xref: /openbmc/linux/arch/arm/kernel/smp.c (revision eb08375ea66e63c5e11dea69b43c5633d531ce81)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49 
50 /*
51  * as from 2.5, kernels no longer have an init_tasks structure
52  * so we need some other way of telling a new secondary core
53  * where to place its SVC stack
54  */
55 struct secondary_data secondary_data;
56 
57 /*
58  * control for which core is the next to come out of the secondary
59  * boot "holding pen"
60  */
61 volatile int __cpuinitdata pen_release = -1;
62 
63 enum ipi_msg_type {
64 	IPI_WAKEUP,
65 	IPI_TIMER,
66 	IPI_RESCHEDULE,
67 	IPI_CALL_FUNC,
68 	IPI_CALL_FUNC_SINGLE,
69 	IPI_CPU_STOP,
70 };
71 
72 static DECLARE_COMPLETION(cpu_running);
73 
74 static struct smp_operations smp_ops;
75 
76 void __init smp_set_ops(struct smp_operations *ops)
77 {
78 	if (ops)
79 		smp_ops = *ops;
80 };
81 
82 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
83 {
84 	int ret;
85 
86 	/*
87 	 * We need to tell the secondary core where to find
88 	 * its stack and the page tables.
89 	 */
90 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
91 #ifdef CONFIG_ARM_MPU
92 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
93 #endif
94 
95 #ifdef CONFIG_MMU
96 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
97 	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
98 #endif
99 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
100 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
101 
102 	/*
103 	 * Now bring the CPU into our world.
104 	 */
105 	ret = boot_secondary(cpu, idle);
106 	if (ret == 0) {
107 		/*
108 		 * CPU was successfully started, wait for it
109 		 * to come online or time out.
110 		 */
111 		wait_for_completion_timeout(&cpu_running,
112 						 msecs_to_jiffies(1000));
113 
114 		if (!cpu_online(cpu)) {
115 			pr_crit("CPU%u: failed to come online\n", cpu);
116 			ret = -EIO;
117 		}
118 	} else {
119 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
120 	}
121 
122 
123 	memset(&secondary_data, 0, sizeof(secondary_data));
124 	return ret;
125 }
126 
127 /* platform specific SMP operations */
128 void __init smp_init_cpus(void)
129 {
130 	if (smp_ops.smp_init_cpus)
131 		smp_ops.smp_init_cpus();
132 }
133 
134 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
135 {
136 	if (smp_ops.smp_boot_secondary)
137 		return smp_ops.smp_boot_secondary(cpu, idle);
138 	return -ENOSYS;
139 }
140 
141 #ifdef CONFIG_HOTPLUG_CPU
142 static void percpu_timer_stop(void);
143 
144 static int platform_cpu_kill(unsigned int cpu)
145 {
146 	if (smp_ops.cpu_kill)
147 		return smp_ops.cpu_kill(cpu);
148 	return 1;
149 }
150 
151 static int platform_cpu_disable(unsigned int cpu)
152 {
153 	if (smp_ops.cpu_disable)
154 		return smp_ops.cpu_disable(cpu);
155 
156 	/*
157 	 * By default, allow disabling all CPUs except the first one,
158 	 * since this is special on a lot of platforms, e.g. because
159 	 * of clock tick interrupts.
160 	 */
161 	return cpu == 0 ? -EPERM : 0;
162 }
163 /*
164  * __cpu_disable runs on the processor to be shutdown.
165  */
166 int __cpuinit __cpu_disable(void)
167 {
168 	unsigned int cpu = smp_processor_id();
169 	int ret;
170 
171 	ret = platform_cpu_disable(cpu);
172 	if (ret)
173 		return ret;
174 
175 	/*
176 	 * Take this CPU offline.  Once we clear this, we can't return,
177 	 * and we must not schedule until we're ready to give up the cpu.
178 	 */
179 	set_cpu_online(cpu, false);
180 
181 	/*
182 	 * OK - migrate IRQs away from this CPU
183 	 */
184 	migrate_irqs();
185 
186 	/*
187 	 * Stop the local timer for this CPU.
188 	 */
189 	percpu_timer_stop();
190 
191 	/*
192 	 * Flush user cache and TLB mappings, and then remove this CPU
193 	 * from the vm mask set of all processes.
