_SMP
178 void adjust_cr(unsigned long mask, unsigned long set)
179 {
180 	unsigned long flags;
181 
182 	mask &= ~CR_A;
183 
184 	set &= mask;
185 
186 	local_irq_save(flags);
187 
188 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
189 	cr_alignment = (cr_alignment & ~mask) | set;
190 
191 	set_cr((get_cr() & ~mask) | set);
192 
193 	local_irq_restore(flags);
194 }
195 #endif
196 
197 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199 
200 static struct mem_type mem_types[] = {
201 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
202 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203 				  L_PTE_SHARED,
204 		.prot_l1	= PMD_TYPE_TABLE,
205 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
206 		.domain		= DOMAIN_IO,
207 	},
208 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210 		.prot_l1	= PMD_TYPE_TABLE,
211 		.prot_sect	= PROT_SECT_DEVICE,
212 		.domain		= DOMAIN_IO,
213 	},
214 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
215 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216 		.prot_l1	= PMD_TYPE_TABLE,
217 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
218 		.domain		= DOMAIN_IO,
219 	},
220 	[MT_DEVICE_WC] = {	/* ioremap_wc */
221 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222 		.prot_l1	= PMD_TYPE_TABLE,
223 		.prot_sect	= PROT_SECT_DEVICE,
224 		.domain		= DOMAIN_IO,
225 	},
226 	[MT_UNCACHED] = {
227 		.prot_pte	= PROT_PTE_DEVICE,
228 		.prot_l1	= PMD_TYPE_TABLE,
229 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
230 		.domain		= DOMAIN_IO,
231 	},
232 	[MT_CACHECLEAN] = {
233 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234 		.domain    = DOMAIN_KERNEL,
235 	},
236 #ifndef CONFIG_ARM_LPAE
237 	[MT_MINICLEAN] = {
238 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239 		.domain    = DOMAIN_KERNEL,
240 	},
241 #endif
242 	[MT_LOW_VECTORS] = {
243 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 				L_PTE_RDONLY,
245 		.prot_l1   = PMD_TYPE_TABLE,
246 		.domain    = DOMAIN_USER,
247 	},
248 	[MT_HIGH_VECTORS] = {
249 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250 				L_PTE_USER | L_PTE_RDONLY,
251 		.prot_l1   = PMD_TYPE_TABLE,
252 		.domain    = DOMAIN_USER,
253 	},
254 	[MT_MEMORY] = {
255 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256 		.prot_l1   = PMD_TYPE_TABLE,
257 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 		.domain    = DOMAIN_KERNEL,
259 	},
260 	[MT_ROM] = {
261 		.prot_sect = PMD_TYPE_SECT,
262 		.domain    = DOMAIN_KERNEL,
263 	},
264 	[MT_MEMORY_NONCACHED] = {
265 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266 				L_PTE_MT_BUFFERABLE,
267 		.prot_l1   = PMD_TYPE_TABLE,
268 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269 		.domain    = DOMAIN_KERNEL,
270 	},
271 	[MT_MEMORY_DTCM] = {
272 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273 				L_PTE_XN,
274 		.prot_l1   = PMD_TYPE_TABLE,
275 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276 		.domain    = DOMAIN_KERNEL,
277 	},
278 	[MT_MEMORY_ITCM] = {
279 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280 		.prot_l1   = PMD_TYPE_TABLE,
281 		.domain    = DOMAIN_KERNEL,
282 	},
283 	[MT_MEMORY_SO] = {
284 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 				L_PTE_MT_UNCACHED,
286 		.prot_l1   = PMD_TYPE_TABLE,
287 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288 				PMD_SECT_UNCACHED | PMD_SECT_XN,
289 		.domain    = DOMAIN_KERNEL,
290 	},
291 };
292 
293 const struct mem_type *get_mem_type(unsigned int type)
294 {
295 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
296 }
297 EXPORT_SYMBOL(get_mem_type);
298 
299 /*
300  * Adjust the PMD section entries according to the CPU in use.
