1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/dma-mapping.c 4 * 5 * Copyright (C) 2000-2004 Russell King 6 * 7 * DMA uncached mapping support. 8 */ 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/genalloc.h> 12 #include <linux/gfp.h> 13 #include <linux/errno.h> 14 #include <linux/list.h> 15 #include <linux/init.h> 16 #include <linux/device.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/dma-noncoherent.h> 19 #include <linux/dma-contiguous.h> 20 #include <linux/highmem.h> 21 #include <linux/memblock.h> 22 #include <linux/slab.h> 23 #include <linux/iommu.h> 24 #include <linux/io.h> 25 #include <linux/vmalloc.h> 26 #include <linux/sizes.h> 27 #include <linux/cma.h> 28 29 #include <asm/memory.h> 30 #include <asm/highmem.h> 31 #include <asm/cacheflush.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mach/arch.h> 34 #include <asm/dma-iommu.h> 35 #include <asm/mach/map.h> 36 #include <asm/system_info.h> 37 #include <asm/dma-contiguous.h> 38 39 #include "dma.h" 40 #include "mm.h" 41 42 struct arm_dma_alloc_args { 43 struct device *dev; 44 size_t size; 45 gfp_t gfp; 46 pgprot_t prot; 47 const void *caller; 48 bool want_vaddr; 49 int coherent_flag; 50 }; 51 52 struct arm_dma_free_args { 53 struct device *dev; 54 size_t size; 55 void *cpu_addr; 56 struct page *page; 57 bool want_vaddr; 58 }; 59 60 #define NORMAL 0 61 #define COHERENT 1 62 63 struct arm_dma_allocator { 64 void *(*alloc)(struct arm_dma_alloc_args *args, 65 struct page **ret_page); 66 void (*free)(struct arm_dma_free_args *args); 67 }; 68 69 struct arm_dma_buffer { 70 struct list_head list; 71 void *virt; 72 struct arm_dma_allocator *allocator; 73 }; 74 75 static LIST_HEAD(arm_dma_bufs); 76 static DEFINE_SPINLOCK(arm_dma_bufs_lock); 77 78 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) 79 { 80 struct arm_dma_buffer *buf, *found = NULL; 81 unsigned long flags; 82 83 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 84 list_for_each_entry(buf, &arm_dma_bufs, list) { 85 if (buf->virt == virt) { 86 list_del(&buf->list); 87 found = buf; 88 break; 89 } 90 } 91 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 92 return found; 93 } 94 95 /* 96 * The DMA API is built upon the notion of "buffer ownership". A buffer 97 * is either exclusively owned by the CPU (and therefore may be accessed 98 * by it) or exclusively owned by the DMA device. These helper functions 99 * represent the transitions between these two ownership states. 100 * 101 * Note, however, that on later ARMs, this notion does not work due to 102 * speculative prefetches. We model our approach on the assumption that 103 * the CPU does do speculative prefetches, which means we clean caches 104 * before transfers and delay cache invalidation until transfer completion. 105 * 106 */ 107 static void __dma_page_cpu_to_dev(struct page *, unsigned long, 108 size_t, enum dma_data_direction); 109 static void __dma_page_dev_to_cpu(struct page *, unsigned long, 110 size_t, enum dma_data_direction); 111 112 /** 113 * arm_dma_map_page - map a portion of a page for streaming DMA 114 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 115 * @page: page that buffer resides in 116 * @offset: offset into page for start of buffer 117 * @size: size of buffer to map 118 * @dir: DMA transfer direction 119 * 120 * Ensure that any data held in the cache is appropriately discarded 121 * or written back. 122 * 123 * The device owns this memory once this call has completed. The CPU 124 * can regain ownership by calling dma_unmap_page(). 125 */ 126 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, 127 unsigned long offset, size_t size, enum dma_data_direction dir, 128 unsigned long attrs) 129 { 130 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 131 __dma_page_cpu_to_dev(page, offset, size, dir); 132 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 133 } 134 135 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, 136 unsigned long offset, size_t size, enum dma_data_direction dir, 137 unsigned long attrs) 138 { 139 return pfn_to_dma(dev, page_to_pfn(page)) + offset; 140 } 141 142 /** 143 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() 144 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 145 * @handle: DMA address of buffer 146 * @size: size of buffer (same as passed to dma_map_page) 147 * @dir: DMA transfer direction (same as passed to dma_map_page) 148 * 149 * Unmap a page streaming mode DMA translation. The handle and size 150 * must match what was provided in the previous dma_map_page() call. 151 * All other usages are undefined. 152 * 153 * After this call, reads by the CPU to the buffer are guaranteed to see 154 * whatever the device wrote there. 155 */ 156 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, 157 size_t size, enum dma_data_direction dir, unsigned long attrs) 158 { 159 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 160 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), 161 handle & ~PAGE_MASK, size, dir); 162 } 163 164 static void arm_dma_sync_single_for_cpu(struct device *dev, 165 dma_addr_t handle, size_t size, enum dma_data_direction dir) 166 { 167 unsigned int offset = handle & (PAGE_SIZE - 1); 168 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 169 __dma_page_dev_to_cpu(page, offset, size, dir); 170 } 171 172 static void arm_dma_sync_single_for_device(struct device *dev, 173 dma_addr_t handle, size_t size, enum dma_data_direction dir) 174 { 175 unsigned int offset = handle & (PAGE_SIZE - 1); 176 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); 177 __dma_page_cpu_to_dev(page, offset, size, dir); 178 } 179 180 const struct dma_map_ops arm_dma_ops = { 181 .alloc = arm_dma_alloc, 182 .free = arm_dma_free, 183 .mmap = arm_dma_mmap, 184 .get_sgtable = arm_dma_get_sgtable, 185 .map_page = arm_dma_map_page, 186 .unmap_page = arm_dma_unmap_page, 187 .map_sg = arm_dma_map_sg, 188 .unmap_sg = arm_dma_unmap_sg, 189 .map_resource = dma_direct_map_resource, 190 .sync_single_for_cpu = arm_dma_sync_single_for_cpu, 191 .sync_single_for_device = arm_dma_sync_single_for_device, 192 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, 193 .sync_sg_for_device = arm_dma_sync_sg_for_device, 194 .dma_supported = arm_dma_supported, 195 }; 196 EXPORT_SYMBOL(arm_dma_ops); 197 198 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 199 dma_addr_t *handle, gfp_t gfp, unsigned long attrs); 200 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 201 dma_addr_t handle, unsigned long attrs); 202 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 203 void *cpu_addr, dma_addr_t dma_addr, size_t size, 204 unsigned long attrs); 205 206 const struct dma_map_ops arm_coherent_dma_ops = { 207 .alloc = arm_coherent_dma_alloc, 208 .free = arm_coherent_dma_free, 209 .mmap = arm_coherent_dma_mmap, 210 .get_sgtable = arm_dma_get_sgtable, 211 .map_page = arm_coherent_dma_map_page, 212 .map_sg = arm_dma_map_sg, 213 .map_resource = dma_direct_map_resource, 214 .dma_supported = arm_dma_supported, 215 }; 216 EXPORT_SYMBOL(arm_coherent_dma_ops); 217 218 static int __dma_supported(struct device *dev, u64 mask, bool warn) 219 { 220 unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); 221 222 /* 223 * Translate the device's DMA mask to a PFN limit. This 224 * PFN number includes the page which we can DMA to. 225 */ 226 if (dma_to_pfn(dev, mask) < max_dma_pfn) { 227 if (warn) 228 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", 229 mask, 230 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, 231 max_dma_pfn + 1); 232 return 0; 233 } 234 235 return 1; 236 } 237 238 static u64 get_coherent_dma_mask(struct device *dev) 239 { 240 u64 mask = (u64)DMA_BIT_MASK(32); 241 242 if (dev) { 243 mask = dev->coherent_dma_mask; 244 245 /* 246 * Sanity check the DMA mask - it must be non-zero, and 247 * must be able to be satisfied by a DMA allocation. 248 */ 249 if (mask == 0) { 250 dev_warn(dev, "coherent DMA mask is unset\n"); 251 return 0; 252 } 253 254 if (!__dma_supported(dev, mask, true)) 255 return 0; 256 } 257 258 return mask; 259 } 260 261 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) 262 { 263 /* 264 * Ensure that the allocated pages are zeroed, and that any data 265 * lurking in the kernel direct-mapped region is invalidated. 266 */ 267 if (PageHighMem(page)) { 268 phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); 269 phys_addr_t end = base + size; 270 while (size > 0) { 271 void *ptr = kmap_atomic(page); 272 memset(ptr, 0, PAGE_SIZE); 273 if (coherent_flag != COHERENT) 274 dmac_flush_range(ptr, ptr + PAGE_SIZE); 275 kunmap_atomic(ptr); 276 page++; 277 size -= PAGE_SIZE; 278 } 279 if (coherent_flag != COHERENT) 280 outer_flush_range(base, end); 281 } else { 282 void *ptr = page_address(page); 283 memset(ptr, 0, size); 284 if (coherent_flag != COHERENT) { 285 dmac_flush_range(ptr, ptr + size); 286 outer_flush_range(__pa(ptr), __pa(ptr) + size); 287 } 288 } 289 } 290 291 /* 292 * Allocate a DMA buffer for 'dev' of size 'size' using the 293 * specified gfp mask. Note that 'size' must be page aligned. 