1 /* 2 * linux/arch/arm/mm/alignment.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Modifications for ARM processor (c) 1995-2001 Russell King 6 * Thumb alignment fault fixups (c) 2004 MontaVista Software, Inc. 7 * - Adapted from gdb/sim/arm/thumbemu.c -- Thumb instruction emulation. 8 * Copyright (C) 1996, Cygnus Software Technologies Ltd. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 */ 14 #include <linux/moduleparam.h> 15 #include <linux/compiler.h> 16 #include <linux/kernel.h> 17 #include <linux/errno.h> 18 #include <linux/string.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/init.h> 22 #include <linux/sched.h> 23 #include <linux/uaccess.h> 24 25 #include <asm/cp15.h> 26 #include <asm/system_info.h> 27 #include <asm/unaligned.h> 28 #include <asm/opcodes.h> 29 30 #include "fault.h" 31 #include "mm.h" 32 33 /* 34 * 32-bit misaligned trap handler (c) 1998 San Mehat (CCC) -July 1998 35 * /proc/sys/debug/alignment, modified and integrated into 36 * Linux 2.1 by Russell King 37 * 38 * Speed optimisations and better fault handling by Russell King. 39 * 40 * *** NOTE *** 41 * This code is not portable to processors with late data abort handling. 42 */ 43 #define CODING_BITS(i) (i & 0x0e000000) 44 #define COND_BITS(i) (i & 0xf0000000) 45 46 #define LDST_I_BIT(i) (i & (1 << 26)) /* Immediate constant */ 47 #define LDST_P_BIT(i) (i & (1 << 24)) /* Preindex */ 48 #define LDST_U_BIT(i) (i & (1 << 23)) /* Add offset */ 49 #define LDST_W_BIT(i) (i & (1 << 21)) /* Writeback */ 50 #define LDST_L_BIT(i) (i & (1 << 20)) /* Load */ 51 52 #define LDST_P_EQ_U(i) ((((i) ^ ((i) >> 1)) & (1 << 23)) == 0) 53 54 #define LDSTHD_I_BIT(i) (i & (1 << 22)) /* double/half-word immed */ 55 #define LDM_S_BIT(i) (i & (1 << 22)) /* write CPSR from SPSR */ 56 57 #define RN_BITS(i) ((i >> 16) & 15) /* Rn */ 58 #define RD_BITS(i) ((i >> 12) & 15) /* Rd */ 59 #define RM_BITS(i) (i & 15) /* Rm */ 60 61 #define REGMASK_BITS(i) (i & 0xffff) 62 #define OFFSET_BITS(i) (i & 0x0fff) 63 64 #define IS_SHIFT(i) (i & 0x0ff0) 65 #define SHIFT_BITS(i) ((i >> 7) & 0x1f) 66 #define SHIFT_TYPE(i) (i & 0x60) 67 #define SHIFT_LSL 0x00 68 #define SHIFT_LSR 0x20 69 #define SHIFT_ASR 0x40 70 #define SHIFT_RORRRX 0x60 71 72 #define BAD_INSTR 0xdeadc0de 73 74 /* Thumb-2 32 bit format per ARMv7 DDI0406A A6.3, either f800h,e800h,f800h */ 75 #define IS_T32(hi16) \ 76 (((hi16) & 0xe000) == 0xe000 && ((hi16) & 0x1800)) 77 78 static unsigned long ai_user; 79 static unsigned long ai_sys; 80 static void *ai_sys_last_pc; 81 static unsigned long ai_skipped; 82 static unsigned long ai_half; 83 static unsigned long ai_word; 84 static unsigned long ai_dword; 85 static unsigned long ai_multi; 86 static int ai_usermode; 87 static unsigned long cr_no_alignment; 88 89 core_param(alignment, ai_usermode, int, 0600); 90 91 #define UM_WARN (1 << 0) 92 #define UM_FIXUP (1 << 1) 93 #define UM_SIGNAL (1 << 2) 94 95 /* Return true if and only if the ARMv6 unaligned access model is in use. */ 96 static bool cpu_is_v6_unaligned(void) 97 { 98 return cpu_architecture() >= CPU_ARCH_ARMv6 && get_cr() & CR_U; 99 } 100 101 static int safe_usermode(int new_usermode, bool warn) 102 { 103 /* 104 * ARMv6 and later CPUs can perform unaligned accesses for 105 * most single load and store instructions up to word size. 106 * LDM, STM, LDRD and STRD still need to be handled. 107 * 108 * Ignoring the alignment fault is not an option on these 109 * CPUs since we spin re-faulting the instruction without 110 * making any progress. 111 */ 112 if (cpu_is_v6_unaligned() && !