301  */
302 static void __init build_mem_type_table(void)
303 {
304 	struct cachepolicy *cp;
305 	unsigned int cr = get_cr();
306 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
307 	int cpu_arch = cpu_architecture();
308 	int i;
309 
310 	if (cpu_arch < CPU_ARCH_ARMv6) {
311 #if defined(CONFIG_CPU_DCACHE_DISABLE)
312 		if (cachepolicy > CPOLICY_BUFFERED)
313 			cachepolicy = CPOLICY_BUFFERED;
314 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
315 		if (cachepolicy > CPOLICY_WRITETHROUGH)
316 			cachepolicy = CPOLICY_WRITETHROUGH;
317 #endif
318 	}
319 	if (cpu_arch < CPU_ARCH_ARMv5) {
320 		if (cachepolicy >= CPOLICY_WRITEALLOC)
321 			cachepolicy = CPOLICY_WRITEBACK;
322 		ecc_mask = 0;
323 	}
324 	if (is_smp())
325 		cachepolicy = CPOLICY_WRITEALLOC;
326 
327 	/*
328 	 * Strip out features not present on earlier architectures.
329 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
330 	 * without extended page tables don't have the 'Shared' bit.
331 	 */
332 	if (cpu_arch < CPU_ARCH_ARMv5)
333 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
334 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
335 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
336 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
337 			mem_types[i].prot_sect &= ~PMD_SECT_S;
338 
339 	/*
340 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
341 	 * "update-able on write" bit on ARM610).  However, Xscale and
342 	 * Xscale3 require this bit to be cleared.
343 	 */
344 	if (cpu_is_xscale() || cpu_is_xsc3()) {
345 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
346 			mem_types[i].prot_sect &= ~PMD_BIT4;
347 			mem_types[i].prot_l1 &= ~PMD_BIT4;
348 		}
349 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
350 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351 			if (mem_types[i].prot_l1)
352 				mem_types[i].prot_l1 |= PMD_BIT4;
353 			if (mem_types[i].prot_sect)
354 				mem_types[i].prot_sect |= PMD_BIT4;
355 		}
356 	}
357 
358 	/*
359 	 * Mark the device areas according to the CPU/architecture.
360 	 */
361 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
362 		if (!cpu_is_xsc3()) {
363 			/*
364 			 * Mark device regions on ARMv6+ as execute-never
365 			 * to prevent speculative instruction fetches.
366 			 */
367 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
368 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
369 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
370 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
371 		}
372 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
373 			/*
374 			 * For ARMv7 with TEX remapping,
375 			 * - shared device is SXCB=1100
376 			 * - nonshared device is SXCB=0100
377 			 * - write combine device mem is SXCB=0001
378 			 * (Uncached Normal memory)
379 			 */
380 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
381 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
382 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
383 		} else if (cpu_is_xsc3()) {
384 			/*
385 			 * For Xscale3,
386 			 * - shared device is TEXCB=00101
387 			 * - nonshared device is TEXCB=01000
388 			 * - write combine device mem is TEXCB=00100
389 			 * (Inner/Outer Uncacheable in xsc3 parlance)
390 			 */
391 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
392 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
393 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
394 		} else {
395 			/*
396 			 * For ARMv6 and ARMv7 without TEX remapping,
397 			 * - shared device is TEXCB=00001
398 			 * - nonshared device is TEXCB=01000
399 			 * - write combine device mem is TEXCB=00100
400 			 * (Uncached Normal in ARMv6 parlance).
401 			 */
402 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
403 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
404 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
405 		}
406 	} else {
407 		/*
408 		 * On others, write combining is "Uncached/Buffered"
409 		 */
410 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
411 	}
412 
413 	/*
414 	 * Now deal with the memory-type mappings
415 	 */
416 	cp = &cache_policies[cachepolicy];
417 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
418 
419 	/*
420 	 * Only use write-through for non-SMP systems
421 	 */
422 	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
423 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
424 
425 	/*
426 	 * Enable CPU-specific coherency if supported.
427 	 * (Only available on XSC3 at the moment.)
428 	 */
429 	if (arch_is_coherent() && cpu_is_xsc3()) {
430 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
431 		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
432 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
433 		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
434 	}
435 	/*
436 	 * ARMv6 and above have extended page tables.
437 	 */
438 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
439 #ifndef CONFIG_ARM_LPAE
440 		/*
441 		 * Mark cache clean areas and XIP ROM read only
442 		 * from SVC mode and no access from userspace.