194 	 *
195 	 * Caches are flushed to the Level of Unification Inner Shareable
196 	 * to write-back dirty lines to unified caches shared by all CPUs.
197 	 */
198 	flush_cache_louis();
199 	local_flush_tlb_all();
200 
201 	clear_tasks_mm_cpumask(cpu);
202 
203 	return 0;
204 }
205 
206 static DECLARE_COMPLETION(cpu_died);
207 
208 /*
209  * called on the thread which is asking for a CPU to be shutdown -
210  * waits until shutdown has completed, or it is timed out.
211  */
212 void __cpuinit __cpu_die(unsigned int cpu)
213 {
214 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
215 		pr_err("CPU%u: cpu didn't die\n", cpu);
216 		return;
217 	}
218 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
219 
220 	/*
221 	 * platform_cpu_kill() is generally expected to do the powering off
222 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
223 	 * be done by the CPU which is dying in preference to supporting
224 	 * this call, but that means there is _no_ synchronisation between
225 	 * the requesting CPU and the dying CPU actually losing power.
226 	 */
227 	if (!platform_cpu_kill(cpu))
228 		printk("CPU%u: unable to kill\n", cpu);
229 }
230 
231 /*
232  * Called from the idle thread for the CPU which has been shutdown.
233  *
234  * Note that we disable IRQs here, but do not re-enable them
235  * before returning to the caller. This is also the behaviour
236  * of the other hotplug-cpu capable cores, so presumably coming
237  * out of idle fixes this.
238  */
239 void __ref cpu_die(void)
240 {
241 	unsigned int cpu = smp_processor_id();
242 
243 	idle_task_exit();
244 
245 	local_irq_disable();
246 
247 	/*
248 	 * Flush the data out of the L1 cache for this CPU.  This must be
249 	 * before the completion to ensure that data is safely written out
250 	 * before platform_cpu_kill() gets called - which may disable
251 	 * *this* CPU and power down its cache.
252 	 */
253 	flush_cache_louis();
254 
255 	/*
256 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
257 	 * this returns, power and/or clocks can be removed at any point
258 	 * from this CPU and its cache by platform_cpu_kill().
259 	 */
260 	complete(&cpu_died);
261 
262 	/*
263 	 * Ensure that the cache lines associated with that completion are
264 	 * written out.  This covers the case where _this_ CPU is doing the
265 	 * powering down, to ensure that the completion is visible to the
266 	 * CPU waiting for this one.
267 	 */
268 	flush_cache_louis();
269 
270 	/*
271 	 * The actual CPU shutdown procedure is at least platform (if not
272 	 * CPU) specific.  This may remove power, or it may simply spin.
273 	 *
274 	 * Platforms are generally expected *NOT* to return from this call,
275 	 * although there are some which do because they have no way to
276 	 * power down the CPU.  These platforms are the _only_ reason we
277 	 * have a return path which uses the fragment of assembly below.
278 	 *
279 	 * The return path should not be used for platforms which can
280 	 * power off the CPU.
281 	 */
282 	if (smp_ops.cpu_die)
283 		smp_ops.cpu_die(cpu);
284 
285 	/*
286 	 * Do not return to the idle loop - jump back to the secondary
287 	 * cpu initialisation.  There's some initialisation which needs
288 	 * to be repeated to undo the effects of taking the CPU offline.
289 	 */
290 	__asm__("mov	sp, %0\n"
291 	"	mov	fp, #0\n"
292 	"	b	secondary_start_kernel"
293 		:
294 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
295 }
296 #endif /* CONFIG_HOTPLUG_CPU */
297 
298 /*
299  * Called by both boot and secondaries to move global data into
300  * per-processor storage.
301  */
302 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
303 {
304 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
305 
306 	cpu_info->loops_per_jiffy = loops_per_jiffy;
307 	cpu_info->cpuid = read_cpuid_id();
308 
309 	store_cpu_topology(cpuid);
310 }
311 
312 static void percpu_timer_setup(void);
313 
314 /*
315  * This is the secondary CPU boot entry.  We're using this CPUs
316  * idle thread stack, but a set of temporary page tables.