(new_usermode & (UM_FIXUP | UM_SIGNAL))) { 113 new_usermode |= UM_FIXUP; 114 115 if (warn) 116 printk(KERN_WARNING "alignment: ignoring faults is unsafe on this CPU. Defaulting to fixup mode.\n"); 117 } 118 119 return new_usermode; 120 } 121 122 #ifdef CONFIG_PROC_FS 123 static const char *usermode_action[] = { 124 "ignored", 125 "warn", 126 "fixup", 127 "fixup+warn", 128 "signal", 129 "signal+warn" 130 }; 131 132 static int alignment_proc_show(struct seq_file *m, void *v) 133 { 134 seq_printf(m, "User:\t\t%lu\n", ai_user); 135 seq_printf(m, "System:\t\t%lu (%pF)\n", ai_sys, ai_sys_last_pc); 136 seq_printf(m, "Skipped:\t%lu\n", ai_skipped); 137 seq_printf(m, "Half:\t\t%lu\n", ai_half); 138 seq_printf(m, "Word:\t\t%lu\n", ai_word); 139 if (cpu_architecture() >= CPU_ARCH_ARMv5TE) 140 seq_printf(m, "DWord:\t\t%lu\n", ai_dword); 141 seq_printf(m, "Multi:\t\t%lu\n", ai_multi); 142 seq_printf(m, "User faults:\t%i (%s)\n", ai_usermode, 143 usermode_action[ai_usermode]); 144 145 return 0; 146 } 147 148 static int alignment_proc_open(struct inode *inode, struct file *file) 149 { 150 return single_open(file, alignment_proc_show, NULL); 151 } 152 153 static ssize_t alignment_proc_write(struct file *file, const char __user *buffer, 154 size_t count, loff_t *pos) 155 { 156 char mode; 157 158 if (count > 0) { 159 if (get_user(mode, buffer)) 160 return -EFAULT; 161 if (mode >= '0' && mode <= '5') 162 ai_usermode = safe_usermode(mode - '0', true); 163 } 164 return count; 165 } 166 167 static const struct file_operations alignment_proc_fops = { 168 .open = alignment_proc_open, 169 .read = seq_read, 170 .llseek = seq_lseek, 171 .release = single_release, 172 .write = alignment_proc_write, 173 }; 174 #endif /* CONFIG_PROC_FS */ 175 176 union offset_union { 177 unsigned long un; 178 signed long sn; 179 }; 180 181 #define TYPE_ERROR 0 182 #define TYPE_FAULT 1 183 #define TYPE_LDST 2 184 #define TYPE_DONE 3 185 186 #ifdef __ARMEB__ 187 #define BE 1 188 #define FIRST_BYTE_16 "mov %1, %1, ror #8\n" 189 #define FIRST_BYTE_32 "mov %1, %1, ror #24\n" 190 #define NEXT_BYTE "ror #24" 191 #else 192 #define BE 0 193 #define FIRST_BYTE_16 194 #define FIRST_BYTE_32 195 #define NEXT_BYTE "lsr #8" 196 #endif 197 198 #define __get8_unaligned_check(ins,val,addr,err) \ 199 __asm__( \ 200 ARM( "1: "ins" %1, [%2], #1\n" ) \ 201 THUMB( "1: "ins" %1, [%2]\n" ) \ 202 THUMB( " add %2, %2, #1\n" ) \ 203 "2:\n" \ 204 " .pushsection .fixup,\"ax\"\n" \ 205 " .align 2\n" \ 206 "3: mov %0, #1\n" \ 207 " b 2b\n" \ 208 " .popsection\n" \ 209 " .pushsection __ex_table,\"a\"\n" \ 210 " .align 3\n" \ 211 " .long 1b, 3b\n" \ 212 " .popsection\n" \ 213 : "=r" (err), "=&r" (val), "=r" (addr) \ 214 : "0" (err), "2" (addr)) 215 216 #define __get16_unaligned_check(ins,val,addr) \ 217 do { \ 218 unsigned int err = 0, v, a = addr; \ 219 __get8_unaligned_check(ins,v,a,err); \ 220 val = v << ((BE) ? 8 : 0); \ 221 __get8_unaligned_check(ins,v,a,err); \ 222 val |= v << ((BE) ? 0 : 8); \ 223 if (err) \ 224 goto fault; \ 225 } while (0) 226 227 #define get16_unaligned_check(val,addr) \ 228 __get16_unaligned_check("ldrb",val,addr) 229 230 #define get16t_unaligned_check(val,addr) \ 231 __get16_unaligned_check("ldrbt",val,addr) 232 233 #define __get32_unaligned_check(ins,val,addr) \ 234 do { \ 235 unsigned int err = 0, v, a = addr; \ 236 __get8_unaligned_check(ins,v,a,err); \ 237 val = v << ((BE) ? 24 : 0); \ 238 __get8_unaligned_check(ins,v,a,err); \ 239 val |= v << ((BE) ? 16 : 8); \ 240 __get8_unaligned_check(ins,v,a,err); \ 241 val |= v << ((BE) ? 