443 		 */
444 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
445 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
446 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
447 #endif
448 
449 		if (is_smp()) {
450 			/*
451 			 * Mark memory with the "shared" attribute
452 			 * for SMP systems
453 			 */
454 			user_pgprot |= L_PTE_SHARED;
455 			kern_pgprot |= L_PTE_SHARED;
456 			vecs_pgprot |= L_PTE_SHARED;
457 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
458 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
459 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
460 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
461 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
462 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
463 			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
464 			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
465 		}
466 	}
467 
468 	/*
469 	 * Non-cacheable Normal - intended for memory areas that must
470 	 * not cause dirty cache line writebacks when used
471 	 */
472 	if (cpu_arch >= CPU_ARCH_ARMv6) {
473 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
474 			/* Non-cacheable Normal is XCB = 001 */
475 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
476 				PMD_SECT_BUFFERED;
477 		} else {
478 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
479 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
480 				PMD_SECT_TEX(1);
481 		}
482 	} else {
483 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
484 	}
485 
486 #ifdef CONFIG_ARM_LPAE
487 	/*
488 	 * Do not generate access flag faults for the kernel mappings.
489 	 */
490 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
491 		mem_types[i].prot_pte |= PTE_EXT_AF;
492 		mem_types[i].prot_sect |= PMD_SECT_AF;
493 	}
494 	kern_pgprot |= PTE_EXT_AF;
495 	vecs_pgprot |= PTE_EXT_AF;
496 #endif
497 
498 	for (i = 0; i < 16; i++) {
499 		unsigned long v = pgprot_val(protection_map[i]);
500 		protection_map[i] = __pgprot(v | user_pgprot);
501 	}
502 
503 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
504 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
505 
506 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
507 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
508 				 L_PTE_DIRTY | kern_pgprot);
509 
510 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
511 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
512 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
513 	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
514 	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
515 	mem_types[MT_ROM].prot_sect |= cp->pmd;
516 
517 	switch (cp->pmd) {
518 	case PMD_SECT_WT:
519 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
520 		break;
521 	case PMD_SECT_WB:
522 	case PMD_SECT_WBWA:
523 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
524 		break;
525 	}
526 	printk("Memory policy: ECC %sabled, Data cache %s\n",
527 		ecc_mask ? "en" : "dis", cp->policy);
528 
529 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
530 		struct mem_type *t = &mem_types[i];
531 		if (t->prot_l1)
532 			t->prot_l1 |= PMD_DOMAIN(t->domain);
533 		if (t->prot_sect)
534 			t->prot_sect |= PMD_DOMAIN(t->domain);
535 	}
536 }
537 
538 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
539 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
540 			      unsigned long size, pgprot_t vma_prot)
541 {
542 	if (!pfn_valid(pfn))
543 		return pgprot_noncached(vma_prot);
544 	else if (file->f_flags & O_SYNC)
545 		return pgprot_writecombine(vma_prot);
546 	return vma_prot;
547 }
548 EXPORT_SYMBOL(phys_mem_access_prot);
549 #endif
550 
551 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
552 
553 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
554 {
555 	void *ptr = __va(memblock_alloc(sz, align));
556 	memset(ptr, 0, sz);
557 	return ptr;
558 }
559 
560 static void __init *early_alloc(unsigned long sz)
561 {
562 	return early_alloc_aligned(sz, sz);
563 }
564 
565 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
566 {
567 	if (pmd_none(*pmd)) {
568 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
569 		__pmd_populate(pmd, __pa(pte), prot);
570 	}
571 	BUG_ON(pmd_bad(*pmd));
572 	return pte_offset_kernel(pmd, addr);
573 }
574 
575 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
576 				  unsigned long end, unsigned long pfn,
577 				  const struct mem_type *type)
578 {
579 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
580 	do {
581 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
582 		pfn++;
583 	} while (pte++, addr += PAGE_SIZE, addr != end);
584 }
585 
586 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
587 				      unsigned long end, phys_addr_t phys,
588 				      const struct mem_type *type)
589 {
590 	pmd_t *pmd = pmd_offset(pud, addr);
591 
592 	/*
593 	 * Try a section mapping - end, addr and phys must all be aligned
594 	 * to a section boundary.  Note that PMDs refer to the individual
595 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
596 	 * up one logical pointer to an L2 table.
