1 /* 2 * linux/arch/arm/mm/init.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/config.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/ptrace.h> 14 #include <linux/swap.h> 15 #include <linux/init.h> 16 #include <linux/bootmem.h> 17 #include <linux/mman.h> 18 #include <linux/nodemask.h> 19 #include <linux/initrd.h> 20 21 #include <asm/mach-types.h> 22 #include <asm/setup.h> 23 #include <asm/tlb.h> 24 25 #include <asm/mach/arch.h> 26 #include <asm/mach/map.h> 27 28 #define TABLE_SIZE (2 * PTRS_PER_PTE * sizeof(pte_t)) 29 30 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 31 32 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 33 extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end; 34 extern unsigned long phys_initrd_start; 35 extern unsigned long phys_initrd_size; 36 37 /* 38 * The sole use of this is to pass memory configuration 39 * data from paging_init to mem_init. 40 */ 41 static struct meminfo meminfo __initdata = { 0, }; 42 43 /* 44 * empty_zero_page is a special page that is used for 45 * zero-initialized data and COW. 46 */ 47 struct page *empty_zero_page; 48 49 void show_mem(void) 50 { 51 int free = 0, total = 0, reserved = 0; 52 int shared = 0, cached = 0, slab = 0, node; 53 54 printk("Mem-info:\n"); 55 show_free_areas(); 56 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); 57 58 for_each_online_node(node) { 59 struct page *page, *end; 60 61 page = NODE_MEM_MAP(node); 62 end = page + NODE_DATA(node)->node_spanned_pages; 63 64 do { 65 total++; 66 if (PageReserved(page)) 67 reserved++; 68 else if (PageSwapCache(page)) 69 cached++; 70 else if (PageSlab(page)) 71 slab++; 72 else if (!page_count(page)) 73 free++; 74 else 75 shared += page_count(page) - 1; 76 page++; 77 } while (page < end); 78 } 79 80 printk("%d pages of RAM\n", total); 81 printk("%d free pages\n", free); 82 printk("%d reserved pages\n", reserved); 83 printk("%d slab pages\n", slab); 84 printk("%d pages shared\n", shared); 85 printk("%d pages swap cached\n", cached); 86 } 87 88 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt) 89 { 90 return pmd_offset(pgd, virt); 91 } 92 93 static inline pmd_t *pmd_off_k(unsigned long virt) 94 { 95 return pmd_off(pgd_offset_k(virt), virt); 96 } 97 98 #define for_each_nodebank(iter,mi,no) \ 99 for (iter = 0; iter < mi->nr_banks; iter++) \ 100 if (mi->bank[iter].node == no) 101 102 /* 103 * FIXME: We really want to avoid allocating the bootmap bitmap 104 * over the top of the initrd. Hopefully, this is located towards 105 * the start of a bank, so if we allocate the bootmap bitmap at 106 * the end, we won't clash. 107 */ 108 static unsigned int __init 109 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages) 110 { 111 unsigned int start_pfn, bank, bootmap_pfn; 112 113 start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT; 114 bootmap_pfn = 0; 115 116 for_each_nodebank(bank, mi, node) { 117 unsigned int start, end; 118 119 start = mi->bank[bank].start >> PAGE_SHIFT; 120 end = (mi->bank[bank].size + 121 mi->bank[bank].start) >> PAGE_SHIFT; 122 123 if (end < start_pfn) 124 continue; 125 126 if (start < start_pfn) 127 start = start_pfn; 128 129 if (end <= start) 130 continue; 131 132 if (end - start >= bootmap_pages) { 133 bootmap_pfn = start; 134 break; 135 } 136 } 137 138 if (bootmap_pfn == 0) 139 BUG(); 140 141 return bootmap_pfn; 142 } 143 144 static int __init check_initrd(struct meminfo *mi) 145 { 146 int initrd_node = -2; 147 #ifdef CONFIG_BLK_DEV_INITRD 148 unsigned long end = phys_initrd_start + phys_initrd_size; 149 150 /* 151 * Make sure that the initrd is within a valid area of 152 * memory. 