8 : 16); \ 242 __get8_unaligned_check(ins,v,a,err); \ 243 val |= v << ((BE) ? 0 : 24); \ 244 if (err) \ 245 goto fault; \ 246 } while (0) 247 248 #define get32_unaligned_check(val,addr) \ 249 __get32_unaligned_check("ldrb",val,addr) 250 251 #define get32t_unaligned_check(val,addr) \ 252 __get32_unaligned_check("ldrbt",val,addr) 253 254 #define __put16_unaligned_check(ins,val,addr) \ 255 do { \ 256 unsigned int err = 0, v = val, a = addr; \ 257 __asm__( FIRST_BYTE_16 \ 258 ARM( "1: "ins" %1, [%2], #1\n" ) \ 259 THUMB( "1: "ins" %1, [%2]\n" ) \ 260 THUMB( " add %2, %2, #1\n" ) \ 261 " mov %1, %1, "NEXT_BYTE"\n" \ 262 "2: "ins" %1, [%2]\n" \ 263 "3:\n" \ 264 " .pushsection .fixup,\"ax\"\n" \ 265 " .align 2\n" \ 266 "4: mov %0, #1\n" \ 267 " b 3b\n" \ 268 " .popsection\n" \ 269 " .pushsection __ex_table,\"a\"\n" \ 270 " .align 3\n" \ 271 " .long 1b, 4b\n" \ 272 " .long 2b, 4b\n" \ 273 " .popsection\n" \ 274 : "=r" (err), "=&r" (v), "=&r" (a) \ 275 : "0" (err), "1" (v), "2" (a)); \ 276 if (err) \ 277 goto fault; \ 278 } while (0) 279 280 #define put16_unaligned_check(val,addr) \ 281 __put16_unaligned_check("strb",val,addr) 282 283 #define put16t_unaligned_check(val,addr) \ 284 __put16_unaligned_check("strbt",val,addr) 285 286 #define __put32_unaligned_check(ins,val,addr) \ 287 do { \ 288 unsigned int err = 0, v = val, a = addr; \ 289 __asm__( FIRST_BYTE_32 \ 290 ARM( "1: "ins" %1, [%2], #1\n" ) \ 291 THUMB( "1: "ins" %1, [%2]\n" ) \ 292 THUMB( " add %2, %2, #1\n" ) \ 293 " mov %1, %1, "NEXT_BYTE"\n" \ 294 ARM( "2: "ins" %1, [%2], #1\n" ) \ 295 THUMB( "2: "ins" %1, [%2]\n" ) \ 296 THUMB( " add %2, %2, #1\n" ) \ 297 " mov %1, %1, "NEXT_BYTE"\n" \ 298 ARM( "3: "ins" %1, [%2], #1\n" ) \ 299 THUMB( "3: "ins" %1, [%2]\n" ) \ 300 THUMB( " add %2, %2, #1\n" ) \ 301 " mov %1, %1, "NEXT_BYTE"\n" \ 302 "4: "ins" %1, [%2]\n" \ 303 "5:\n" \ 304 " .pushsection .fixup,\"ax\"\n" \ 305 " .align 2\n" \ 306 "6: mov %0, #1\n" \ 307 " b 5b\n" \ 308 " .popsection\n" \ 309 " .pushsection __ex_table,\"a\"\n" \ 310 " .align 3\n" \ 311 " .long 1b, 6b\n" \ 312 " .long 2b, 6b\n" \ 313 " .long 3b, 6b\n" \ 314 " .long 4b, 6b\n" \ 315 " .popsection\n" \ 316 : "=r" (err), "=&r" (v), "=&r" (a) \ 317 : "0" (err), "1" (v), "2" (a)); \ 318 if (err) \ 319 goto fault; \ 320 } while (0) 321 322 #define put32_unaligned_check(val,addr) \ 323 __put32_unaligned_check("strb", val, addr) 324 325 #define put32t_unaligned_check(val,addr) \ 326 __put32_unaligned_check("strbt", val, addr) 327 328 static void 329 do_alignment_finish_ldst(unsigned long addr, unsigned long instr, struct pt_regs *regs, union offset_union offset) 330 { 331 if (!LDST_U_BIT(instr)) 332 offset.un = -offset.un; 333 334 if (!LDST_P_BIT(instr)) 335 addr += offset.un; 336 337 if (!LDST_P_BIT(instr) || LDST_W_BIT(instr)) 338 regs->uregs[RN_BITS(instr)] = addr; 339 } 340 341 static int 342 do_alignment_ldrhstrh(unsigned long addr, unsigned long instr, struct pt_regs *regs) 343 { 344 unsigned int rd = RD_BITS(instr); 345 346 ai_half += 1; 347 348 if (user_mode(regs)) 349 goto user; 350 351 if (LDST_L_BIT(instr)) { 352 unsigned long val; 353 get16_unaligned_check(val, addr); 354 355 /* signed half-word? */ 356 if (instr & 0x40) 357 val = (signed long)((signed short) val); 358 359 regs->uregs[rd] = val; 360 } else 361 put16_unaligned_check(regs->uregs[rd], addr); 362 363 return TYPE_LDST; 364 365 user: 366 if (LDST_L_BIT(instr)) { 367 unsigned long val; 368 get16t_unaligned_check(val, addr); 369 370 /* signed half-word? */ 371 if (instr & 0x40) 372 val = (signed long)((signed short) val); 373 374 regs->uregs[rd] = val; 375 } else 376 put16t_unaligned_check(regs->uregs[rd], addr); 377 378 return TYPE_LDST; 379 380 fault: 381 return TYPE_FAULT; 382 } 383 384 static int 385 do_alignment_ldrdstrd(unsigned long addr, unsigned long instr, 386 struct pt_regs *regs) 387 { 388 unsigned int rd = RD_BITS(instr); 389 unsigned int rd2; 390 int load; 391 392 if ((instr & 0xfe000000) == 0xe8000000) { 393 /* ARMv7 Thumb-2 32-bit LDRD/STRD */ 394 rd2 = (instr >> 8) & 0xf; 395 load = !!