597 	 */
598 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
599 		pmd_t *p = pmd;
600 
601 #ifndef CONFIG_ARM_LPAE
602 		if (addr & SECTION_SIZE)
603 			pmd++;
604 #endif
605 
606 		do {
607 			*pmd = __pmd(phys | type->prot_sect);
608 			phys += SECTION_SIZE;
609 		} while (pmd++, addr += SECTION_SIZE, addr != end);
610 
611 		flush_pmd_entry(p);
612 	} else {
613 		/*
614 		 * No need to loop; pte's aren't interested in the
615 		 * individual L1 entries.
616 		 */
617 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
618 	}
619 }
620 
621 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
622 	unsigned long end, unsigned long phys, const struct mem_type *type)
623 {
624 	pud_t *pud = pud_offset(pgd, addr);
625 	unsigned long next;
626 
627 	do {
628 		next = pud_addr_end(addr, end);
629 		alloc_init_section(pud, addr, next, phys, type);
630 		phys += next - addr;
631 	} while (pud++, addr = next, addr != end);
632 }
633 
634 #ifndef CONFIG_ARM_LPAE
635 static void __init create_36bit_mapping(struct map_desc *md,
636 					const struct mem_type *type)
637 {
638 	unsigned long addr, length, end;
639 	phys_addr_t phys;
640 	pgd_t *pgd;
641 
642 	addr = md->virtual;
643 	phys = __pfn_to_phys(md->pfn);
644 	length = PAGE_ALIGN(md->length);
645 
646 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
647 		printk(KERN_ERR "MM: CPU does not support supersection "
648 		       "mapping for 0x%08llx at 0x%08lx\n",
649 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
650 		return;
651 	}
652 
653 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
654 	 *	Since domain assignments can in fact be arbitrary, the
655 	 *	'domain == 0' check below is required to insure that ARMv6
656 	 *	supersections are only allocated for domain 0 regardless
657 	 *	of the actual domain assignments in use.
658 	 */
659 	if (type->domain) {
660 		printk(KERN_ERR "MM: invalid domain in supersection "
661 		       "mapping for 0x%08llx at 0x%08lx\n",
662 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
663 		return;
664 	}
665 
666 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
667 		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
668 		       " at 0x%08lx invalid alignment\n",
669 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
670 		return;
671 	}
672 
673 	/*
674 	 * Shift bits [35:32] of address into bits [23:20] of PMD
675 	 * (See ARMv6 spec).
676 	 */
677 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
678 
679 	pgd = pgd_offset_k(addr);
680 	end = addr + length;
681 	do {
682 		pud_t *pud = pud_offset(pgd, addr);
683 		pmd_t *pmd = pmd_offset(pud, addr);
684 		int i;
685 
686 		for (i = 0; i < 16; i++)
687 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
688 
689 		addr += SUPERSECTION_SIZE;
690 		phys += SUPERSECTION_SIZE;
691 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
692 	} while (addr != end);
693 }
694 #endif	/* !CONFIG_ARM_LPAE */
695 
696 /*
697  * Create the page directory entries and any necessary
698  * page tables for the mapping specified by `md'.  We
699  * are able to cope here with varying sizes and address
700  * offsets, and we take full advantage of sections and
701  * supersections.