294 */ 295 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, 296 gfp_t gfp, int coherent_flag) 297 { 298 unsigned long order = get_order(size); 299 struct page *page, *p, *e; 300 301 page = alloc_pages(gfp, order); 302 if (!page) 303 return NULL; 304 305 /* 306 * Now split the huge page and free the excess pages 307 */ 308 split_page(page, order); 309 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) 310 __free_page(p); 311 312 __dma_clear_buffer(page, size, coherent_flag); 313 314 return page; 315 } 316 317 /* 318 * Free a DMA buffer. 'size' must be page aligned. 319 */ 320 static void __dma_free_buffer(struct page *page, size_t size) 321 { 322 struct page *e = page + (size >> PAGE_SHIFT); 323 324 while (page < e) { 325 __free_page(page); 326 page++; 327 } 328 } 329 330 static void *__alloc_from_contiguous(struct device *dev, size_t size, 331 pgprot_t prot, struct page **ret_page, 332 const void *caller, bool want_vaddr, 333 int coherent_flag, gfp_t gfp); 334 335 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 336 pgprot_t prot, struct page **ret_page, 337 const void *caller, bool want_vaddr); 338 339 static void * 340 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, 341 const void *caller) 342 { 343 /* 344 * DMA allocation can be mapped to user space, so lets 345 * set VM_USERMAP flags too. 346 */ 347 return dma_common_contiguous_remap(page, size, 348 VM_ARM_DMA_CONSISTENT | VM_USERMAP, 349 prot, caller); 350 } 351 352 static void __dma_free_remap(void *cpu_addr, size_t size) 353 { 354 dma_common_free_remap(cpu_addr, size, 355 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 356 } 357 358 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 359 static struct gen_pool *atomic_pool __ro_after_init; 360 361 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 362 363 static int __init early_coherent_pool(char *p) 364 { 365 atomic_pool_size = memparse(p, &p); 366 return 0; 367 } 368 early_param("coherent_pool", early_coherent_pool); 369 370 /* 371 * Initialise the coherent pool for atomic allocations. 372 */ 373 static int __init atomic_pool_init(void) 374 { 375 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); 376 gfp_t gfp = GFP_KERNEL | GFP_DMA; 377 struct page *page; 378 void *ptr; 379 380 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 381 if (!atomic_pool) 382 goto out; 383 /* 384 * The atomic pool is only used for non-coherent allocations 385 * so we must pass NORMAL for coherent_flag. 386 */ 387 if (dev_get_cma_area(NULL)) 388 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, 389 &page, atomic_pool_init, true, NORMAL, 390 GFP_KERNEL); 391 else 392 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, 393 &page, atomic_pool_init, true); 394 if (ptr) { 395 int ret; 396 397 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, 398 page_to_phys(page), 399 atomic_pool_size, -1); 400 if (ret) 401 goto destroy_genpool; 402 403 gen_pool_set_algo(atomic_pool, 404 gen_pool_first_fit_order_align, 405 NULL); 406 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", 407 atomic_pool_size / 1024); 408 return 0; 409 } 410 411 destroy_genpool: 412 gen_pool_destroy(atomic_pool); 413 atomic_pool = NULL; 414 out: 415 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 416 atomic_pool_size / 1024); 417 return -ENOMEM; 418 } 419 /* 420 * CMA is activated by core_initcall, so we must be called after it. 421 */ 422 postcore_initcall(atomic_pool_init); 423 424 struct dma_contig_early_reserve { 425 phys_addr_t base; 426 unsigned long size; 427 }; 428 429 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; 430 431 static int dma_mmu_remap_num __initdata; 432 433 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) 434 { 435 dma_mmu_remap[dma_mmu_remap_num].base = base; 436 dma_mmu_remap[dma_mmu_remap_num].size = size; 437 dma_mmu_remap_num++; 438 } 439 440 void __init dma_contiguous_remap(void) 441 { 442 int i; 443 for (i = 0; i < dma_mmu_remap_num; i++) { 444 phys_addr_t start = dma_mmu_remap[i].base; 445 phys_addr_t end = start + dma_mmu_remap[i].size; 446 struct map_desc map; 447 unsigned long addr; 448 449 if (end > arm_lowmem_limit) 450 end = arm_lowmem_limit; 451 if (start >= end) 452 continue; 453 454 map.pfn = __phys_to_pfn(start); 455 map.virtual = __phys_to_virt(start); 456 map.length = end - start; 457 map.type = MT_MEMORY_DMA_READY; 458 459 /* 460 * Clear previous low-memory mapping to ensure that the 461 * TLB does not see any conflicting entries, then flush 462 * the TLB of the old entries before creating new mappings. 463 * 464 * This ensures that any speculatively loaded TLB entries 465 * (even though they may be rare) can not cause any problems, 466 * and ensures that this code is architecturally compliant. 467 */ 468 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); 469 addr += PMD_SIZE) 470 pmd_clear(pmd_off_k(addr)); 471 472 flush_tlb_kernel_range(__phys_to_virt(start), 473 __phys_to_virt(end)); 474 475 iotable_init(&map, 1); 476 } 477 } 478 479 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data) 480 { 481 struct page *page = virt_to_page(addr); 482 pgprot_t prot = *(pgprot_t *)data; 483 484 set_pte_ext(pte, mk_pte(page, prot), 0); 485 return 0; 486 } 487 488 static void __dma_remap(struct page *page, size_t size, pgprot_t prot) 489 { 490 unsigned long start = (unsigned long) page_address(page); 491 unsigned end = start + size; 492 493 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); 494 flush_tlb_kernel_range(start, end); 495 } 496 497 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, 498 pgprot_t prot, struct page **ret_page, 499 const void *caller, bool want_vaddr) 500 { 501 struct page *page; 502 void *ptr = NULL; 503 /* 504 * __alloc_remap_buffer is only called when the device is 505 * non-coherent 506 */ 507 page = __dma_alloc_buffer(dev, size, gfp, NORMAL); 508 if (!page) 509 return NULL; 510 if (!want_vaddr) 511 goto out; 512 513 ptr = __dma_alloc_remap(page, size, gfp, prot, caller); 514 if (!ptr) { 515 __dma_free_buffer(page, size); 516 return NULL; 517 } 518 519 out: 520 *ret_page = page; 521 return ptr; 522 } 523 524 static void *__alloc_from_pool(size_t size, struct page **ret_page) 525 { 526 unsigned long val; 527 void *ptr = NULL; 528 529 if (!atomic_pool) { 530 WARN(1, "coherent pool not initialised!\n"); 531 return NULL; 532 } 533 534 val = gen_pool_alloc(atomic_pool, size); 535 if (val) { 536 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 537 538 *ret_page = phys_to_page(phys); 539 ptr = (void *)val; 540 } 541 542 return ptr; 543 } 544 545 static bool __in_atomic_pool(void *start, size_t size) 546 { 547 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 548 } 549 550 static int __free_from_pool(void *start, size_t size) 551 { 552 if (!__in_atomic_pool(start, size)) 553 return 0; 554 555 gen_pool_free(atomic_pool, (unsigned long)start, size); 556 557 return 1; 558 } 559 560 static void *__alloc_from_contiguous(struct device *dev, size_t size, 561 pgprot_t prot, struct page **ret_page, 562 const void *caller, bool want_vaddr, 563 int coherent_flag, gfp_t gfp) 564 { 565 unsigned long order = get_order(size); 566 size_t count = size >> PAGE_SHIFT; 567 struct page *page; 568 void *ptr = NULL; 569 570 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); 571 if (!page) 572 return NULL; 573 574 __dma_clear_buffer(page, size, coherent_flag); 575 576 if (!want_vaddr) 577 goto out; 578 579 if (PageHighMem(page)) { 580 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); 581 if (!ptr) { 582 dma_release_from_contiguous(dev, page, count); 583 return NULL; 584 } 585 } else { 586 __dma_remap(page, size, prot); 587 ptr = page_address(page); 588 } 589 590 out: 591 *ret_page = page; 592 return ptr; 593 } 594 595 static void __free_from_contiguous(struct device *dev, struct page *page, 596 void *cpu_addr, size_t size, bool want_vaddr) 597 { 598 if (want_vaddr) { 599 if (PageHighMem(page)) 600 __dma_free_remap(cpu_addr, size); 601 else 602 __dma_remap(page, size, PAGE_KERNEL); 603 } 604 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 605 } 606 607 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) 608 { 609 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? 