317  */
318 asmlinkage void __cpuinit secondary_start_kernel(void)
319 {
320 	struct mm_struct *mm = &init_mm;
321 	unsigned int cpu;
322 
323 	/*
324 	 * The identity mapping is uncached (strongly ordered), so
325 	 * switch away from it before attempting any exclusive accesses.
326 	 */
327 	cpu_switch_mm(mm->pgd, mm);
328 	local_flush_bp_all();
329 	enter_lazy_tlb(mm, current);
330 	local_flush_tlb_all();
331 
332 	/*
333 	 * All kernel threads share the same mm context; grab a
334 	 * reference and switch to it.
335 	 */
336 	cpu = smp_processor_id();
337 	atomic_inc(&mm->mm_count);
338 	current->active_mm = mm;
339 	cpumask_set_cpu(cpu, mm_cpumask(mm));
340 
341 	cpu_init();
342 
343 	printk("CPU%u: Booted secondary processor\n", cpu);
344 
345 	preempt_disable();
346 	trace_hardirqs_off();
347 
348 	/*
349 	 * Give the platform a chance to do its own initialisation.
350 	 */
351 	if (smp_ops.smp_secondary_init)
352 		smp_ops.smp_secondary_init(cpu);
353 
354 	notify_cpu_starting(cpu);
355 
356 	calibrate_delay();
357 
358 	smp_store_cpu_info(cpu);
359 
360 	/*
361 	 * OK, now it's safe to let the boot CPU continue.  Wait for
362 	 * the CPU migration code to notice that the CPU is online
363 	 * before we continue - which happens after __cpu_up returns.
364 	 */
365 	set_cpu_online(cpu, true);
366 	complete(&cpu_running);
367 
368 	/*
369 	 * Setup the percpu timer for this CPU.
370 	 */
371 	percpu_timer_setup();
372 
373 	local_irq_enable();
374 	local_fiq_enable();
375 
376 	/*
377 	 * OK, it's off to the idle thread for us
378 	 */
379 	cpu_startup_entry(CPUHP_ONLINE);
380 }
381 
382 void __init smp_cpus_done(unsigned int max_cpus)
383 {
384 	int cpu;
385 	unsigned long bogosum = 0;
386 
387 	for_each_online_cpu(cpu)
388 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
389 
390 	printk(KERN_INFO "SMP: Total of %d processors activated "
391 	       "(%lu.%02lu BogoMIPS).\n",
392 	       num_online_cpus(),
393 	       bogosum / (500000/HZ),
394 	       (bogosum / (5000/HZ)) % 100);
395 
396 	hyp_mode_check();
397 }
398 
399 void __init smp_prepare_boot_cpu(void)
400 {
401 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
402 }
403 
404 void __init smp_prepare_cpus(unsigned int max_cpus)
405 {
406 	unsigned int ncores = num_possible_cpus();
407 
408 	init_cpu_topology();
409 
410 	smp_store_cpu_info(smp_processor_id());
411 
412 	/*
413 	 * are we trying to boot more cores than exist?
414 	 */
415 	if (max_cpus > ncores)
416 		max_cpus = ncores;
417 	if (ncores > 1 && max_cpus) {
418 		/*
419 		 * Enable the local timer or broadcast device for the
420 		 * boot CPU, but only if we have more than one CPU.
421 		 */
422 		percpu_timer_setup();
423 
424 		/*
425 		 * Initialise the present map, which describes the set of CPUs
426 		 * actually populated at the present time. A platform should
427 		 * re-initialize the map in the platforms smp_prepare_cpus()
428 		 * if present != possible (e.g. physical hotplug).
429 		 */
430 		init_cpu_present(cpu_possible_mask);
431 
432 		/*
433 		 * Initialise the SCU if there are more than one CPU
434 		 * and let them know where to start.