702  */
703 static void __init create_mapping(struct map_desc *md)
704 {
705 	unsigned long addr, length, end;
706 	phys_addr_t phys;
707 	const struct mem_type *type;
708 	pgd_t *pgd;
709 
710 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
711 		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
712 		       " at 0x%08lx in user region\n",
713 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
714 		return;
715 	}
716 
717 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
718 	    md->virtual >= PAGE_OFFSET &&
719 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
720 		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
721 		       " at 0x%08lx out of vmalloc space\n",
722 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
723 	}
724 
725 	type = &mem_types[md->type];
726 
727 #ifndef CONFIG_ARM_LPAE
728 	/*
729 	 * Catch 36-bit addresses
730 	 */
731 	if (md->pfn >= 0x100000) {
732 		create_36bit_mapping(md, type);
733 		return;
734 	}
735 #endif
736 
737 	addr = md->virtual & PAGE_MASK;
738 	phys = __pfn_to_phys(md->pfn);
739 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
740 
741 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
742 		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
743 		       "be mapped using pages, ignoring.\n",
744 		       (long long)__pfn_to_phys(md->pfn), addr);
745 		return;
746 	}
747 
748 	pgd = pgd_offset_k(addr);
749 	end = addr + length;
750 	do {
751 		unsigned long next = pgd_addr_end(addr, end);
752 
753 		alloc_init_pud(pgd, addr, next, phys, type);
754 
755 		phys += next - addr;
756 		addr = next;
757 	} while (pgd++, addr != end);
758 }
759 
760 /*
761  * Create the architecture specific mappings
762  */
763 void __init iotable_init(struct map_desc *io_desc, int nr)
764 {
765 	struct map_desc *md;
766 	struct vm_struct *vm;
767 
768 	if (!nr)
769 		return;
770 
771 	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
772 
773 	for (md = io_desc; nr; md++, nr--) {
774 		create_mapping(md);
775 		vm->addr = (void *)(md->virtual & PAGE_MASK);
776 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
777 		vm->phys_addr = __pfn_to_phys(md->pfn);
778 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
779 		vm->flags |= VM_ARM_MTYPE(md->type);
780 		vm->caller = iotable_init;
781 		vm_area_add_early(vm++);
782 	}
783 }
784 
785 static void * __initdata vmalloc_min =
786 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
787 
788 /*
789  * vmalloc=size forces the vmalloc area to be exactly 'size'
790  * bytes. This can be used to increase (or decrease) the vmalloc
791  * area - the default is 240m.
792  */
793 static int __init early_vmalloc(char *arg)
794 {
795 	unsigned long vmalloc_reserve = memparse(arg, NULL);
796 
797 	if (vmalloc_reserve < SZ_16M) {
798 		vmalloc_reserve = SZ_16M;
799 		printk(KERN_WARNING
800 			"vmalloc area too small, limiting to %luMB\n",
801 			vmalloc_reserve >> 20);
802 	}
803 
804 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
805 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
806 		printk(KERN_WARNING
807 			"vmalloc area is too big, limiting to %luMB\n",
808 			vmalloc_reserve >> 20);
809 	}
810 
811 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
812 	return 0;
813 }
814 early_param("vmalloc", early_vmalloc);
815 
816 static phys_addr_t lowmem_limit __initdata = 0;
817 
818 void __init sanity_check_meminfo(void)
819 {
820 	int i, j, highmem = 0;
821 
822 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
823 		struct membank *bank = &meminfo.bank[j];
824 		*bank = meminfo.bank[i];
825 
826 		if (bank->start > ULONG_MAX)
827 			highmem = 1;
828 
829 #ifdef CONFIG_HIGHMEM
830 		if (__va(bank->start) >= vmalloc_min ||
831 		    __va(bank->start) < (void *)PAGE_OFFSET)
832 			highmem = 1;
833 
834 		bank->highmem = highmem;
835 
836 		/*
837 		 * Split those memory banks which are partially overlapping
838 		 * the vmalloc area greatly simplifying things later.
839 		 */
840 		if (!highmem && __va(bank->start) < vmalloc_min &&
841 		    bank->size > vmalloc_min - __va(bank->start)) {
842 			if (meminfo.nr_banks >= NR_BANKS) {
843 				printk(KERN_CRIT "NR_BANKS too low, "
844 						 "ignoring high memory\n");
845 			} else {
846 				memmove(bank + 1, bank,
847 					(meminfo.nr_banks - i) * sizeof(*bank));
848 				meminfo.nr_banks++;
849 				i++;
850 				bank[1].size -= vmalloc_min - __va(bank->start);
851 				bank[1].start = __pa(vmalloc_min - 1) + 1;
852 				bank[1].highmem = highmem = 1;
853 				j++;
854 			}
855 			bank->size = vmalloc_min - __va(bank->start);
856 		}
857 #else
858 		bank->highmem = highmem;
859 
860 		/*
861 		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
862 		 */
863 		if (highmem) {
864 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
865 			       "(!CONFIG_HIGHMEM).\n",
866 			       (unsigned long long)bank->start,
867 			       (unsigned long long)bank->start + bank->size - 1);
868 			continue;
869 		}
870 
871 		/*
872 		 * Check whether this memory bank would entirely overlap
873 		 * the vmalloc area.