610 pgprot_writecombine(prot) : 611 pgprot_dmacoherent(prot); 612 return prot; 613 } 614 615 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, 616 struct page **ret_page) 617 { 618 struct page *page; 619 /* __alloc_simple_buffer is only called when the device is coherent */ 620 page = __dma_alloc_buffer(dev, size, gfp, COHERENT); 621 if (!page) 622 return NULL; 623 624 *ret_page = page; 625 return page_address(page); 626 } 627 628 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, 629 struct page **ret_page) 630 { 631 return __alloc_simple_buffer(args->dev, args->size, args->gfp, 632 ret_page); 633 } 634 635 static void simple_allocator_free(struct arm_dma_free_args *args) 636 { 637 __dma_free_buffer(args->page, args->size); 638 } 639 640 static struct arm_dma_allocator simple_allocator = { 641 .alloc = simple_allocator_alloc, 642 .free = simple_allocator_free, 643 }; 644 645 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, 646 struct page **ret_page) 647 { 648 return __alloc_from_contiguous(args->dev, args->size, args->prot, 649 ret_page, args->caller, 650 args->want_vaddr, args->coherent_flag, 651 args->gfp); 652 } 653 654 static void cma_allocator_free(struct arm_dma_free_args *args) 655 { 656 __free_from_contiguous(args->dev, args->page, args->cpu_addr, 657 args->size, args->want_vaddr); 658 } 659 660 static struct arm_dma_allocator cma_allocator = { 661 .alloc = cma_allocator_alloc, 662 .free = cma_allocator_free, 663 }; 664 665 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, 666 struct page **ret_page) 667 { 668 return __alloc_from_pool(args->size, ret_page); 669 } 670 671 static void pool_allocator_free(struct arm_dma_free_args *args) 672 { 673 __free_from_pool(args->cpu_addr, args->size); 674 } 675 676 static struct arm_dma_allocator pool_allocator = { 677 .alloc = pool_allocator_alloc, 678 .free = pool_allocator_free, 679 }; 680 681 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, 682 struct page **ret_page) 683 { 684 return __alloc_remap_buffer(args->dev, args->size, args->gfp, 685 args->prot, ret_page, args->caller, 686 args->want_vaddr); 687 } 688 689 static void remap_allocator_free(struct arm_dma_free_args *args) 690 { 691 if (args->want_vaddr) 692 __dma_free_remap(args->cpu_addr, args->size); 693 694 __dma_free_buffer(args->page, args->size); 695 } 696 697 static struct arm_dma_allocator remap_allocator = { 698 .alloc = remap_allocator_alloc, 699 .free = remap_allocator_free, 700 }; 701 702 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 703 gfp_t gfp, pgprot_t prot, bool is_coherent, 704 unsigned long attrs, const void *caller) 705 { 706 u64 mask = get_coherent_dma_mask(dev); 707 struct page *page = NULL; 708 void *addr; 709 bool allowblock, cma; 710 struct arm_dma_buffer *buf; 711 struct arm_dma_alloc_args args = { 712 .dev = dev, 713 .size = PAGE_ALIGN(size), 714 .gfp = gfp, 715 .prot = prot, 716 .caller = caller, 717 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 718 .coherent_flag = is_coherent ? COHERENT : NORMAL, 719 }; 720 721 #ifdef CONFIG_DMA_API_DEBUG 722 u64 limit = (mask + 1) & ~mask; 723 if (limit && size >= limit) { 724 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", 725 size, mask); 726 return NULL; 727 } 728 #endif 729 730 if (!mask) 731 return NULL; 732 733 buf = kzalloc(sizeof(*buf), 734 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); 735 if (!buf) 736 return NULL; 737 738 if (mask < 0xffffffffULL) 739 gfp |= GFP_DMA; 740 741 /* 742 * Following is a work-around (a.k.a. hack) to prevent pages 743 * with __GFP_COMP being passed to split_page() which cannot 744 * handle them. The real problem is that this flag probably 745 * should be 0 on ARM as it is not supported on this 746 * platform; see CONFIG_HUGETLBFS. 747 */ 748 gfp &= ~(__GFP_COMP); 749 args.gfp = gfp; 750 751 *handle = DMA_MAPPING_ERROR; 752 allowblock = gfpflags_allow_blocking(gfp); 753 cma = allowblock ? dev_get_cma_area(dev) : false; 754 755 if (cma) 756 buf->allocator = &cma_allocator; 757 else if (is_coherent) 758 buf->allocator = &simple_allocator; 759 else if (allowblock) 760 buf->allocator = &remap_allocator; 761 else 762 buf->allocator = &pool_allocator; 763 764 addr = buf->allocator->alloc(&args, &page); 765 766 if (page) { 767 unsigned long flags; 768 769 *handle = pfn_to_dma(dev, page_to_pfn(page)); 770 buf->virt = args.want_vaddr ? addr : page; 771 772 spin_lock_irqsave(&arm_dma_bufs_lock, flags); 773 list_add(&buf->list, &arm_dma_bufs); 774 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); 775 } else { 776 kfree(buf); 777 } 778 779 return args.want_vaddr ? addr : page; 780 } 781 782 /* 783 * Allocate DMA-coherent memory space and return both the kernel remapped 784 * virtual and bus address for that space. 785 */ 786 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, 787 gfp_t gfp, unsigned long attrs) 788 { 789 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 790 791 return __dma_alloc(dev, size, handle, gfp, prot, false, 792 attrs, __builtin_return_address(0)); 793 } 794 795 static void *arm_coherent_dma_alloc(struct device *dev, size_t size, 796 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 797 { 798 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, 799 attrs, __builtin_return_address(0)); 800 } 801 802 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 803 void *cpu_addr, dma_addr_t dma_addr, size_t size, 804 unsigned long attrs) 805 { 806 int ret = -ENXIO; 807 unsigned long nr_vma_pages = vma_pages(vma); 808 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 809 unsigned long pfn = dma_to_pfn(dev, dma_addr); 810 unsigned long off = vma->vm_pgoff; 811 812 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 813 return ret; 814 815 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 816 ret = remap_pfn_range(vma, vma->vm_start, 817 pfn + off, 818 vma->vm_end - vma->vm_start, 819 vma->vm_page_prot); 820 } 821 822 return ret; 823 } 824 825 /* 826 * Create userspace mapping for the DMA-coherent memory. 827 */ 828 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, 829 void *cpu_addr, dma_addr_t dma_addr, size_t size, 830 unsigned long attrs) 831 { 832 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 833 } 834 835 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, 836 void *cpu_addr, dma_addr_t dma_addr, size_t size, 837 unsigned long attrs) 838 { 839 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 840 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 841 } 842 843 /* 844 * Free a buffer as defined by the above mapping. 845 */ 846 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 847 dma_addr_t handle, unsigned long attrs, 848 bool is_coherent) 849 { 850 struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); 851 struct arm_dma_buffer *buf; 852 struct arm_dma_free_args args = { 853 .dev = dev, 854 .size = PAGE_ALIGN(size), 855 .cpu_addr = cpu_addr, 856 .page = page, 857 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), 858 }; 859 860 buf = arm_dma_buffer_find(cpu_addr); 861 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) 862 return; 863 864 buf->allocator->free(&args); 865 kfree(buf); 866 } 867 868 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, 869 dma_addr_t handle, unsigned long attrs) 870 { 871 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); 872 } 873 874 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, 875 dma_addr_t handle, unsigned long attrs) 876 { 877 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); 878 } 879 880 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, 881 void *cpu_addr, dma_addr_t handle, size_t size, 882 unsigned long attrs) 883 { 884 unsigned long pfn = dma_to_pfn(dev, handle); 885 struct page *page; 886 int ret; 887 888 /* If the PFN is not valid, we do not have a struct page */ 889 if (!pfn_valid(pfn)) 890 return -ENXIO; 891 892 page = pfn_to_page(pfn); 893 894 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 895 if (unlikely(ret)) 896 return ret; 897 898 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 899 return 0; 900 } 901 902 static void dma_cache_maint_page(struct page *page, unsigned long offset, 903 size_t size, enum dma_data_direction dir, 904 void (*op)(const void *, size_t, int)) 905 { 906 unsigned long pfn; 907 size_t left = size; 908 909 pfn = page_to_pfn(page) + offset / PAGE_SIZE; 910 offset %= PAGE_SIZE; 911 912 /* 913 * A single sg entry may refer to multiple physically contiguous 914 * pages. But we still need to process highmem pages individually. 