153 */ 154 if (phys_initrd_size) { 155 unsigned int i; 156 157 initrd_node = -1; 158 159 for (i = 0; i < mi->nr_banks; i++) { 160 unsigned long bank_end; 161 162 bank_end = mi->bank[i].start + mi->bank[i].size; 163 164 if (mi->bank[i].start <= phys_initrd_start && 165 end <= bank_end) 166 initrd_node = mi->bank[i].node; 167 } 168 } 169 170 if (initrd_node == -1) { 171 printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond " 172 "physical memory - disabling initrd\n", 173 phys_initrd_start, end); 174 phys_initrd_start = phys_initrd_size = 0; 175 } 176 #endif 177 178 return initrd_node; 179 } 180 181 /* 182 * Reserve the various regions of node 0 183 */ 184 static __init void reserve_node_zero(pg_data_t *pgdat) 185 { 186 unsigned long res_size = 0; 187 188 /* 189 * Register the kernel text and data with bootmem. 190 * Note that this can only be in node 0. 191 */ 192 #ifdef CONFIG_XIP_KERNEL 193 reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start); 194 #else 195 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext); 196 #endif 197 198 /* 199 * Reserve the page tables. These are already in use, 200 * and can only be in node 0. 201 */ 202 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), 203 PTRS_PER_PGD * sizeof(pgd_t)); 204 205 /* 206 * Hmm... This should go elsewhere, but we really really need to 207 * stop things allocating the low memory; ideally we need a better 208 * implementation of GFP_DMA which does not assume that DMA-able 209 * memory starts at zero. 210 */ 211 if (machine_is_integrator() || machine_is_cintegrator()) 212 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; 213 214 /* 215 * These should likewise go elsewhere. They pre-reserve the 216 * screen memory region at the start of main system memory. 217 */ 218 if (machine_is_edb7211()) 219 res_size = 0x00020000; 220 if (machine_is_p720t()) 221 res_size = 0x00014000; 222 223 #ifdef CONFIG_SA1111 224 /* 225 * Because of the SA1111 DMA bug, we want to preserve our 226 * precious DMA-able memory... 227 */ 228 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; 229 #endif 230 if (res_size) 231 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size); 232 } 233 234 void __init build_mem_type_table(void); 235 void __init create_mapping(struct map_desc *md); 236 237 static unsigned long __init 238 bootmem_init_node(int node, int initrd_node, struct meminfo *mi) 239 { 240 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 241 unsigned long start_pfn, end_pfn, boot_pfn; 242 unsigned int boot_pages; 243 pg_data_t *pgdat; 244 int i; 245 246 start_pfn = -1UL; 247 end_pfn = 0; 248 249 /* 250 * Calculate the pfn range, and map the memory banks for this node. 251 */ 252 for_each_nodebank(i, mi, node) { 253 unsigned long start, end; 254 struct map_desc map; 255 256 start = mi->bank[i].start >> PAGE_SHIFT; 257 end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT; 258 259 if (start_pfn > start) 260 start_pfn = start; 261 if (end_pfn < end) 262 end_pfn = end; 263 264 map.pfn = __phys_to_pfn(mi->bank[i].start); 265 map.virtual = __phys_to_virt(mi->bank[i].start); 266 map.length = mi->bank[i].size; 267 map.type = MT_MEMORY; 268 269 create_mapping(&map); 270 } 271 272 /* 273 * If there is no memory in this node, ignore it. 274 */ 275 if (end_pfn == 0) 276 return end_pfn; 277 278 /* 279 * Allocate the bootmem bitmap page. 280 */ 281 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 282 boot_pfn = find_bootmap_pfn(node, mi, boot_pages); 283 284 /* 285 * Initialise the bootmem allocator for this node, handing the 286 * memory banks over to bootmem. 287 */ 288 node_set_online(node); 289 pgdat = NODE_DATA(node); 290 init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn); 291 292 for_each_nodebank(i, mi, node) 293 free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size); 294 295 /* 296 * Reserve the bootmem bitmap for this node. 297 */ 298 reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT, 299 boot_pages << PAGE_SHIFT); 300 301 #ifdef CONFIG_BLK_DEV_INITRD 302 /* 303 * If the initrd is in this node, reserve its memory. 