(LDST_L_BIT(instr)); 396 } else if (((rd & 1) == 1) || (rd == 14)) 397 goto bad; 398 else { 399 load = ((instr & 0xf0) == 0xd0); 400 rd2 = rd + 1; 401 } 402 403 ai_dword += 1; 404 405 if (user_mode(regs)) 406 goto user; 407 408 if (load) { 409 unsigned long val; 410 get32_unaligned_check(val, addr); 411 regs->uregs[rd] = val; 412 get32_unaligned_check(val, addr + 4); 413 regs->uregs[rd2] = val; 414 } else { 415 put32_unaligned_check(regs->uregs[rd], addr); 416 put32_unaligned_check(regs->uregs[rd2], addr + 4); 417 } 418 419 return TYPE_LDST; 420 421 user: 422 if (load) { 423 unsigned long val; 424 get32t_unaligned_check(val, addr); 425 regs->uregs[rd] = val; 426 get32t_unaligned_check(val, addr + 4); 427 regs->uregs[rd2] = val; 428 } else { 429 put32t_unaligned_check(regs->uregs[rd], addr); 430 put32t_unaligned_check(regs->uregs[rd2], addr + 4); 431 } 432 433 return TYPE_LDST; 434 bad: 435 return TYPE_ERROR; 436 fault: 437 return TYPE_FAULT; 438 } 439 440 static int 441 do_alignment_ldrstr(unsigned long addr, unsigned long instr, struct pt_regs *regs) 442 { 443 unsigned int rd = RD_BITS(instr); 444 445 ai_word += 1; 446 447 if ((!LDST_P_BIT(instr) && LDST_W_BIT(instr)) || user_mode(regs)) 448 goto trans; 449 450 if (LDST_L_BIT(instr)) { 451 unsigned int val; 452 get32_unaligned_check(val, addr); 453 regs->uregs[rd] = val; 454 } else 455 put32_unaligned_check(regs->uregs[rd], addr); 456 return TYPE_LDST; 457 458 trans: 459 if (LDST_L_BIT(instr)) { 460 unsigned int val; 461 get32t_unaligned_check(val, addr); 462 regs->uregs[rd] = val; 463 } else 464 put32t_unaligned_check(regs->uregs[rd], addr); 465 return TYPE_LDST; 466 467 fault: 468 return TYPE_FAULT; 469 } 470 471 /* 472 * LDM/STM alignment handler. 473 * 474 * There are 4 variants of this instruction: 475 * 476 * B = rn pointer before instruction, A = rn pointer after instruction 477 * ------ increasing address -----> 478 * | | r0 | r1 | ... | rx | | 479 * PU = 01 B A 480 * PU = 11 B A 481 * PU = 00 A B 482 * PU = 10 A B 483 */ 484 static int 485 do_alignment_ldmstm(unsigned long addr, unsigned long instr, struct pt_regs *regs) 486 { 487 unsigned int rd, rn, correction, nr_regs, regbits; 488 unsigned long eaddr, newaddr; 489 490 if (LDM_S_BIT(instr)) 491 goto bad; 492 493 correction = 4; /* processor implementation defined */ 494 regs->ARM_pc += correction; 495 496 ai_multi += 1; 497 498 /* count the number of registers in the mask to be transferred */ 499 nr_regs = hweight16(REGMASK_BITS(instr)) * 4; 500 501 rn = RN_BITS(instr); 502 newaddr = eaddr = regs->uregs[rn]; 503 504 if (!LDST_U_BIT(instr)) 505 nr_regs = -nr_regs; 506 newaddr += nr_regs; 507 if (!LDST_U_BIT(instr)) 508 eaddr = newaddr; 509 510 if (LDST_P_EQ_U(instr)) /* U = P */ 511 eaddr += 4; 512 513 /* 514 * For alignment faults on the ARM922T/ARM920T the MMU makes 515 * the FSR (and hence addr) equal to the updated base address 516 * of the multiple access rather than the restored value. 517 * Switch this message off if we've got a ARM92[02], otherwise 518 * [ls]dm alignment faults are noisy! 