915 * If highmem is not configured then the bulk of this loop gets 916 * optimized out. 917 */ 918 do { 919 size_t len = left; 920 void *vaddr; 921 922 page = pfn_to_page(pfn); 923 924 if (PageHighMem(page)) { 925 if (len + offset > PAGE_SIZE) 926 len = PAGE_SIZE - offset; 927 928 if (cache_is_vipt_nonaliasing()) { 929 vaddr = kmap_atomic(page); 930 op(vaddr + offset, len, dir); 931 kunmap_atomic(vaddr); 932 } else { 933 vaddr = kmap_high_get(page); 934 if (vaddr) { 935 op(vaddr + offset, len, dir); 936 kunmap_high(page); 937 } 938 } 939 } else { 940 vaddr = page_address(page) + offset; 941 op(vaddr, len, dir); 942 } 943 offset = 0; 944 pfn++; 945 left -= len; 946 } while (left); 947 } 948 949 /* 950 * Make an area consistent for devices. 951 * Note: Drivers should NOT use this function directly, as it will break 952 * platforms with CONFIG_DMABOUNCE. 953 * Use the driver DMA support - see dma-mapping.h (dma_sync_*) 954 */ 955 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, 956 size_t size, enum dma_data_direction dir) 957 { 958 phys_addr_t paddr; 959 960 dma_cache_maint_page(page, off, size, dir, dmac_map_area); 961 962 paddr = page_to_phys(page) + off; 963 if (dir == DMA_FROM_DEVICE) { 964 outer_inv_range(paddr, paddr + size); 965 } else { 966 outer_clean_range(paddr, paddr + size); 967 } 968 /* FIXME: non-speculating: flush on bidirectional mappings? */ 969 } 970 971 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, 972 size_t size, enum dma_data_direction dir) 973 { 974 phys_addr_t paddr = page_to_phys(page) + off; 975 976 /* FIXME: non-speculating: not required */ 977 /* in any case, don't bother invalidating if DMA to device */ 978 if (dir != DMA_TO_DEVICE) { 979 outer_inv_range(paddr, paddr + size); 980 981 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); 982 } 983 984 /* 985 * Mark the D-cache clean for these pages to avoid extra flushing. 986 */ 987 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { 988 unsigned long pfn; 989 size_t left = size; 990 991 pfn = page_to_pfn(page) + off / PAGE_SIZE; 992 off %= PAGE_SIZE; 993 if (off) { 994 pfn++; 995 left -= PAGE_SIZE - off; 996 } 997 while (left >= PAGE_SIZE) { 998 page = pfn_to_page(pfn++); 999 set_bit(PG_dcache_clean, &page->flags); 1000 left -= PAGE_SIZE; 1001 } 1002 } 1003 } 1004 1005 /** 1006 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA 1007 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1008 * @sg: list of buffers 1009 * @nents: number of buffers to map 1010 * @dir: DMA transfer direction 1011 * 1012 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1013 * This is the scatter-gather version of the dma_map_single interface. 1014 * Here the scatter gather list elements are each tagged with the 1015 * appropriate dma address and length. They are obtained via 1016 * sg_dma_{address,length}. 1017 * 1018 * Device ownership issues as mentioned for dma_map_single are the same 1019 * here. 1020 */ 1021 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1022 enum dma_data_direction dir, unsigned long attrs) 1023 { 1024 const struct dma_map_ops *ops = get_dma_ops(dev); 1025 struct scatterlist *s; 1026 int i, j; 1027 1028 for_each_sg(sg, s, nents, i) { 1029 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1030 s->dma_length = s->length; 1031 #endif 1032 s->dma_address = ops->map_page(dev, sg_page(s), s->offset, 1033 s->length, dir, attrs); 1034 if (dma_mapping_error(dev, s->dma_address)) 1035 goto bad_mapping; 1036 } 1037 return nents; 1038 1039 bad_mapping: 1040 for_each_sg(sg, s, i, j) 1041 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1042 return 0; 1043 } 1044 1045 /** 1046 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1047 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1048 * @sg: list of buffers 1049 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1050 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1051 * 1052 * Unmap a set of streaming mode DMA translations. Again, CPU access 1053 * rules concerning calls here are the same as for dma_unmap_single(). 1054 */ 1055 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1056 enum dma_data_direction dir, unsigned long attrs) 1057 { 1058 const struct dma_map_ops *ops = get_dma_ops(dev); 1059 struct scatterlist *s; 1060 1061 int i; 1062 1063 for_each_sg(sg, s, nents, i) 1064 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); 1065 } 1066 1067 /** 1068 * arm_dma_sync_sg_for_cpu 1069 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1070 * @sg: list of buffers 1071 * @nents: number of buffers to map (returned from dma_map_sg) 1072 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1073 */ 1074 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1075 int nents, enum dma_data_direction dir) 1076 { 1077 const struct dma_map_ops *ops = get_dma_ops(dev); 1078 struct scatterlist *s; 1079 int i; 1080 1081 for_each_sg(sg, s, nents, i) 1082 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, 1083 dir); 1084 } 1085 1086 /** 1087 * arm_dma_sync_sg_for_device 1088 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 1089 * @sg: list of buffers 1090 * @nents: number of buffers to map (returned from dma_map_sg) 1091 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1092 */ 1093 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1094 int nents, enum dma_data_direction dir) 1095 { 1096 const struct dma_map_ops *ops = get_dma_ops(dev); 1097 struct scatterlist *s; 1098 int i; 1099 1100 for_each_sg(sg, s, nents, i) 1101 ops->sync_single_for_device(dev, sg_dma_address(s), s->length, 1102 dir); 1103 } 1104 1105 /* 1106 * Return whether the given device DMA address mask can be supported 1107 * properly. For example, if your device can only drive the low 24-bits 1108 * during bus mastering, then you would pass 0x00ffffff as the mask 1109 * to this function. 1110 */ 1111 int arm_dma_supported(struct device *dev, u64 mask) 1112 { 1113 return __dma_supported(dev, mask, false); 1114 } 1115 1116 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) 1117 { 1118 /* 1119 * When CONFIG_ARM_LPAE is set, physical address can extend above 1120 * 32-bits, which then can't be addressed by devices that only support 1121 * 32-bit DMA. 1122 * Use the generic dma-direct / swiotlb ops code in that case, as that 1123 * handles bounce buffering for us. 1124 * 1125 * Note: this checks CONFIG_ARM_LPAE instead of CONFIG_SWIOTLB as the 1126 * latter is also selected by the Xen code, but that code for now relies 1127 * on non-NULL dev_dma_ops. To be cleaned up later. 1128 */ 1129 if (IS_ENABLED(CONFIG_ARM_LPAE)) 1130 return NULL; 1131 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; 1132 } 1133 1134 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1135 1136 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) 1137 { 1138 int prot = 0; 1139 1140 if (attrs & DMA_ATTR_PRIVILEGED) 1141 prot |= IOMMU_PRIV; 1142 1143 switch (dir) { 1144 case DMA_BIDIRECTIONAL: 1145 return prot | IOMMU_READ | IOMMU_WRITE; 1146 case DMA_TO_DEVICE: 1147 return prot | IOMMU_READ; 1148 case DMA_FROM_DEVICE: 1149 return prot | IOMMU_WRITE; 1150 default: 1151 return prot; 1152 } 1153 } 1154 1155 /* IOMMU */ 1156 1157 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); 1158 1159 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, 1160 size_t size) 1161 { 1162 unsigned int order = get_order(size); 1163 unsigned int align = 0; 1164 unsigned int count, start; 1165 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1166 unsigned long flags; 1167 dma_addr_t iova; 1168 int i; 1169 1170 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) 1171 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; 1172 1173 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1174 align = (1 << order) - 1; 1175 1176 spin_lock_irqsave(&mapping->lock, flags); 1177 for (i = 0; i < mapping->nr_bitmaps; i++) { 1178 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1179 mapping->bits, 0, count, align); 1180 1181 if (start > mapping->bits) 1182 continue; 1183 1184 bitmap_set(mapping->bitmaps[i], start, count); 1185 break; 1186 } 1187 1188 /* 1189 * No unused range found. Try to extend the existing mapping 1190 * and perform a second attempt to reserve an IO virtual 1191 * address range of size bytes. 1192 */ 1193 if (i == mapping->nr_bitmaps) { 1194 if (extend_iommu_mapping(mapping)) { 1195 spin_unlock_irqrestore(&mapping->lock, flags); 1196 return DMA_MAPPING_ERROR; 1197 } 1198 1199 start = bitmap_find_next_zero_area(mapping->bitmaps[i], 1200 mapping->bits, 0, count, align); 1201 1202 if (start > mapping->bits) { 1203 spin_unlock_irqrestore(&mapping->lock, flags); 1204 return DMA_MAPPING_ERROR; 1205 } 1206 1207 bitmap_set(mapping->bitmaps[i], start, count); 1208 } 1209 spin_unlock_irqrestore(&mapping->lock, flags); 1210 1211 iova = mapping->base + (mapping_size * i); 1212 iova += start << PAGE_SHIFT; 1213 1214 return iova; 1215 } 1216 1217 static inline void __free_iova(struct dma_iommu_mapping *mapping, 1218 dma_addr_t addr, size_t size) 1219 { 1220 unsigned int start, count; 1221 size_t mapping_size = mapping->bits << PAGE_SHIFT; 1222 unsigned long flags; 1223 dma_addr_t bitmap_base; 1224 u32 bitmap_index; 1225 1226 if (!size) 1227 return; 1228 1229 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; 1230 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); 1231 1232 bitmap_base = mapping->base + mapping_size * bitmap_index; 1233 1234 start = (addr - bitmap_base) >> PAGE_SHIFT; 1235 1236 if (addr + size > bitmap_base + mapping_size) { 1237 /* 1238 * The address range to be freed reaches into the iova 1239 * range of the next bitmap. This should not happen as 1240 * we don't allow this in __alloc_iova (at the 1241 * moment). 