304 */ 305 if (node == initrd_node) { 306 reserve_bootmem_node(pgdat, phys_initrd_start, 307 phys_initrd_size); 308 initrd_start = __phys_to_virt(phys_initrd_start); 309 initrd_end = initrd_start + phys_initrd_size; 310 } 311 #endif 312 313 /* 314 * Finally, reserve any node zero regions. 315 */ 316 if (node == 0) 317 reserve_node_zero(pgdat); 318 319 /* 320 * initialise the zones within this node. 321 */ 322 memset(zone_size, 0, sizeof(zone_size)); 323 memset(zhole_size, 0, sizeof(zhole_size)); 324 325 /* 326 * The size of this node has already been determined. If we need 327 * to do anything fancy with the allocation of this memory to the 328 * zones, now is the time to do it. 329 */ 330 zone_size[0] = end_pfn - start_pfn; 331 332 /* 333 * For each bank in this node, calculate the size of the holes. 334 * holes = node_size - sum(bank_sizes_in_node) 335 */ 336 zhole_size[0] = zone_size[0]; 337 for_each_nodebank(i, mi, node) 338 zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT; 339 340 /* 341 * Adjust the sizes according to any special requirements for 342 * this machine type. 343 */ 344 arch_adjust_zones(node, zone_size, zhole_size); 345 346 free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size); 347 348 return end_pfn; 349 } 350 351 static void __init bootmem_init(struct meminfo *mi) 352 { 353 unsigned long addr, memend_pfn = 0; 354 int node, initrd_node, i; 355 356 /* 357 * Invalidate the node number for empty or invalid memory banks 358 */ 359 for (i = 0; i < mi->nr_banks; i++) 360 if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES) 361 mi->bank[i].node = -1; 362 363 memcpy(&meminfo, mi, sizeof(meminfo)); 364 365 /* 366 * Clear out all the mappings below the kernel image. 367 */ 368 for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE) 369 pmd_clear(pmd_off_k(addr)); 370 #ifdef CONFIG_XIP_KERNEL 371 /* The XIP kernel is mapped in the module area -- skip over it */ 372 addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK; 373 #endif 374 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) 375 pmd_clear(pmd_off_k(addr)); 376 377 /* 378 * Clear out all the kernel space mappings, except for the first 379 * memory bank, up to the end of the vmalloc region. 380 */ 381 for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size); 382 addr < VMALLOC_END; addr += PGDIR_SIZE) 383 pmd_clear(pmd_off_k(addr)); 384 385 /* 386 * Locate which node contains the ramdisk image, if any. 387 */ 388 initrd_node = check_initrd(mi); 389 390 /* 391 * Run through each node initialising the bootmem allocator. 392 */ 393 for_each_node(node) { 394 unsigned long end_pfn; 395 396 end_pfn = bootmem_init_node(node, initrd_node, mi); 397 398 /* 399 * Remember the highest memory PFN. 400 */ 401 if (end_pfn > memend_pfn) 402 memend_pfn = end_pfn; 403 } 404 405 high_memory = __va(memend_pfn << PAGE_SHIFT); 406 407 /* 408 * This doesn't seem to be used by the Linux memory manager any 409 * more, but is used by ll_rw_block. If we can get rid of it, we 410 * also get rid of some of the stuff above as well. 411 * 412 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in 413 * the system, not the maximum PFN. 414 */ 415 max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET; 416 } 417 418 /* 419 * Set up device the mappings. Since we clear out the page tables for all 420 * mappings above VMALLOC_END, we will remove any debug device mappings. 421 * This means you have to be careful how you debug this function, or any 422 * called function. This means you can't use any function or debugging 423 * method which may touch any device, otherwise the kernel _will_ crash. 