519 */ 520 #if !(defined CONFIG_CPU_ARM922T) && !(defined CONFIG_CPU_ARM920T) 521 /* 522 * This is a "hint" - we already have eaddr worked out by the 523 * processor for us. 524 */ 525 if (addr != eaddr) { 526 printk(KERN_ERR "LDMSTM: PC = %08lx, instr = %08lx, " 527 "addr = %08lx, eaddr = %08lx\n", 528 instruction_pointer(regs), instr, addr, eaddr); 529 show_regs(regs); 530 } 531 #endif 532 533 if (user_mode(regs)) { 534 for (regbits = REGMASK_BITS(instr), rd = 0; regbits; 535 regbits >>= 1, rd += 1) 536 if (regbits & 1) { 537 if (LDST_L_BIT(instr)) { 538 unsigned int val; 539 get32t_unaligned_check(val, eaddr); 540 regs->uregs[rd] = val; 541 } else 542 put32t_unaligned_check(regs->uregs[rd], eaddr); 543 eaddr += 4; 544 } 545 } else { 546 for (regbits = REGMASK_BITS(instr), rd = 0; regbits; 547 regbits >>= 1, rd += 1) 548 if (regbits & 1) { 549 if (LDST_L_BIT(instr)) { 550 unsigned int val; 551 get32_unaligned_check(val, eaddr); 552 regs->uregs[rd] = val; 553 } else 554 put32_unaligned_check(regs->uregs[rd], eaddr); 555 eaddr += 4; 556 } 557 } 558 559 if (LDST_W_BIT(instr)) 560 regs->uregs[rn] = newaddr; 561 if (!LDST_L_BIT(instr) || !(REGMASK_BITS(instr) & (1 << 15))) 562 regs->ARM_pc -= correction; 563 return TYPE_DONE; 564 565 fault: 566 regs->ARM_pc -= correction; 567 return TYPE_FAULT; 568 569 bad: 570 printk(KERN_ERR "Alignment trap: not handling ldm with s-bit set\n"); 571 return TYPE_ERROR; 572 } 573 574 /* 575 * Convert Thumb ld/st instruction forms to equivalent ARM instructions so 576 * we can reuse ARM userland alignment fault fixups for Thumb. 577 * 578 * This implementation was initially based on the algorithm found in 579 * gdb/sim/arm/thumbemu.c. It is basically just a code reduction of same 580 * to convert only Thumb ld/st instruction forms to equivalent ARM forms. 581 * 582 * NOTES: 583 * 1. Comments below refer to ARM ARM DDI0100E Thumb Instruction sections. 584 * 2. If for some reason we're passed an non-ld/st Thumb instruction to 585 * decode, we return 0xdeadc0de. This should never happen under normal 586 * circumstances but if it does, we've got other problems to deal with 587 * elsewhere and we obviously can't fix those problems here. 588 */ 589 590 static unsigned long 591 thumb2arm(u16 tinstr) 592 { 593 u32 L = (tinstr & (1<<11)) >> 11; 594 595 switch ((tinstr & 0xf800) >> 11) { 596 /* 6.5.1 Format 1: */ 597 case 0x6000 >> 11: /* 7.1.52 STR(1) */ 598 case 0x6800 >> 11: /* 7.1.26 LDR(1) */ 599 case 0x7000 >> 11: /* 7.1.55 STRB(1) */ 600 case 0x7800 >> 11: /* 7.1.30 LDRB(1) */ 601 return 0xe5800000 | 602 ((tinstr & (1<<12)) << (22-12)) | /* fixup */ 603 (L<<20) | /* L==1? */ 604 ((tinstr & (7<<0)) << (12-0)) | /* Rd */ 605 ((tinstr & (7<<3)) << (16-3)) | /* Rn */ 606 ((tinstr & (31<<6)) >> /* immed_5 */ 607 (6 - ((tinstr & (1<<12)) ? 0 : 2))); 608 case 0x8000 >> 11: /* 7.1.57 STRH(1) */ 609 case 0x8800 >> 11: /* 7.1.32 LDRH(1) */ 610 return 0xe1c000b0 | 611 (L<<20) | /* L==1? */ 612 ((tinstr & (7<<0)) << (12-0)) | /* Rd */ 613 ((tinstr & (7<<3)) << (16-3)) | /* Rn */ 614 ((tinstr & (7<<6)) >> (6-1)) | /* immed_5[2:0] */ 615 ((tinstr & (3<<9)) >> (9-8)); /* immed_5[4:3] */ 616 617 /* 6.5.1 Format 2: */ 618 case 0x5000 >> 11: 619 case 0x5800 >> 11: 620 { 621 static const u32 subset[8] = { 622 0xe7800000, /* 7.1.53 STR(2) */ 623 0xe18000b0, /* 7.1.58 STRH(2) */ 624 0xe7c00000, /* 7.1.56 STRB(2) */ 625 0xe19000d0, /* 7.1.34 LDRSB */ 626 0xe7900000, /* 7.1.27 LDR(2) */ 627 0xe19000b0, /* 7.1.33 LDRH(2) */ 628 