874 		 */
875 		if (__va(bank->start) >= vmalloc_min ||
876 		    __va(bank->start) < (void *)PAGE_OFFSET) {
877 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
878 			       "(vmalloc region overlap).\n",
879 			       (unsigned long long)bank->start,
880 			       (unsigned long long)bank->start + bank->size - 1);
881 			continue;
882 		}
883 
884 		/*
885 		 * Check whether this memory bank would partially overlap
886 		 * the vmalloc area.
887 		 */
888 		if (__va(bank->start + bank->size) > vmalloc_min ||
889 		    __va(bank->start + bank->size) < __va(bank->start)) {
890 			unsigned long newsize = vmalloc_min - __va(bank->start);
891 			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
892 			       "to -%.8llx (vmalloc region overlap).\n",
893 			       (unsigned long long)bank->start,
894 			       (unsigned long long)bank->start + bank->size - 1,
895 			       (unsigned long long)bank->start + newsize - 1);
896 			bank->size = newsize;
897 		}
898 #endif
899 		if (!bank->highmem && bank->start + bank->size > lowmem_limit)
900 			lowmem_limit = bank->start + bank->size;
901 
902 		j++;
903 	}
904 #ifdef CONFIG_HIGHMEM
905 	if (highmem) {
906 		const char *reason = NULL;
907 
908 		if (cache_is_vipt_aliasing()) {
909 			/*
910 			 * Interactions between kmap and other mappings
911 			 * make highmem support with aliasing VIPT caches
912 			 * rather difficult.
913 			 */
914 			reason = "with VIPT aliasing cache";
915 		}
916 		if (reason) {
917 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
918 				reason);
919 			while (j > 0 && meminfo.bank[j - 1].highmem)
920 				j--;
921 		}
922 	}
923 #endif
924 	meminfo.nr_banks = j;
925 	high_memory = __va(lowmem_limit - 1) + 1;
926 	memblock_set_current_limit(lowmem_limit);
927 }
928 
929 static inline void prepare_page_table(void)
930 {
931 	unsigned long addr;
932 	phys_addr_t end;
933 
934 	/*
935 	 * Clear out all the mappings below the kernel image.
936 	 */
937 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
938 		pmd_clear(pmd_off_k(addr));
939 
940 #ifdef CONFIG_XIP_KERNEL
941 	/* The XIP kernel is mapped in the module area -- skip over it */
942 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
943 #endif
944 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
945 		pmd_clear(pmd_off_k(addr));
946 
947 	/*
948 	 * Find the end of the first block of lowmem.
949 	 */
950 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
951 	if (end >= lowmem_limit)
952 		end = lowmem_limit;
953 
954 	/*
955 	 * Clear out all the kernel space mappings, except for the first
956 	 * memory bank, up to the vmalloc region.
957 	 */
958 	for (addr = __phys_to_virt(end);
959 	     addr < VMALLOC_START; addr += PMD_SIZE)
960 		pmd_clear(pmd_off_k(addr));
961 }
962 
963 #ifdef CONFIG_ARM_LPAE
964 /* the first page is reserved for pgd */
965 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
966 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
967 #else
968 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
969 #endif
970 
971 /*
972  * Reserve the special regions of memory
973  */
974 void __init arm_mm_memblock_reserve(void)
975 {
976 	/*
977 	 * Reserve the page tables.  These are already in use,
978 	 * and can only be in node 0.
979 	 */
980 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
981 
982 #ifdef CONFIG_SA1111
983 	/*
984 	 * Because of the SA1111 DMA bug, we want to preserve our
985 	 * precious DMA-able memory...
986 	 */
987 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
988 #endif
989 }
990 
991 /*
992  * Set up the device mappings.  Since we clear out the page tables for all
993  * mappings above VMALLOC_START, we will remove any debug device mappings.
994  * This means you have to be careful how you debug this function, or any
995  * called function.  This means you can't use any function or debugging
996  * method which may touch any device, otherwise the kernel _will_ crash.
997  */
998 static void __init devicemaps_init(struct machine_desc *mdesc)
999 {
1000 	struct map_desc map;
1001 	unsigned long addr;
1002 	void *vectors;
1003 
1004 	/*
1005 	 * Allocate the vector page early.