1242 */ 1243 BUG(); 1244 } else 1245 count = size >> PAGE_SHIFT; 1246 1247 spin_lock_irqsave(&mapping->lock, flags); 1248 bitmap_clear(mapping->bitmaps[bitmap_index], start, count); 1249 spin_unlock_irqrestore(&mapping->lock, flags); 1250 } 1251 1252 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ 1253 static const int iommu_order_array[] = { 9, 8, 4, 0 }; 1254 1255 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, 1256 gfp_t gfp, unsigned long attrs, 1257 int coherent_flag) 1258 { 1259 struct page **pages; 1260 int count = size >> PAGE_SHIFT; 1261 int array_size = count * sizeof(struct page *); 1262 int i = 0; 1263 int order_idx = 0; 1264 1265 if (array_size <= PAGE_SIZE) 1266 pages = kzalloc(array_size, GFP_KERNEL); 1267 else 1268 pages = vzalloc(array_size); 1269 if (!pages) 1270 return NULL; 1271 1272 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) 1273 { 1274 unsigned long order = get_order(size); 1275 struct page *page; 1276 1277 page = dma_alloc_from_contiguous(dev, count, order, 1278 gfp & __GFP_NOWARN); 1279 if (!page) 1280 goto error; 1281 1282 __dma_clear_buffer(page, size, coherent_flag); 1283 1284 for (i = 0; i < count; i++) 1285 pages[i] = page + i; 1286 1287 return pages; 1288 } 1289 1290 /* Go straight to 4K chunks if caller says it's OK. */ 1291 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) 1292 order_idx = ARRAY_SIZE(iommu_order_array) - 1; 1293 1294 /* 1295 * IOMMU can map any pages, so himem can also be used here 1296 */ 1297 gfp |= __GFP_NOWARN | __GFP_HIGHMEM; 1298 1299 while (count) { 1300 int j, order; 1301 1302 order = iommu_order_array[order_idx]; 1303 1304 /* Drop down when we get small */ 1305 if (__fls(count) < order) { 1306 order_idx++; 1307 continue; 1308 } 1309 1310 if (order) { 1311 /* See if it's easy to allocate a high-order chunk */ 1312 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); 1313 1314 /* Go down a notch at first sign of pressure */ 1315 if (!pages[i]) { 1316 order_idx++; 1317 continue; 1318 } 1319 } else { 1320 pages[i] = alloc_pages(gfp, 0); 1321 if (!pages[i]) 1322 goto error; 1323 } 1324 1325 if (order) { 1326 split_page(pages[i], order); 1327 j = 1 << order; 1328 while (--j) 1329 pages[i + j] = pages[i] + j; 1330 } 1331 1332 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); 1333 i += 1 << order; 1334 count -= 1 << order; 1335 } 1336 1337 return pages; 1338 error: 1339 while (i--) 1340 if (pages[i]) 1341 __free_pages(pages[i], 0); 1342 kvfree(pages); 1343 return NULL; 1344 } 1345 1346 static int __iommu_free_buffer(struct device *dev, struct page **pages, 1347 size_t size, unsigned long attrs) 1348 { 1349 int count = size >> PAGE_SHIFT; 1350 int i; 1351 1352 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 1353 dma_release_from_contiguous(dev, pages[0], count); 1354 } else { 1355 for (i = 0; i < count; i++) 1356 if (pages[i]) 1357 __free_pages(pages[i], 0); 1358 } 1359 1360 kvfree(pages); 1361 return 0; 1362 } 1363 1364 /* 1365 * Create a CPU mapping for a specified pages 1366 */ 1367 static void * 1368 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, 1369 const void *caller) 1370 { 1371 return dma_common_pages_remap(pages, size, 1372 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); 1373 } 1374 1375 /* 1376 * Create a mapping in device IO address space for specified pages 1377 */ 1378 static dma_addr_t 1379 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, 1380 unsigned long attrs) 1381 { 1382 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1383 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1384 dma_addr_t dma_addr, iova; 1385 int i; 1386 1387 dma_addr = __alloc_iova(mapping, size); 1388 if (dma_addr == DMA_MAPPING_ERROR) 1389 return dma_addr; 1390 1391 iova = dma_addr; 1392 for (i = 0; i < count; ) { 1393 int ret; 1394 1395 unsigned int next_pfn = page_to_pfn(pages[i]) + 1; 1396 phys_addr_t phys = page_to_phys(pages[i]); 1397 unsigned int len, j; 1398 1399 for (j = i + 1; j < count; j++, next_pfn++) 1400 if (page_to_pfn(pages[j]) != next_pfn) 1401 break; 1402 1403 len = (j - i) << PAGE_SHIFT; 1404 ret = iommu_map(mapping->domain, iova, phys, len, 1405 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); 1406 if (ret < 0) 1407 goto fail; 1408 iova += len; 1409 i = j; 1410 } 1411 return dma_addr; 1412 fail: 1413 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); 1414 __free_iova(mapping, dma_addr, size); 1415 return DMA_MAPPING_ERROR; 1416 } 1417 1418 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) 1419 { 1420 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1421 1422 /* 1423 * add optional in-page offset from iova to size and align 1424 * result to page size 1425 */ 1426 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); 1427 iova &= PAGE_MASK; 1428 1429 iommu_unmap(mapping->domain, iova, size); 1430 __free_iova(mapping, iova, size); 1431 return 0; 1432 } 1433 1434 static struct page **__atomic_get_pages(void *addr) 1435 { 1436 struct page *page; 1437 phys_addr_t phys; 1438 1439 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); 1440 page = phys_to_page(phys); 1441 1442 return (struct page **)page; 1443 } 1444 1445 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) 1446 { 1447 struct vm_struct *area; 1448 1449 if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) 1450 return __atomic_get_pages(cpu_addr); 1451 1452 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1453 return cpu_addr; 1454 1455 area = find_vm_area(cpu_addr); 1456 if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) 1457 return area->pages; 1458 return NULL; 1459 } 1460 1461 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, 1462 dma_addr_t *handle, int coherent_flag, 1463 unsigned long attrs) 1464 { 1465 struct page *page; 1466 void *addr; 1467 1468 if (coherent_flag == COHERENT) 1469 addr = __alloc_simple_buffer(dev, size, gfp, &page); 1470 else 1471 addr = __alloc_from_pool(size, &page); 1472 if (!addr) 1473 return NULL; 1474 1475 *handle = __iommu_create_mapping(dev, &page, size, attrs); 1476 if (*handle == DMA_MAPPING_ERROR) 1477 goto err_mapping; 1478 1479 return addr; 1480 1481 err_mapping: 1482 __free_from_pool(addr, size); 1483 return NULL; 1484 } 1485 1486 static void __iommu_free_atomic(struct device *dev, void *cpu_addr, 1487 dma_addr_t handle, size_t size, int coherent_flag) 1488 { 1489 __iommu_remove_mapping(dev, handle, size); 1490 if (coherent_flag == COHERENT) 1491 __dma_free_buffer(virt_to_page(cpu_addr), size); 1492 else 1493 __free_from_pool(cpu_addr, size); 1494 } 1495 1496 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, 1497 dma_addr_t *handle, gfp_t gfp, unsigned long attrs, 1498 int coherent_flag) 1499 { 1500 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); 1501 struct page **pages; 1502 void *addr = NULL; 1503 1504 *handle = DMA_MAPPING_ERROR; 1505 size = PAGE_ALIGN(size); 1506 1507 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) 1508 return __iommu_alloc_simple(dev, size, gfp, handle, 1509 coherent_flag, attrs); 1510 1511 /* 1512 * Following is a work-around (a.k.a. hack) to prevent pages 1513 * with __GFP_COMP being passed to split_page() which cannot 1514 * handle them. The real problem is that this flag probably 1515 * should be 0 on ARM as it is not supported on this 1516 * platform; see CONFIG_HUGETLBFS. 