0xe7d00000, /* 7.1.31 LDRB(2) */ 629 0xe19000f0 /* 7.1.35 LDRSH */ 630 }; 631 return subset[(tinstr & (7<<9)) >> 9] | 632 ((tinstr & (7<<0)) << (12-0)) | /* Rd */ 633 ((tinstr & (7<<3)) << (16-3)) | /* Rn */ 634 ((tinstr & (7<<6)) >> (6-0)); /* Rm */ 635 } 636 637 /* 6.5.1 Format 3: */ 638 case 0x4800 >> 11: /* 7.1.28 LDR(3) */ 639 /* NOTE: This case is not technically possible. We're 640 * loading 32-bit memory data via PC relative 641 * addressing mode. So we can and should eliminate 642 * this case. But I'll leave it here for now. 643 */ 644 return 0xe59f0000 | 645 ((tinstr & (7<<8)) << (12-8)) | /* Rd */ 646 ((tinstr & 255) << (2-0)); /* immed_8 */ 647 648 /* 6.5.1 Format 4: */ 649 case 0x9000 >> 11: /* 7.1.54 STR(3) */ 650 case 0x9800 >> 11: /* 7.1.29 LDR(4) */ 651 return 0xe58d0000 | 652 (L<<20) | /* L==1? */ 653 ((tinstr & (7<<8)) << (12-8)) | /* Rd */ 654 ((tinstr & 255) << 2); /* immed_8 */ 655 656 /* 6.6.1 Format 1: */ 657 case 0xc000 >> 11: /* 7.1.51 STMIA */ 658 case 0xc800 >> 11: /* 7.1.25 LDMIA */ 659 { 660 u32 Rn = (tinstr & (7<<8)) >> 8; 661 u32 W = ((L<<Rn) & (tinstr&255)) ? 0 : 1<<21; 662 663 return 0xe8800000 | W | (L<<20) | (Rn<<16) | 664 (tinstr&255); 665 } 666 667 /* 6.6.1 Format 2: */ 668 case 0xb000 >> 11: /* 7.1.48 PUSH */ 669 case 0xb800 >> 11: /* 7.1.47 POP */ 670 if ((tinstr & (3 << 9)) == 0x0400) { 671 static const u32 subset[4] = { 672 0xe92d0000, /* STMDB sp!,{registers} */ 673 0xe92d4000, /* STMDB sp!,{registers,lr} */ 674 0xe8bd0000, /* LDMIA sp!,{registers} */ 675 0xe8bd8000 /* LDMIA sp!,{registers,pc} */ 676 }; 677 return subset[(L<<1) | ((tinstr & (1<<8)) >> 8)] | 678 (tinstr & 255); /* register_list */ 679 } 680 /* Else fall through for illegal instruction case */ 681 682 default: 683 return BAD_INSTR; 684 } 685 } 686 687 /* 688 * Convert Thumb-2 32 bit LDM, STM, LDRD, STRD to equivalent instruction 689 * handlable by ARM alignment handler, also find the corresponding handler, 690 * so that we can reuse ARM userland alignment fault fixups for Thumb. 691 * 692 * @pinstr: original Thumb-2 instruction; returns new handlable instruction 693 * @regs: register context. 694 * @poffset: return offset from faulted addr for later writeback 695 * 696 * NOTES: 697 * 1. Comments below refer to ARMv7 DDI0406A Thumb Instruction sections. 698 * 2. Register name Rt from ARMv7 is same as Rd from ARMv6 (Rd is Rt) 699 */ 700 static void * 701 do_alignment_t32_to_handler(unsigned long *pinstr, struct pt_regs *regs, 702 union offset_union *poffset) 703 { 704 unsigned long instr = *pinstr; 705 u16 tinst1 = (instr >> 16) & 0xffff; 706 u16 tinst2 = instr & 0xffff; 707 708 switch (tinst1 & 0xffe0) { 709 /* A6.3.5 Load/Store multiple */ 710 case 0xe880: /* STM/STMIA/STMEA,LDM/LDMIA, PUSH/POP T2 */ 711 case 0xe8a0: /* ...above writeback version */ 712 case 0xe900: /* STMDB/STMFD, LDMDB/LDMEA */ 713 case 0xe920: /* ...above writeback version */ 714 /* no need offset decision since handler calculates it */ 715 return do_alignment_ldmstm; 716 717 case 0xf840: /* POP/PUSH T3 (single register) */ 718 if (RN_BITS(instr) == 13 && (tinst2 & 0x09ff) == 0x0904) { 719 u32 L = !!(LDST_L_BIT(instr)); 720 const u32 subset[2] = { 721 0xe92d0000, /* STMDB sp!,{registers} */ 722 0xe8bd0000, /* LDMIA sp!,{registers} */ 723 }; 724 *pinstr = subset[L] | (1<<RD_BITS(instr)); 725 return do_alignment_ldmstm; 726 } 727 /* Else fall through for illegal instruction case */ 728 break; 729 730 /* A6.3.6 Load/store double, STRD/LDRD(immed, lit, reg) */ 731 case 0xe860: 732 case 0xe960: 733 case 0xe8e0: 734 case 0xe9e0: 735 poffset->un = (tinst2 & 0xff) << 2; 736 case 0xe940: 737 case 0xe9c0: 738 return do_alignment_ldrdstrd; 739 740 /* 741 * No need to handle load/store instructions up to word size 742 * since ARMv6 and later CPUs can perform unaligned accesses. 