1006 	 */
1007 	vectors = early_alloc(PAGE_SIZE);
1008 
1009 	early_trap_init(vectors);
1010 
1011 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1012 		pmd_clear(pmd_off_k(addr));
1013 
1014 	/*
1015 	 * Map the kernel if it is XIP.
1016 	 * It is always first in the modulearea.
1017 	 */
1018 #ifdef CONFIG_XIP_KERNEL
1019 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1020 	map.virtual = MODULES_VADDR;
1021 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1022 	map.type = MT_ROM;
1023 	create_mapping(&map);
1024 #endif
1025 
1026 	/*
1027 	 * Map the cache flushing regions.
1028 	 */
1029 #ifdef FLUSH_BASE
1030 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1031 	map.virtual = FLUSH_BASE;
1032 	map.length = SZ_1M;
1033 	map.type = MT_CACHECLEAN;
1034 	create_mapping(&map);
1035 #endif
1036 #ifdef FLUSH_BASE_MINICACHE
1037 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1038 	map.virtual = FLUSH_BASE_MINICACHE;
1039 	map.length = SZ_1M;
1040 	map.type = MT_MINICLEAN;
1041 	create_mapping(&map);
1042 #endif
1043 
1044 	/*
1045 	 * Create a mapping for the machine vectors at the high-vectors
1046 	 * location (0xffff0000).  If we aren't using high-vectors, also
1047 	 * create a mapping at the low-vectors virtual address.
1048 	 */
1049 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1050 	map.virtual = 0xffff0000;
1051 	map.length = PAGE_SIZE;
1052 	map.type = MT_HIGH_VECTORS;
1053 	create_mapping(&map);
1054 
1055 	if (!vectors_high()) {
1056 		map.virtual = 0;
1057 		map.type = MT_LOW_VECTORS;
1058 		create_mapping(&map);
1059 	}
1060 
1061 	/*
1062 	 * Ask the machine support to map in the statically mapped devices.
1063 	 */
1064 	if (mdesc->map_io)
1065 		mdesc->map_io();
1066 
1067 	/*
1068 	 * Finally flush the caches and tlb to ensure that we're in a
1069 	 * consistent state wrt the writebuffer.  This also ensures that
1070 	 * any write-allocated cache lines in the vector page are written
1071 	 * back.  After this point, we can start to touch devices again.
1072 	 */
1073 	local_flush_tlb_all();
1074 	flush_cache_all();
1075 }
1076 
1077 static void __init kmap_init(void)
1078 {
1079 #ifdef CONFIG_HIGHMEM
1080 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1081 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1082 #endif
1083 }
1084 
1085 static void __init map_lowmem(void)
1086 {
1087 	struct memblock_region *reg;
1088 
1089 	/* Map all the lowmem memory banks. */
1090 	for_each_memblock(memory, reg) {
1091 		phys_addr_t start = reg->base;
1092 		phys_addr_t end = start + reg->size;
1093 		struct map_desc map;
1094 
1095 		if (end > lowmem_limit)
1096 			end = lowmem_limit;
1097 		if (start >= end)
1098 			break;
1099 
1100 		map.pfn = __phys_to_pfn(start);
1101 		map.virtual = __phys_to_virt(start);
1102 		map.length = end - start;
1103 		map.type = MT_MEMORY;
1104 
1105 		create_mapping(&map);
1106 	}
1107 }
1108 
1109 /*
1110  * paging_init() sets up the page tables, initialises the zone memory
1111  * maps, and sets up the zero page, bad page and bad page tables.
1112  */
1113 void __init paging_init(struct machine_desc *mdesc)
1114 {
1115 	void *zero_page;
1116 
1117 	memblock_set_current_limit(lowmem_limit);
1118 
1119 	build_mem_type_table();
1120 	prepare_page_table();
1121 	map_lowmem();
1122 	devicemaps_init(mdesc);
1123 	kmap_init();
1124 
1125 	top_pmd = pmd_off_k(0xffff0000);
1126 
1127 	/* allocate the zero page. */
1128 	zero_page = early_alloc(PAGE_SIZE);
1129 
1130 	bootmem_init();
1131 
1132 	empty_zero_page = virt_to_page(zero_page);
1133 	__flush_dcache_page(NULL, empty_zero_page);
1134 }
1135