1517 */ 1518 gfp &= ~(__GFP_COMP); 1519 1520 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); 1521 if (!pages) 1522 return NULL; 1523 1524 *handle = __iommu_create_mapping(dev, pages, size, attrs); 1525 if (*handle == DMA_MAPPING_ERROR) 1526 goto err_buffer; 1527 1528 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) 1529 return pages; 1530 1531 addr = __iommu_alloc_remap(pages, size, gfp, prot, 1532 __builtin_return_address(0)); 1533 if (!addr) 1534 goto err_mapping; 1535 1536 return addr; 1537 1538 err_mapping: 1539 __iommu_remove_mapping(dev, *handle, size); 1540 err_buffer: 1541 __iommu_free_buffer(dev, pages, size, attrs); 1542 return NULL; 1543 } 1544 1545 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, 1546 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1547 { 1548 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); 1549 } 1550 1551 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, 1552 dma_addr_t *handle, gfp_t gfp, unsigned long attrs) 1553 { 1554 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); 1555 } 1556 1557 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 1558 void *cpu_addr, dma_addr_t dma_addr, size_t size, 1559 unsigned long attrs) 1560 { 1561 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1562 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1563 int err; 1564 1565 if (!pages) 1566 return -ENXIO; 1567 1568 if (vma->vm_pgoff >= nr_pages) 1569 return -ENXIO; 1570 1571 err = vm_map_pages(vma, pages, nr_pages); 1572 if (err) 1573 pr_err("Remapping memory failed: %d\n", err); 1574 1575 return err; 1576 } 1577 static int arm_iommu_mmap_attrs(struct device *dev, 1578 struct vm_area_struct *vma, void *cpu_addr, 1579 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1580 { 1581 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); 1582 1583 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1584 } 1585 1586 static int arm_coherent_iommu_mmap_attrs(struct device *dev, 1587 struct vm_area_struct *vma, void *cpu_addr, 1588 dma_addr_t dma_addr, size_t size, unsigned long attrs) 1589 { 1590 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); 1591 } 1592 1593 /* 1594 * free a page as defined by the above mapping. 1595 * Must not be called with IRQs disabled. 1596 */ 1597 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 1598 dma_addr_t handle, unsigned long attrs, int coherent_flag) 1599 { 1600 struct page **pages; 1601 size = PAGE_ALIGN(size); 1602 1603 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { 1604 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); 1605 return; 1606 } 1607 1608 pages = __iommu_get_pages(cpu_addr, attrs); 1609 if (!pages) { 1610 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); 1611 return; 1612 } 1613 1614 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { 1615 dma_common_free_remap(cpu_addr, size, 1616 VM_ARM_DMA_CONSISTENT | VM_USERMAP); 1617 } 1618 1619 __iommu_remove_mapping(dev, handle, size); 1620 __iommu_free_buffer(dev, pages, size, attrs); 1621 } 1622 1623 void arm_iommu_free_attrs(struct device *dev, size_t size, 1624 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1625 { 1626 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); 1627 } 1628 1629 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, 1630 void *cpu_addr, dma_addr_t handle, unsigned long attrs) 1631 { 1632 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); 1633 } 1634 1635 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 1636 void *cpu_addr, dma_addr_t dma_addr, 1637 size_t size, unsigned long attrs) 1638 { 1639 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 1640 struct page **pages = __iommu_get_pages(cpu_addr, attrs); 1641 1642 if (!pages) 1643 return -ENXIO; 1644 1645 return sg_alloc_table_from_pages(sgt, pages, count, 0, size, 1646 GFP_KERNEL); 1647 } 1648 1649 /* 1650 * Map a part of the scatter-gather list into contiguous io address space 1651 */ 1652 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, 1653 size_t size, dma_addr_t *handle, 1654 enum dma_data_direction dir, unsigned long attrs, 1655 bool is_coherent) 1656 { 1657 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1658 dma_addr_t iova, iova_base; 1659 int ret = 0; 1660 unsigned int count; 1661 struct scatterlist *s; 1662 int prot; 1663 1664 size = PAGE_ALIGN(size); 1665 *handle = DMA_MAPPING_ERROR; 1666 1667 iova_base = iova = __alloc_iova(mapping, size); 1668 if (iova == DMA_MAPPING_ERROR) 1669 return -ENOMEM; 1670 1671 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { 1672 phys_addr_t phys = page_to_phys(sg_page(s)); 1673 unsigned int len = PAGE_ALIGN(s->offset + s->length); 1674 1675 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1676 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1677 1678 prot = __dma_info_to_prot(dir, attrs); 1679 1680 ret = iommu_map(mapping->domain, iova, phys, len, prot); 1681 if (ret < 0) 1682 goto fail; 1683 count += len >> PAGE_SHIFT; 1684 iova += len; 1685 } 1686 *handle = iova_base; 1687 1688 return 0; 1689 fail: 1690 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); 1691 __free_iova(mapping, iova_base, size); 1692 return ret; 1693 } 1694 1695 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1696 enum dma_data_direction dir, unsigned long attrs, 1697 bool is_coherent) 1698 { 1699 struct scatterlist *s = sg, *dma = sg, *start = sg; 1700 int i, count = 0; 1701 unsigned int offset = s->offset; 1702 unsigned int size = s->offset + s->length; 1703 unsigned int max = dma_get_max_seg_size(dev); 1704 1705 for (i = 1; i < nents; i++) { 1706 s = sg_next(s); 1707 1708 s->dma_address = DMA_MAPPING_ERROR; 1709 s->dma_length = 0; 1710 1711 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { 1712 if (__map_sg_chunk(dev, start, size, &dma->dma_address, 1713 dir, attrs, is_coherent) < 0) 1714 goto bad_mapping; 1715 1716 dma->dma_address += offset; 1717 dma->dma_length = size - offset; 1718 1719 size = offset = s->offset; 1720 start = s; 1721 dma = sg_next(dma); 1722 count += 1; 1723 } 1724 size += s->length; 1725 } 1726 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, 1727 is_coherent) < 0) 1728 goto bad_mapping; 1729 1730 dma->dma_address += offset; 1731 dma->dma_length = size - offset; 1732 1733 return count+1; 1734 1735 bad_mapping: 1736 for_each_sg(sg, s, count, i) 1737 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); 1738 return 0; 1739 } 1740 1741 /** 1742 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1743 * @dev: valid struct device pointer 1744 * @sg: list of buffers 1745 * @nents: number of buffers to map 1746 * @dir: DMA transfer direction 1747 * 1748 * Map a set of i/o coherent buffers described by scatterlist in streaming 1749 * mode for DMA. The scatter gather list elements are merged together (if 1750 * possible) and tagged with the appropriate dma address and length. They are 1751 * obtained via sg_dma_{address,length}. 1752 */ 1753 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1754 int nents, enum dma_data_direction dir, unsigned long attrs) 1755 { 1756 return __iommu_map_sg(dev, sg, nents, dir, attrs, true); 1757 } 1758 1759 /** 1760 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA 1761 * @dev: valid struct device pointer 1762 * @sg: list of buffers 1763 * @nents: number of buffers to map 1764 * @dir: DMA transfer direction 1765 * 1766 * Map a set of buffers described by scatterlist in streaming mode for DMA. 1767 * The scatter gather list elements are merged together (if possible) and 1768 * tagged with the appropriate dma address and length. They are obtained via 1769 * sg_dma_{address,length}. 1770 */ 1771 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, 1772 int nents, enum dma_data_direction dir, unsigned long attrs) 1773 { 1774 return __iommu_map_sg(dev, sg, nents, dir, attrs, false); 1775 } 1776 1777 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1778 int nents, enum dma_data_direction dir, 1779 unsigned long attrs, bool is_coherent) 1780 { 1781 struct scatterlist *s; 1782 int i; 1783 1784 for_each_sg(sg, s, nents, i) { 1785 if (sg_dma_len(s)) 1786 __iommu_remove_mapping(dev, sg_dma_address(s), 1787 sg_dma_len(s)); 1788 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1789 __dma_page_dev_to_cpu(sg_page(s), s->offset, 1790 s->length, dir); 1791 } 1792 } 1793 1794 /** 1795 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1796 * @dev: valid struct device pointer 1797 * @sg: list of buffers 1798 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1799 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1800 * 1801 * Unmap a set of streaming mode DMA translations. Again, CPU access 1802 * rules concerning calls here are the same as for dma_unmap_single(). 1803 */ 1804 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, 1805 int nents, enum dma_data_direction dir, 1806 unsigned long attrs) 1807 { 1808 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); 1809 } 1810 1811 /** 1812 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg 1813 * @dev: valid struct device pointer 1814 * @sg: list of buffers 1815 * @nents: number of buffers to unmap (same as was passed to dma_map_sg) 1816 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1817 * 1818 * Unmap a set of streaming mode DMA translations. Again, CPU access 1819 * rules concerning calls here are the same as for dma_unmap_single(). 