435 		 */
436 		if (smp_ops.smp_prepare_cpus)
437 			smp_ops.smp_prepare_cpus(max_cpus);
438 	}
439 }
440 
441 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
442 
443 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
444 {
445 	if (!smp_cross_call)
446 		smp_cross_call = fn;
447 }
448 
449 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
450 {
451 	smp_cross_call(mask, IPI_CALL_FUNC);
452 }
453 
454 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
455 {
456 	smp_cross_call(mask, IPI_WAKEUP);
457 }
458 
459 void arch_send_call_function_single_ipi(int cpu)
460 {
461 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
462 }
463 
464 static const char *ipi_types[NR_IPI] = {
465 #define S(x,s)	[x] = s
466 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
467 	S(IPI_TIMER, "Timer broadcast interrupts"),
468 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
469 	S(IPI_CALL_FUNC, "Function call interrupts"),
470 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
471 	S(IPI_CPU_STOP, "CPU stop interrupts"),
472 };
473 
474 void show_ipi_list(struct seq_file *p, int prec)
475 {
476 	unsigned int cpu, i;
477 
478 	for (i = 0; i < NR_IPI; i++) {
479 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
480 
481 		for_each_online_cpu(cpu)
482 			seq_printf(p, "%10u ",
483 				   __get_irq_stat(cpu, ipi_irqs[i]));
484 
485 		seq_printf(p, " %s\n", ipi_types[i]);
486 	}
487 }
488 
489 u64 smp_irq_stat_cpu(unsigned int cpu)
490 {
491 	u64 sum = 0;
492 	int i;
493 
494 	for (i = 0; i < NR_IPI; i++)
495 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
496 
497 	return sum;
498 }
499 
500 /*
501  * Timer (local or broadcast) support
502  */
503 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
504 
505 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
506 void tick_broadcast(const struct cpumask *mask)
507 {
508 	smp_cross_call(mask, IPI_TIMER);
509 }
510 #endif
511 
512 static void broadcast_timer_set_mode(enum clock_event_mode mode,
513 	struct clock_event_device *evt)
514 {
515 }
516 
517 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
518 {
519 	evt->name	= "dummy_timer";
520 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
521 			  CLOCK_EVT_FEAT_PERIODIC |
522 			  CLOCK_EVT_FEAT_DUMMY;
523 	evt->rating	= 100;
524 	evt->mult	= 1;
525 	evt->set_mode	= broadcast_timer_set_mode;
526 
527 	clockevents_register_device(evt);
528 }
529 
530 static struct local_timer_ops *lt_ops;
531 
532 #ifdef CONFIG_LOCAL_TIMERS
533 int local_timer_register(struct local_timer_ops *ops)
534 {
535 	if (!is_smp() || !setup_max_cpus)
536 		return -ENXIO;
537 
538 	if (lt_ops)
539 		return -EBUSY;
540 
541 	lt_ops = ops;
542 	return 0;
543 }
544 #endif
545 
546 static void __cpuinit percpu_timer_setup(void)
547 {
548 	unsigned int cpu = smp_processor_id();
549 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
550 
551 	evt->cpumask = cpumask_of(cpu);
552 
553 	if (!lt_ops || lt_ops->setup(evt))
554 		broadcast_timer_setup(evt);
555 }
556 
557 #ifdef CONFIG_HOTPLUG_CPU
558 /*
559  * The generic clock events code purposely does not stop the local timer
560  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
561  * manually here.
562  */
563 static void percpu_timer_stop(void)
564 {
565 	unsigned int cpu = smp_processor_id();
566 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
567 
568 	if (lt_ops)
569 		lt_ops->stop(evt);
570 }
571 #endif
572 
573 static DEFINE_RAW_SPINLOCK(stop_lock);
574 
575 /*
576  * ipi_cpu_stop - handle IPI from smp_send_stop()
577  */
578 static void ipi_cpu_stop(unsigned int cpu)
579 {
580 	if (system_state == SYSTEM_BOOTING ||
581 	    system_state == SYSTEM_RUNNING) {
582 		raw_spin_lock(&stop_lock);
583 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
584 		dump_stack();
585 		raw_spin_unlock(&stop_lock);
586 	}
587 
588 	set_cpu_online(cpu, false);
589 
590 	local_fiq_disable();
591 	local_irq_disable();
592 
593 	while (1)