424 */ 425 static void __init devicemaps_init(struct machine_desc *mdesc) 426 { 427 struct map_desc map; 428 unsigned long addr; 429 void *vectors; 430 431 /* 432 * Allocate the vector page early. 433 */ 434 vectors = alloc_bootmem_low_pages(PAGE_SIZE); 435 BUG_ON(!vectors); 436 437 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) 438 pmd_clear(pmd_off_k(addr)); 439 440 /* 441 * Map the kernel if it is XIP. 442 * It is always first in the modulearea. 443 */ 444 #ifdef CONFIG_XIP_KERNEL 445 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & PGDIR_MASK); 446 map.virtual = MODULE_START; 447 map.length = ((unsigned long)&_etext - map.virtual + ~PGDIR_MASK) & PGDIR_MASK; 448 map.type = MT_ROM; 449 create_mapping(&map); 450 #endif 451 452 /* 453 * Map the cache flushing regions. 454 */ 455 #ifdef FLUSH_BASE 456 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 457 map.virtual = FLUSH_BASE; 458 map.length = PGDIR_SIZE; 459 map.type = MT_CACHECLEAN; 460 create_mapping(&map); 461 #endif 462 #ifdef FLUSH_BASE_MINICACHE 463 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + PGDIR_SIZE); 464 map.virtual = FLUSH_BASE_MINICACHE; 465 map.length = PGDIR_SIZE; 466 map.type = MT_MINICLEAN; 467 create_mapping(&map); 468 #endif 469 470 /* 471 * Create a mapping for the machine vectors at the high-vectors 472 * location (0xffff0000). If we aren't using high-vectors, also 473 * create a mapping at the low-vectors virtual address. 474 */ 475 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 476 map.virtual = 0xffff0000; 477 map.length = PAGE_SIZE; 478 map.type = MT_HIGH_VECTORS; 479 create_mapping(&map); 480 481 if (!vectors_high()) { 482 map.virtual = 0; 483 map.type = MT_LOW_VECTORS; 484 create_mapping(&map); 485 } 486 487 /* 488 * Ask the machine support to map in the statically mapped devices. 489 */ 490 if (mdesc->map_io) 491 mdesc->map_io(); 492 493 /* 494 * Finally flush the caches and tlb to ensure that we're in a 495 * consistent state wrt the writebuffer. This also ensures that 496 * any write-allocated cache lines in the vector page are written 497 * back. After this point, we can start to touch devices again. 498 */ 499 local_flush_tlb_all(); 500 flush_cache_all(); 501 } 502 503 /* 504 * paging_init() sets up the page tables, initialises the zone memory 505 * maps, and sets up the zero page, bad page and bad page tables. 506 */ 507 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc) 508 { 509 void *zero_page; 510 511 build_mem_type_table(); 512 bootmem_init(mi); 513 devicemaps_init(mdesc); 514 515 top_pmd = pmd_off_k(0xffff0000); 516 517 /* 518 * allocate the zero page. Note that we count on this going ok. 519 */ 520 zero_page = alloc_bootmem_low_pages(PAGE_SIZE); 521 memzero(zero_page, PAGE_SIZE); 522 empty_zero_page = virt_to_page(zero_page); 523 flush_dcache_page(empty_zero_page); 524 } 525 526 static inline void free_area(unsigned long addr, unsigned long end, char *s) 527 { 528 unsigned int size = (end - addr) >> 10; 529 530 for (; addr < end; addr += PAGE_SIZE) { 531 struct page *page = virt_to_page(addr); 532 ClearPageReserved(page); 533 set_page_count(page, 1); 534 free_page(addr); 535 totalram_pages++; 536 } 537 538 if (size && s) 539 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); 540 } 541 542 static inline void 543 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) 544 { 545 struct page *start_pg, *end_pg; 546 unsigned long pg, pgend; 547 548 /* 549 * Convert start_pfn/end_pfn to a struct page pointer. 550 */ 551 start_pg = pfn_to_page(start_pfn); 552 end_pg = pfn_to_page(end_pfn); 553 554 /* 555 * Convert to physical addresses, and 556 * round start upwards and end downwards. 