1820 */ 1821 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1822 enum dma_data_direction dir, 1823 unsigned long attrs) 1824 { 1825 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); 1826 } 1827 1828 /** 1829 * arm_iommu_sync_sg_for_cpu 1830 * @dev: valid struct device pointer 1831 * @sg: list of buffers 1832 * @nents: number of buffers to map (returned from dma_map_sg) 1833 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1834 */ 1835 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1836 int nents, enum dma_data_direction dir) 1837 { 1838 struct scatterlist *s; 1839 int i; 1840 1841 for_each_sg(sg, s, nents, i) 1842 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); 1843 1844 } 1845 1846 /** 1847 * arm_iommu_sync_sg_for_device 1848 * @dev: valid struct device pointer 1849 * @sg: list of buffers 1850 * @nents: number of buffers to map (returned from dma_map_sg) 1851 * @dir: DMA transfer direction (same as was passed to dma_map_sg) 1852 */ 1853 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1854 int nents, enum dma_data_direction dir) 1855 { 1856 struct scatterlist *s; 1857 int i; 1858 1859 for_each_sg(sg, s, nents, i) 1860 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); 1861 } 1862 1863 1864 /** 1865 * arm_coherent_iommu_map_page 1866 * @dev: valid struct device pointer 1867 * @page: page that buffer resides in 1868 * @offset: offset into page for start of buffer 1869 * @size: size of buffer to map 1870 * @dir: DMA transfer direction 1871 * 1872 * Coherent IOMMU aware version of arm_dma_map_page() 1873 */ 1874 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, 1875 unsigned long offset, size_t size, enum dma_data_direction dir, 1876 unsigned long attrs) 1877 { 1878 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1879 dma_addr_t dma_addr; 1880 int ret, prot, len = PAGE_ALIGN(size + offset); 1881 1882 dma_addr = __alloc_iova(mapping, len); 1883 if (dma_addr == DMA_MAPPING_ERROR) 1884 return dma_addr; 1885 1886 prot = __dma_info_to_prot(dir, attrs); 1887 1888 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); 1889 if (ret < 0) 1890 goto fail; 1891 1892 return dma_addr + offset; 1893 fail: 1894 __free_iova(mapping, dma_addr, len); 1895 return DMA_MAPPING_ERROR; 1896 } 1897 1898 /** 1899 * arm_iommu_map_page 1900 * @dev: valid struct device pointer 1901 * @page: page that buffer resides in 1902 * @offset: offset into page for start of buffer 1903 * @size: size of buffer to map 1904 * @dir: DMA transfer direction 1905 * 1906 * IOMMU aware version of arm_dma_map_page() 1907 */ 1908 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, 1909 unsigned long offset, size_t size, enum dma_data_direction dir, 1910 unsigned long attrs) 1911 { 1912 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1913 __dma_page_cpu_to_dev(page, offset, size, dir); 1914 1915 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); 1916 } 1917 1918 /** 1919 * arm_coherent_iommu_unmap_page 1920 * @dev: valid struct device pointer 1921 * @handle: DMA address of buffer 1922 * @size: size of buffer (same as passed to dma_map_page) 1923 * @dir: DMA transfer direction (same as passed to dma_map_page) 1924 * 1925 * Coherent IOMMU aware version of arm_dma_unmap_page() 1926 */ 1927 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1928 size_t size, enum dma_data_direction dir, unsigned long attrs) 1929 { 1930 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1931 dma_addr_t iova = handle & PAGE_MASK; 1932 int offset = handle & ~PAGE_MASK; 1933 int len = PAGE_ALIGN(size + offset); 1934 1935 if (!iova) 1936 return; 1937 1938 iommu_unmap(mapping->domain, iova, len); 1939 __free_iova(mapping, iova, len); 1940 } 1941 1942 /** 1943 * arm_iommu_unmap_page 1944 * @dev: valid struct device pointer 1945 * @handle: DMA address of buffer 1946 * @size: size of buffer (same as passed to dma_map_page) 1947 * @dir: DMA transfer direction (same as passed to dma_map_page) 1948 * 1949 * IOMMU aware version of arm_dma_unmap_page() 1950 */ 1951 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, 1952 size_t size, enum dma_data_direction dir, unsigned long attrs) 1953 { 1954 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1955 dma_addr_t iova = handle & PAGE_MASK; 1956 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 1957 int offset = handle & ~PAGE_MASK; 1958 int len = PAGE_ALIGN(size + offset); 1959 1960 if (!iova) 1961 return; 1962 1963 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 1964 __dma_page_dev_to_cpu(page, offset, size, dir); 1965 1966 iommu_unmap(mapping->domain, iova, len); 1967 __free_iova(mapping, iova, len); 1968 } 1969 1970 /** 1971 * arm_iommu_map_resource - map a device resource for DMA 1972 * @dev: valid struct device pointer 1973 * @phys_addr: physical address of resource 1974 * @size: size of resource to map 1975 * @dir: DMA transfer direction 1976 */ 1977 static dma_addr_t arm_iommu_map_resource(struct device *dev, 1978 phys_addr_t phys_addr, size_t size, 1979 enum dma_data_direction dir, unsigned long attrs) 1980 { 1981 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 1982 dma_addr_t dma_addr; 1983 int ret, prot; 1984 phys_addr_t addr = phys_addr & PAGE_MASK; 1985 unsigned int offset = phys_addr & ~PAGE_MASK; 1986 size_t len = PAGE_ALIGN(size + offset); 1987 1988 dma_addr = __alloc_iova(mapping, len); 1989 if (dma_addr == DMA_MAPPING_ERROR) 1990 return dma_addr; 1991 1992 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; 1993 1994 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); 1995 if (ret < 0) 1996 goto fail; 1997 1998 return dma_addr + offset; 1999 fail: 2000 __free_iova(mapping, dma_addr, len); 2001 return DMA_MAPPING_ERROR; 2002 } 2003 2004 /** 2005 * arm_iommu_unmap_resource - unmap a device DMA resource 2006 * @dev: valid struct device pointer 2007 * @dma_handle: DMA address to resource 2008 * @size: size of resource to map 2009 * @dir: DMA transfer direction 2010 */ 2011 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, 2012 size_t size, enum dma_data_direction dir, 2013 unsigned long attrs) 2014 { 2015 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2016 dma_addr_t iova = dma_handle & PAGE_MASK; 2017 unsigned int offset = dma_handle & ~PAGE_MASK; 2018 size_t len = PAGE_ALIGN(size + offset); 2019 2020 if (!iova) 2021 return; 2022 2023 iommu_unmap(mapping->domain, iova, len); 2024 __free_iova(mapping, iova, len); 2025 } 2026 2027 static void arm_iommu_sync_single_for_cpu(struct device *dev, 2028 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2029 { 2030 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2031 dma_addr_t iova = handle & PAGE_MASK; 2032 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2033 unsigned int offset = handle & ~PAGE_MASK; 2034 2035 if (!iova) 2036 return; 2037 2038 __dma_page_dev_to_cpu(page, offset, size, dir); 2039 } 2040 2041 static void arm_iommu_sync_single_for_device(struct device *dev, 2042 dma_addr_t handle, size_t size, enum dma_data_direction dir) 2043 { 2044 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2045 dma_addr_t iova = handle & PAGE_MASK; 2046 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); 2047 unsigned int offset = handle & ~PAGE_MASK; 2048 2049 if (!iova) 2050 return; 2051 2052 __dma_page_cpu_to_dev(page, offset, size, dir); 2053 } 2054 2055 const struct dma_map_ops iommu_ops = { 2056 .alloc = arm_iommu_alloc_attrs, 2057 .free = arm_iommu_free_attrs, 2058 .mmap = arm_iommu_mmap_attrs, 2059 .get_sgtable = arm_iommu_get_sgtable, 2060 2061 .map_page = arm_iommu_map_page, 2062 .unmap_page = arm_iommu_unmap_page, 2063 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, 2064 .sync_single_for_device = arm_iommu_sync_single_for_device, 2065 2066 .map_sg = arm_iommu_map_sg, 2067 .unmap_sg = arm_iommu_unmap_sg, 2068 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, 2069 .sync_sg_for_device = arm_iommu_sync_sg_for_device, 2070 2071 .map_resource = arm_iommu_map_resource, 2072 .unmap_resource = arm_iommu_unmap_resource, 2073 2074 .dma_supported = arm_dma_supported, 2075 }; 2076 2077 const struct dma_map_ops iommu_coherent_ops = { 2078 .alloc = arm_coherent_iommu_alloc_attrs, 2079 .free = arm_coherent_iommu_free_attrs, 2080 .mmap = arm_coherent_iommu_mmap_attrs, 2081 .get_sgtable = arm_iommu_get_sgtable, 2082 2083 .map_page = arm_coherent_iommu_map_page, 2084 .unmap_page = arm_coherent_iommu_unmap_page, 2085 2086 .map_sg = arm_coherent_iommu_map_sg, 2087 .unmap_sg = arm_coherent_iommu_unmap_sg, 2088 2089 .map_resource = arm_iommu_map_resource, 2090 .unmap_resource = arm_iommu_unmap_resource, 2091 2092 .dma_supported = arm_dma_supported, 2093 }; 2094 2095 /** 2096 * arm_iommu_create_mapping 2097 * @bus: pointer to the bus holding the client device (for IOMMU calls) 2098 * @base: start address of the valid IO address space 2099 * @size: maximum size of the valid IO address space 2100 * 2101 * Creates a mapping structure which holds information about used/unused 2102 * IO address ranges, which is required to perform memory allocation and 2103 * mapping with IOMMU aware functions. 