xref: /openbmc/linux/arch/arm/mm/fault-armv.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  *  linux/arch/arm/mm/fault-armv.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2002 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/pgtable.h>
22 #include <asm/tlbflush.h>
23 
24 static unsigned long shared_pte_mask = L_PTE_CACHEABLE;
25 
26 /*
27  * We take the easy way out of this problem - we make the
28  * PTE uncacheable.  However, we leave the write buffer on.
29  */
30 static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
31 {
32 	pgd_t *pgd;
33 	pmd_t *pmd;
34 	pte_t *pte, entry;
35 	int ret = 0;
36 
37 	pgd = pgd_offset(vma->vm_mm, address);
38 	if (pgd_none(*pgd))
39 		goto no_pgd;
40 	if (pgd_bad(*pgd))
41 		goto bad_pgd;
42 
43 	pmd = pmd_offset(pgd, address);
44 	if (pmd_none(*pmd))
45 		goto no_pmd;
46 	if (pmd_bad(*pmd))
47 		goto bad_pmd;
48 
49 	pte = pte_offset_map(pmd, address);
50 	entry = *pte;
51 
52 	/*
53 	 * If this page isn't present, or is already setup to
54 	 * fault (ie, is old), we can safely ignore any issues.
55 	 */
56 	if (pte_present(entry) && pte_val(entry) & shared_pte_mask) {
57 		flush_cache_page(vma, address, pte_pfn(entry));
58 		pte_val(entry) &= ~shared_pte_mask;
59 		set_pte(pte, entry);
60 		flush_tlb_page(vma, address);
61 		ret = 1;
62 	}
63 	pte_unmap(pte);
64 	return ret;
65 
66 bad_pgd:
67 	pgd_ERROR(*pgd);
68 	pgd_clear(pgd);
69 no_pgd:
70 	return 0;
71 
72 bad_pmd:
73 	pmd_ERROR(*pmd);
74 	pmd_clear(pmd);
75 no_pmd:
76 	return 0;
77 }
78 
79 static void
80 make_coherent(struct vm_area_struct *vma, unsigned long addr, struct page *page, int dirty)
81 {
82 	struct address_space *mapping = page_mapping(page);
83 	struct mm_struct *mm = vma->vm_mm;
84 	struct vm_area_struct *mpnt;
85 	struct prio_tree_iter iter;
86 	unsigned long offset;
87 	pgoff_t pgoff;
88 	int aliases = 0;
89 
90 	if (!mapping)
91 		return;
92 
93 	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
94 
95 	/*
96 	 * If we have any shared mappings that are in the same mm
97 	 * space, then we need to handle them specially to maintain
98 	 * cache coherency.
99 	 */
100 	flush_dcache_mmap_lock(mapping);
101 	vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
102 		/*
103 		 * If this VMA is not in our MM, we can ignore it.
104 		 * Note that we intentionally mask out the VMA
105 		 * that we are fixing up.
106 		 */
107 		if (mpnt->vm_mm != mm || mpnt == vma)
108 			continue;
109 		if (!(mpnt->vm_flags & VM_MAYSHARE))
110 			continue;
111 		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
112 		aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
113 	}
114 	flush_dcache_mmap_unlock(mapping);
115 	if (aliases)
116 		adjust_pte(vma, addr);
117 	else
118 		flush_cache_page(vma, addr, page_to_pfn(page));
119 }
120 
121 /*
122  * Take care of architecture specific things when placing a new PTE into
123  * a page table, or changing an existing PTE.  Basically, there are two
124  * things that we need to take care of:
125  *
126  *  1. If PG_dcache_dirty is set for the page, we need to ensure
127  *     that any cache entries for the kernels virtual memory
128  *     range are written back to the page.
129  *  2. If we have multiple shared mappings of the same space in
130  *     an object, we need to deal with the cache aliasing issues.
131  *
132  * Note that the page_table_lock will be held.
133  */
134 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
135 {
136 	unsigned long pfn = pte_pfn(pte);
137 	struct page *page;
138 
139 	if (!pfn_valid(pfn))
140 		return;
141 	page = pfn_to_page(pfn);
142 	if (page_mapping(page)) {
143 		int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
144 
145 		if (dirty) {
146 			/*
147 			 * This is our first userspace mapping of this page.
148 			 * Ensure that the physical page is coherent with
149 			 * the kernel mapping.
150 			 *
151 			 * FIXME: only need to do this on VIVT and aliasing
152 			 *        VIPT cache architectures.  We can do that
153 			 *	  by choosing whether to set this bit...
154 			 */
155 			__cpuc_flush_dcache_page(page_address(page));
156 		}
157 
158 		if (cache_is_vivt())
159 			make_coherent(vma, addr, page, dirty);
160 	}
161 }
162 
163 /*
164  * Check whether the write buffer has physical address aliasing
165  * issues.  If it has, we need to avoid them for the case where
166  * we have several shared mappings of the same object in user
167  * space.
168  */
169 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
170 {
171 	register unsigned long zero = 0, one = 1, val;
172 
173 	local_irq_disable();
174 	mb();
175 	*p1 = one;
176 	mb();
177 	*p2 = zero;
178 	mb();
179 	val = *p1;
180 	mb();
181 	local_irq_enable();
182 	return val != zero;
183 }
184 
185 void __init check_writebuffer_bugs(void)
186 {
187 	struct page *page;
188 	const char *reason;
189 	unsigned long v = 1;
190 
191 	printk(KERN_INFO "CPU: Testing write buffer coherency: ");
192 
193 	page = alloc_page(GFP_KERNEL);
194 	if (page) {
195 		unsigned long *p1, *p2;
196 		pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|
197 					 L_PTE_DIRTY|L_PTE_WRITE|
198 					 L_PTE_BUFFERABLE);
199 
200 		p1 = vmap(&page, 1, VM_IOREMAP, prot);
201 		p2 = vmap(&page, 1, VM_IOREMAP, prot);
202 
203 		if (p1 && p2) {
204 			v = check_writebuffer(p1, p2);
205 			reason = "enabling work-around";
206 		} else {
207 			reason = "unable to map memory\n";
208 		}
209 
210 		vunmap(p1);
211 		vunmap(p2);
212 		put_page(page);
213 	} else {
214 		reason = "unable to grab page\n";
215 	}
216 
217 	if (v) {
218 		printk("failed, %s\n", reason);
219 		shared_pte_mask |= L_PTE_BUFFERABLE;
220 	} else {
221 		printk("ok\n");
222 	}
223 }
224