557 */ 558 pg = PAGE_ALIGN(__pa(start_pg)); 559 pgend = __pa(end_pg) & PAGE_MASK; 560 561 /* 562 * If there are free pages between these, 563 * free the section of the memmap array. 564 */ 565 if (pg < pgend) 566 free_bootmem_node(NODE_DATA(node), pg, pgend - pg); 567 } 568 569 /* 570 * The mem_map array can get very big. Free the unused area of the memory map. 571 */ 572 static void __init free_unused_memmap_node(int node, struct meminfo *mi) 573 { 574 unsigned long bank_start, prev_bank_end = 0; 575 unsigned int i; 576 577 /* 578 * [FIXME] This relies on each bank being in address order. This 579 * may not be the case, especially if the user has provided the 580 * information on the command line. 581 */ 582 for_each_nodebank(i, mi, node) { 583 bank_start = mi->bank[i].start >> PAGE_SHIFT; 584 if (bank_start < prev_bank_end) { 585 printk(KERN_ERR "MEM: unordered memory banks. " 586 "Not freeing memmap.\n"); 587 break; 588 } 589 590 /* 591 * If we had a previous bank, and there is a space 592 * between the current bank and the previous, free it. 593 */ 594 if (prev_bank_end && prev_bank_end != bank_start) 595 free_memmap(node, prev_bank_end, bank_start); 596 597 prev_bank_end = (mi->bank[i].start + 598 mi->bank[i].size) >> PAGE_SHIFT; 599 } 600 } 601 602 /* 603 * mem_init() marks the free areas in the mem_map and tells us how much 604 * memory is free. This is done after various parts of the system have 605 * claimed their memory after the kernel image. 606 */ 607 void __init mem_init(void) 608 { 609 unsigned int codepages, datapages, initpages; 610 int i, node; 611 612 codepages = &_etext - &_text; 613 datapages = &_end - &__data_start; 614 initpages = &__init_end - &__init_begin; 615 616 #ifndef CONFIG_DISCONTIGMEM 617 max_mapnr = virt_to_page(high_memory) - mem_map; 618 #endif 619 620 /* this will put all unused low memory onto the freelists */ 621 for_each_online_node(node) { 622 pg_data_t *pgdat = NODE_DATA(node); 623 624 free_unused_memmap_node(node, &meminfo); 625 626 if (pgdat->node_spanned_pages != 0) 627 totalram_pages += free_all_bootmem_node(pgdat); 628 } 629 630 #ifdef CONFIG_SA1111 631 /* now that our DMA memory is actually so designated, we can free it */ 632 free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL); 633 #endif 634 635 /* 636 * Since our memory may not be contiguous, calculate the 637 * real number of pages we have in this system 638 */ 639 printk(KERN_INFO "Memory:"); 640 641 num_physpages = 0; 642 for (i = 0; i < meminfo.nr_banks; i++) { 643 num_physpages += meminfo.bank[i].size >> PAGE_SHIFT; 644 printk(" %ldMB", meminfo.bank[i].size >> 20); 645 } 646 647 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); 648 printk(KERN_NOTICE "Memory: %luKB available (%dK code, " 649 "%dK data, %dK init)\n", 650 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), 651 codepages >> 10, datapages >> 10, initpages >> 10); 652 653 if (PAGE_SIZE >= 16384 && num_physpages <= 128) { 654 extern int sysctl_overcommit_memory; 655 /* 656 * On a machine this small we won't get 657 * anywhere without overcommit, so turn 658 * it on by default. 659 */ 660 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 661 } 662 } 663 664 void free_initmem(void) 665 { 666 if (!machine_is_integrator() && !machine_is_cintegrator()) { 667 free_area((unsigned long)(&__init_begin), 668 (unsigned long)(&__init_end), 669 "init"); 670 } 671 } 672 673 #ifdef CONFIG_BLK_DEV_INITRD 674 675 static int keep_initrd; 676 677 void free_initrd_mem(unsigned long start, unsigned long end) 678 { 679 if (!keep_initrd) 680 free_area(start, end, "initrd"); 681 } 682 683 static int __init keepinitrd_setup(char *__unused) 684 { 685 keep_initrd = 1; 686 return 1; 687 } 688 689 __setup("keepinitrd", keepinitrd_setup); 690 #endif 691