2104 * 2105 * The client device need to be attached to the mapping with 2106 * arm_iommu_attach_device function. 2107 */ 2108 struct dma_iommu_mapping * 2109 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) 2110 { 2111 unsigned int bits = size >> PAGE_SHIFT; 2112 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); 2113 struct dma_iommu_mapping *mapping; 2114 int extensions = 1; 2115 int err = -ENOMEM; 2116 2117 /* currently only 32-bit DMA address space is supported */ 2118 if (size > DMA_BIT_MASK(32) + 1) 2119 return ERR_PTR(-ERANGE); 2120 2121 if (!bitmap_size) 2122 return ERR_PTR(-EINVAL); 2123 2124 if (bitmap_size > PAGE_SIZE) { 2125 extensions = bitmap_size / PAGE_SIZE; 2126 bitmap_size = PAGE_SIZE; 2127 } 2128 2129 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); 2130 if (!mapping) 2131 goto err; 2132 2133 mapping->bitmap_size = bitmap_size; 2134 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), 2135 GFP_KERNEL); 2136 if (!mapping->bitmaps) 2137 goto err2; 2138 2139 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); 2140 if (!mapping->bitmaps[0]) 2141 goto err3; 2142 2143 mapping->nr_bitmaps = 1; 2144 mapping->extensions = extensions; 2145 mapping->base = base; 2146 mapping->bits = BITS_PER_BYTE * bitmap_size; 2147 2148 spin_lock_init(&mapping->lock); 2149 2150 mapping->domain = iommu_domain_alloc(bus); 2151 if (!mapping->domain) 2152 goto err4; 2153 2154 kref_init(&mapping->kref); 2155 return mapping; 2156 err4: 2157 kfree(mapping->bitmaps[0]); 2158 err3: 2159 kfree(mapping->bitmaps); 2160 err2: 2161 kfree(mapping); 2162 err: 2163 return ERR_PTR(err); 2164 } 2165 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); 2166 2167 static void release_iommu_mapping(struct kref *kref) 2168 { 2169 int i; 2170 struct dma_iommu_mapping *mapping = 2171 container_of(kref, struct dma_iommu_mapping, kref); 2172 2173 iommu_domain_free(mapping->domain); 2174 for (i = 0; i < mapping->nr_bitmaps; i++) 2175 kfree(mapping->bitmaps[i]); 2176 kfree(mapping->bitmaps); 2177 kfree(mapping); 2178 } 2179 2180 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) 2181 { 2182 int next_bitmap; 2183 2184 if (mapping->nr_bitmaps >= mapping->extensions) 2185 return -EINVAL; 2186 2187 next_bitmap = mapping->nr_bitmaps; 2188 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, 2189 GFP_ATOMIC); 2190 if (!mapping->bitmaps[next_bitmap]) 2191 return -ENOMEM; 2192 2193 mapping->nr_bitmaps++; 2194 2195 return 0; 2196 } 2197 2198 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) 2199 { 2200 if (mapping) 2201 kref_put(&mapping->kref, release_iommu_mapping); 2202 } 2203 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); 2204 2205 static int __arm_iommu_attach_device(struct device *dev, 2206 struct dma_iommu_mapping *mapping) 2207 { 2208 int err; 2209 2210 err = iommu_attach_device(mapping->domain, dev); 2211 if (err) 2212 return err; 2213 2214 kref_get(&mapping->kref); 2215 to_dma_iommu_mapping(dev) = mapping; 2216 2217 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); 2218 return 0; 2219 } 2220 2221 /** 2222 * arm_iommu_attach_device 2223 * @dev: valid struct device pointer 2224 * @mapping: io address space mapping structure (returned from 2225 * arm_iommu_create_mapping) 2226 * 2227 * Attaches specified io address space mapping to the provided device. 2228 * This replaces the dma operations (dma_map_ops pointer) with the 2229 * IOMMU aware version. 2230 * 2231 * More than one client might be attached to the same io address space 2232 * mapping. 2233 */ 2234 int arm_iommu_attach_device(struct device *dev, 2235 struct dma_iommu_mapping *mapping) 2236 { 2237 int err; 2238 2239 err = __arm_iommu_attach_device(dev, mapping); 2240 if (err) 2241 return err; 2242 2243 set_dma_ops(dev, &iommu_ops); 2244 return 0; 2245 } 2246 EXPORT_SYMBOL_GPL(arm_iommu_attach_device); 2247 2248 /** 2249 * arm_iommu_detach_device 2250 * @dev: valid struct device pointer 2251 * 2252 * Detaches the provided device from a previously attached map. 2253 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops. 2254 */ 2255 void arm_iommu_detach_device(struct device *dev) 2256 { 2257 struct dma_iommu_mapping *mapping; 2258 2259 mapping = to_dma_iommu_mapping(dev); 2260 if (!mapping) { 2261 dev_warn(dev, "Not attached\n"); 2262 return; 2263 } 2264 2265 iommu_detach_device(mapping->domain, dev); 2266 kref_put(&mapping->kref, release_iommu_mapping); 2267 to_dma_iommu_mapping(dev) = NULL; 2268 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent)); 2269 2270 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); 2271 } 2272 EXPORT_SYMBOL_GPL(arm_iommu_detach_device); 2273 2274 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) 2275 { 2276 return coherent ? &iommu_coherent_ops : &iommu_ops; 2277 } 2278 2279 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2280 const struct iommu_ops *iommu) 2281 { 2282 struct dma_iommu_mapping *mapping; 2283 2284 if (!iommu) 2285 return false; 2286 2287 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); 2288 if (IS_ERR(mapping)) { 2289 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", 2290 size, dev_name(dev)); 2291 return false; 2292 } 2293 2294 if (__arm_iommu_attach_device(dev, mapping)) { 2295 pr_warn("Failed to attached device %s to IOMMU_mapping\n", 2296 dev_name(dev)); 2297 arm_iommu_release_mapping(mapping); 2298 return false; 2299 } 2300 2301 return true; 2302 } 2303 2304 static void arm_teardown_iommu_dma_ops(struct device *dev) 2305 { 2306 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); 2307 2308 if (!mapping) 2309 return; 2310 2311 arm_iommu_detach_device(dev); 2312 arm_iommu_release_mapping(mapping); 2313 } 2314 2315 #else 2316 2317 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, 2318 const struct iommu_ops *iommu) 2319 { 2320 return false; 2321 } 2322 2323 static void arm_teardown_iommu_dma_ops(struct device *dev) { } 2324 2325 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops 2326 2327 #endif /* CONFIG_ARM_DMA_USE_IOMMU */ 2328 2329 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 2330 const struct iommu_ops *iommu, bool coherent) 2331 { 2332 const struct dma_map_ops *dma_ops; 2333 2334 dev->archdata.dma_coherent = coherent; 2335 #ifdef CONFIG_SWIOTLB 2336 dev->dma_coherent = coherent; 2337 #endif 2338 2339 /* 2340 * Don't override the dma_ops if they have already been set. Ideally 2341 * this should be the only location where dma_ops are set, remove this 2342 * check when all other callers of set_dma_ops will have disappeared. 2343 */ 2344 if (dev->dma_ops) 2345 return; 2346 2347 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) 2348 dma_ops = arm_get_iommu_dma_map_ops(coherent); 2349 else 2350 dma_ops = arm_get_dma_map_ops(coherent); 2351 2352 set_dma_ops(dev, dma_ops); 2353 2354 #ifdef CONFIG_XEN 2355 if (xen_initial_domain()) { 2356 dev->archdata.dev_dma_ops = dev->dma_ops; 2357 dev->dma_ops = xen_dma_ops; 2358 } 2359 #endif 2360 dev->archdata.dma_ops_setup = true; 2361 } 2362 2363 void arch_teardown_dma_ops(struct device *dev) 2364 { 2365 if (!dev->archdata.dma_ops_setup) 2366 return; 2367 2368 arm_teardown_iommu_dma_ops(dev); 2369 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */ 2370 set_dma_ops(dev, NULL); 2371 } 2372 2373 #ifdef CONFIG_SWIOTLB 2374 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, 2375 size_t size, enum dma_data_direction dir) 2376 { 2377 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1), 2378 size, dir); 2379 } 2380 2381 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, 2382 size_t size, enum dma_data_direction dir) 2383 { 2384 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1), 2385 size, dir); 2386 } 2387 2388 long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr, 2389 dma_addr_t dma_addr) 2390 { 2391 return dma_to_pfn(dev, dma_addr); 2392 } 2393 2394 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, 2395 gfp_t gfp, unsigned long attrs) 2396 { 2397 return __dma_alloc(dev, size, dma_handle, gfp, 2398 __get_dma_pgprot(attrs, PAGE_KERNEL), false, 2399 attrs, __builtin_return_address(0)); 2400 } 2401 2402 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, 2403 dma_addr_t dma_handle, unsigned long attrs) 2404 { 2405 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false); 2406 } 2407 #endif /* CONFIG_SWIOTLB */ 2408