594 		cpu_relax();
595 }
596 
597 /*
598  * Main handler for inter-processor interrupts
599  */
600 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
601 {
602 	handle_IPI(ipinr, regs);
603 }
604 
605 void handle_IPI(int ipinr, struct pt_regs *regs)
606 {
607 	unsigned int cpu = smp_processor_id();
608 	struct pt_regs *old_regs = set_irq_regs(regs);
609 
610 	if (ipinr < NR_IPI)
611 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
612 
613 	switch (ipinr) {
614 	case IPI_WAKEUP:
615 		break;
616 
617 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
618 	case IPI_TIMER:
619 		irq_enter();
620 		tick_receive_broadcast();
621 		irq_exit();
622 		break;
623 #endif
624 
625 	case IPI_RESCHEDULE:
626 		scheduler_ipi();
627 		break;
628 
629 	case IPI_CALL_FUNC:
630 		irq_enter();
631 		generic_smp_call_function_interrupt();
632 		irq_exit();
633 		break;
634 
635 	case IPI_CALL_FUNC_SINGLE:
636 		irq_enter();
637 		generic_smp_call_function_single_interrupt();
638 		irq_exit();
639 		break;
640 
641 	case IPI_CPU_STOP:
642 		irq_enter();
643 		ipi_cpu_stop(cpu);
644 		irq_exit();
645 		break;
646 
647 	default:
648 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
649 		       cpu, ipinr);
650 		break;
651 	}
652 	set_irq_regs(old_regs);
653 }
654 
655 void smp_send_reschedule(int cpu)
656 {
657 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
658 }
659 
660 #ifdef CONFIG_HOTPLUG_CPU
661 static void smp_kill_cpus(cpumask_t *mask)
662 {
663 	unsigned int cpu;
664 	for_each_cpu(cpu, mask)
665 		platform_cpu_kill(cpu);
666 }
667 #else
668 static void smp_kill_cpus(cpumask_t *mask) { }
669 #endif
670 
671 void smp_send_stop(void)
672 {
673 	unsigned long timeout;
674 	struct cpumask mask;
675 
676 	cpumask_copy(&mask, cpu_online_mask);
677 	cpumask_clear_cpu(smp_processor_id(), &mask);
678 	if (!cpumask_empty(&mask))
679 		smp_cross_call(&mask, IPI_CPU_STOP);
680 
681 	/* Wait up to one second for other CPUs to stop */
682 	timeout = USEC_PER_SEC;
683 	while (num_online_cpus() > 1 && timeout--)
684 		udelay(1);
685 
686 	if (num_online_cpus() > 1)
687 		pr_warning("SMP: failed to stop secondary CPUs\n");
688 
689 	smp_kill_cpus(&mask);
690 }
691 
692 /*
693  * not supported here
694  */
695 int setup_profiling_timer(unsigned int multiplier)
696 {
697 	return -EINVAL;
698 }
699 
700 #ifdef CONFIG_CPU_FREQ
701 
702 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
703 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
704 static unsigned long global_l_p_j_ref;
705 static unsigned long global_l_p_j_ref_freq;
706 
707 static int cpufreq_callback(struct notifier_block *nb,
708 					unsigned long val, void *data)
709 {
710 	struct cpufreq_freqs *freq = data;
711 	int cpu = freq->cpu;
712 
713 	if (freq->flags & CPUFREQ_CONST_LOOPS)
714 		return NOTIFY_OK;
715 
716 	if (!per_cpu(l_p_j_ref, cpu)) {
717 		per_cpu(l_p_j_ref, cpu) =
718 			per_cpu(cpu_data, cpu).loops_per_jiffy;
719 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
720 		if (!global_l_p_j_ref) {
721 			global_l_p_j_ref = loops_per_jiffy;
722 			global_l_p_j_ref_freq = freq->old;
723 		}
724 	}
725 
726 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
727 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
728 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
729 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
730 						global_l_p_j_ref_freq,
731 						freq->new);
732 		per_cpu(cpu_data, cpu).loops_per_jiffy =
733 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
734 					per_cpu(l_p_j_ref_freq, cpu),
735 					freq->new);
736 	}
737 	return NOTIFY_OK;
738 }
739 
740 static struct notifier_block cpufreq_notifier = {
741 	.notifier_call  = cpufreq_callback,
742 };
743 
744 static int __init register_cpufreq_notifier(void)
745 {
746 	return cpufreq_register_notifier(&cpufreq_notifier,
747 						CPUFREQ_TRANSITION_NOTIFIER);
748 }
749 core_initcall(register_cpufreq_notifier);
750 
751 #endif
752