743 */ 744 default: 745 break; 746 } 747 return NULL; 748 } 749 750 static int 751 do_alignment(unsigned long addr, unsigned int fsr, struct pt_regs *regs) 752 { 753 union offset_union uninitialized_var(offset); 754 unsigned long instr = 0, instrptr; 755 int (*handler)(unsigned long addr, unsigned long instr, struct pt_regs *regs); 756 unsigned int type; 757 unsigned int fault; 758 u16 tinstr = 0; 759 int isize = 4; 760 int thumb2_32b = 0; 761 762 if (interrupts_enabled(regs)) 763 local_irq_enable(); 764 765 instrptr = instruction_pointer(regs); 766 767 if (thumb_mode(regs)) { 768 u16 *ptr = (u16 *)(instrptr & ~1); 769 fault = probe_kernel_address(ptr, tinstr); 770 tinstr = __mem_to_opcode_thumb16(tinstr); 771 if (!fault) { 772 if (cpu_architecture() >= CPU_ARCH_ARMv7 && 773 IS_T32(tinstr)) { 774 /* Thumb-2 32-bit */ 775 u16 tinst2 = 0; 776 fault = probe_kernel_address(ptr + 1, tinst2); 777 tinst2 = __mem_to_opcode_thumb16(tinst2); 778 instr = __opcode_thumb32_compose(tinstr, tinst2); 779 thumb2_32b = 1; 780 } else { 781 isize = 2; 782 instr = thumb2arm(tinstr); 783 } 784 } 785 } else { 786 fault = probe_kernel_address(instrptr, instr); 787 instr = __mem_to_opcode_arm(instr); 788 } 789 790 if (fault) { 791 type = TYPE_FAULT; 792 goto bad_or_fault; 793 } 794 795 if (user_mode(regs)) 796 goto user; 797 798 ai_sys += 1; 799 ai_sys_last_pc = (void *)instruction_pointer(regs); 800 801 fixup: 802 803 regs->ARM_pc += isize; 804 805 switch (CODING_BITS(instr)) { 806 case 0x00000000: /* 3.13.4 load/store instruction extensions */ 807 if (LDSTHD_I_BIT(instr)) 808 offset.un = (instr & 0xf00) >> 4 | (instr & 15); 809 else 810 offset.un = regs->uregs[RM_BITS(instr)]; 811 812 if ((instr & 0x000000f0) == 0x000000b0 || /* LDRH, STRH */ 813 (instr & 0x001000f0) == 0x001000f0) /* LDRSH */ 814 handler = do_alignment_ldrhstrh; 815 else if ((instr & 0x001000f0) == 0x000000d0 || /* LDRD */ 816 (instr & 0x001000f0) == 0x000000f0) /* STRD */ 817 handler = do_alignment_ldrdstrd; 818 else if ((instr & 0x01f00ff0) == 0x01000090) /* SWP */ 819 goto swp; 820 else 821 goto bad; 822 break; 823 824 case 0x04000000: /* ldr or str immediate */ 825 if (COND_BITS(instr) == 0xf0000000) /* NEON VLDn, VSTn */ 826 goto bad; 827 offset.un = OFFSET_BITS(instr); 828 handler = do_alignment_ldrstr; 829 break; 830 831 case 0x06000000: /* ldr or str register */ 832 offset.un = regs->uregs[RM_BITS(instr)]; 833 834 if (IS_SHIFT(instr)) { 835 unsigned int shiftval = SHIFT_BITS(instr); 836 837 switch(SHIFT_TYPE(instr)) { 838 case SHIFT_LSL: 839 offset.un <<= shiftval; 840 break; 841 842 case SHIFT_LSR: 843 offset.un >>= shiftval; 844 break; 845 846 case SHIFT_ASR: 847 offset.sn >>= shiftval; 848 break; 849 850 case SHIFT_RORRRX: 851 if (shiftval == 0) { 852 offset.un >>= 1; 853 if (regs->ARM_cpsr & PSR_C_BIT) 854 offset.un |= 1 << 31; 855 } else 856 offset.un = offset.un >> shiftval | 857 offset.un << (32 - shiftval); 858 break; 859 } 860 } 861 handler = do_alignment_ldrstr; 862 break; 863 864 case 0x08000000: /* ldm or stm, or thumb-2 32bit instruction */ 865 if (thumb2_32b) { 866 offset.un = 0; 867 handler = do_alignment_t32_to_handler(&instr, regs, &offset); 868 } else { 869 offset.un = 0; 870 handler = do_alignment_ldmstm; 871 } 872 break; 873 874 default: 875 goto bad; 876 } 877 878 if (!handler) 879 goto bad; 880 type = handler(addr, instr, regs); 881 882 if (type == TYPE_ERROR || type == TYPE_FAULT) { 883 regs->ARM_pc -= isize; 884 goto bad_or_fault; 885 } 886 887 if (type == TYPE_LDST) 888 do_alignment_finish_ldst(addr, instr, regs, offset); 889 890 return 0; 891 892 bad_or_fault: 893 if (type == TYPE_ERROR) 894 goto bad; 895 /* 896 * We got a fault - fix it up, or die. 897 */ 898 do_bad_area(addr, fsr, regs); 899 return 0; 900 901 swp: 902 printk(KERN_ERR "Alignment trap: not handling swp instruction\n"); 903 904 bad: 905 /* 906 * Oops, we didn't handle the instruction. 907 */ 908 printk(KERN_ERR "Alignment trap: not handling instruction " 909 "%0*lx at [<%08lx>]\n", 910 isize << 1, 911 isize == 2 ? tinstr : instr, instrptr); 912 ai_skipped += 1; 913 return 1; 914 915 user: 916 ai_user += 1; 917 918 if (ai_usermode & UM_WARN) 919 printk("Alignment trap: %s (%d) PC=0x%08lx Instr=0x%0*lx " 920 "Address=0x%08lx FSR 0x%03x\n", current->comm, 921 task_pid_nr(current), instrptr, 922 isize << 1, 923 isize == 2 ? tinstr : instr, 924 addr, fsr); 925 926 if (ai_usermode & UM_FIXUP) 927 goto fixup; 928 929 if (ai_usermode & UM_SIGNAL) { 930 siginfo_t si; 931 932 si.si_signo = SIGBUS; 933 si.si_errno = 0; 934 si.si_code = BUS_ADRALN; 935 si.si_addr = (void __user *)addr; 936 937 force_sig_info(si.si_signo, &si, current); 938 } else { 939 /* 940 * We're about to disable the alignment trap and return to 941 * user space. But if an interrupt occurs before actually 942 * reaching user space, then the IRQ vector entry code will 943 * notice that we were still in kernel space and therefore 944 * the alignment trap won't be re-enabled in that case as it 945 * is presumed to be always on from kernel space. 946 * Let's prevent that race by disabling interrupts here (they 947 * are disabled on the way back to user space anyway in 948 * entry-common.S) and disable the alignment trap only if 949 * there is no work pending for this thread. 950 */ 951 raw_local_irq_disable(); 952 if (!(current_thread_info()->flags & _TIF_WORK_MASK)) 953 set_cr(cr_no_alignment); 954 } 955 956 return 0; 957 } 958 959 static int __init noalign_setup(char *__unused) 960 { 961 set_cr(__clear_cr(CR_A)); 962 return 1; 963 } 964 __setup("noalign", noalign_setup); 965 966 /* 967 * This needs to be done after sysctl_init, otherwise sys/ will be 968 * overwritten. Actually, this shouldn't be in sys/ at all since 969 * it isn't a sysctl, and it doesn't contain sysctl information. 970 * We now locate it in /proc/cpu/alignment instead. 971 */ 972 static int __init alignment_init(void) 973 { 974 #ifdef CONFIG_PROC_FS 975 struct proc_dir_entry *res; 976 977 res = proc_create("cpu/alignment", S_IWUSR | S_IRUGO, NULL, 978 &alignment_proc_fops); 979 if (!res) 980 return -ENOMEM; 981 #endif 982 983 if (cpu_is_v6_unaligned()) { 984 set_cr(__clear_cr(CR_A)); 985 ai_usermode = safe_usermode(ai_usermode, false); 986 } 987 988 cr_no_alignment = get_cr() & ~CR_A; 989 990 hook_fault_code(FAULT_CODE_ALIGNMENT, do_alignment, SIGBUS, BUS_ADRALN, 991 "alignment exception"); 992 993 /* 994 * ARMv6K and ARMv7 use fault status 3 (0b00011) as Access Flag section 995 * fault, not as alignment error. 996 * 997 * TODO: handle ARMv6K properly. Runtime check for 'K' extension is 998 * needed. 999 */ 1000 if (cpu_architecture() <= CPU_ARCH_ARMv6) { 1001 hook_fault_code(3, do_alignment, SIGBUS, BUS_ADRALN, 1002 "alignment exception"); 1003 } 1004 1005 return 0; 1006 } 1007 1008 fs_initcall(alignment_init); 1009