1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/smp.h> 23 #include <linux/seq_file.h> 24 #include <linux/irq.h> 25 #include <linux/percpu.h> 26 #include <linux/clockchips.h> 27 28 #include <asm/atomic.h> 29 #include <asm/cacheflush.h> 30 #include <asm/cpu.h> 31 #include <asm/mmu_context.h> 32 #include <asm/pgtable.h> 33 #include <asm/pgalloc.h> 34 #include <asm/processor.h> 35 #include <asm/tlbflush.h> 36 #include <asm/ptrace.h> 37 #include <asm/localtimer.h> 38 39 /* 40 * as from 2.5, kernels no longer have an init_tasks structure 41 * so we need some other way of telling a new secondary core 42 * where to place its SVC stack 43 */ 44 struct secondary_data secondary_data; 45 46 /* 47 * structures for inter-processor calls 48 * - A collection of single bit ipi messages. 49 */ 50 struct ipi_data { 51 spinlock_t lock; 52 unsigned long ipi_count; 53 unsigned long bits; 54 }; 55 56 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { 57 .lock = SPIN_LOCK_UNLOCKED, 58 }; 59 60 enum ipi_msg_type { 61 IPI_TIMER, 62 IPI_RESCHEDULE, 63 IPI_CALL_FUNC, 64 IPI_CALL_FUNC_SINGLE, 65 IPI_CPU_STOP, 66 }; 67 68 int __cpuinit __cpu_up(unsigned int cpu) 69 { 70 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 71 struct task_struct *idle = ci->idle; 72 pgd_t *pgd; 73 pmd_t *pmd; 74 int ret; 75 76 /* 77 * Spawn a new process manually, if not already done. 78 * Grab a pointer to its task struct so we can mess with it 79 */ 80 if (!idle) { 81 idle = fork_idle(cpu); 82 if (IS_ERR(idle)) { 83 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 84 return PTR_ERR(idle); 85 } 86 ci->idle = idle; 87 } 88 89 /* 90 * Allocate initial page tables to allow the new CPU to 91 * enable the MMU safely. This essentially means a set 92 * of our "standard" page tables, with the addition of 93 * a 1:1 mapping for the physical address of the kernel. 94 */ 95 pgd = pgd_alloc(&init_mm); 96 pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET); 97 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | 98 PMD_TYPE_SECT | PMD_SECT_AP_WRITE); 99 flush_pmd_entry(pmd); 100 101 /* 102 * We need to tell the secondary core where to find 103 * its stack and the page tables. 104 */ 105 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 106 secondary_data.pgdir = virt_to_phys(pgd); 107 wmb(); 108 109 /* 110 * Now bring the CPU into our world. 111 */ 112 ret = boot_secondary(cpu, idle); 113 if (ret == 0) { 114 unsigned long timeout; 115 116 /* 117 * CPU was successfully started, wait for it 118 * to come online or time out. 119 */ 120 timeout = jiffies + HZ; 121 while (time_before(jiffies, timeout)) { 122 if (cpu_online(cpu)) 123 break; 124 125 udelay(10); 126 barrier(); 127 } 128 129 if (!cpu_online(cpu)) 130 ret = -EIO; 131 } 132 133 secondary_data.stack = NULL; 134 secondary_data.pgdir = 0; 135 136 *pmd = __pmd(0); 137 clean_pmd_entry(pmd); 138 pgd_free(&init_mm, pgd); 139 140 if (ret) { 141 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu); 142 143 /* 144 * FIXME: We need to clean up the new idle thread. --rmk 145 */ 146 } 147 148 return ret; 149 } 150 151 #ifdef CONFIG_HOTPLUG_CPU 152 /* 153 * __cpu_disable runs on the processor to be shutdown. 154 */ 155 int __cpuexit __cpu_disable(void) 156 { 157 unsigned int cpu = smp_processor_id(); 158 struct task_struct *p; 159 int ret; 160 161 ret = mach_cpu_disable(cpu); 162 if (ret) 163 return ret; 164 165 /* 166 * Take this CPU offline. Once we clear this, we can't return, 167 * and we must not schedule until we're ready to give up the cpu. 168 */ 169 set_cpu_online(cpu, false); 170 171 /* 172 * OK - migrate IRQs away from this CPU 173 */ 174 migrate_irqs(); 175 176 /* 177 * Stop the local timer for this CPU. 178 */ 179 local_timer_stop(); 180 181 /* 182 * Flush user cache and TLB mappings, and then remove this CPU 183 * from the vm mask set of all processes. 184 */ 185 flush_cache_all(); 186 local_flush_tlb_all(); 187 188 read_lock(&tasklist_lock); 189 for_each_process(p) { 190 if (p->mm) 191 cpu_clear(cpu, p->mm->cpu_vm_mask); 192 } 193 read_unlock(&tasklist_lock); 194 195 return 0; 196 } 197 198 /* 199 * called on the thread which is asking for a CPU to be shutdown - 200 * waits until shutdown has completed, or it is timed out. 201 */ 202 void __cpuexit __cpu_die(unsigned int cpu) 203 { 204 if (!platform_cpu_kill(cpu)) 205 printk("CPU%u: unable to kill\n", cpu); 206 } 207 208 /* 209 * Called from the idle thread for the CPU which has been shutdown. 210 * 211 * Note that we disable IRQs here, but do not re-enable them 212 * before returning to the caller. This is also the behaviour 213 * of the other hotplug-cpu capable cores, so presumably coming 214 * out of idle fixes this. 215 */ 216 void __cpuexit cpu_die(void) 217 { 218 unsigned int cpu = smp_processor_id(); 219 220 local_irq_disable(); 221 idle_task_exit(); 222 223 /* 224 * actual CPU shutdown procedure is at least platform (if not 225 * CPU) specific 226 */ 227 platform_cpu_die(cpu); 228 229 /* 230 * Do not return to the idle loop - jump back to the secondary 231 * cpu initialisation. There's some initialisation which needs 232 * to be repeated to undo the effects of taking the CPU offline. 233 */ 234 __asm__("mov sp, %0\n" 235 " b secondary_start_kernel" 236 : 237 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 238 } 239 #endif /* CONFIG_HOTPLUG_CPU */ 240 241 /* 242 * This is the secondary CPU boot entry. We're using this CPUs 243 * idle thread stack, but a set of temporary page tables. 244 */ 245 asmlinkage void __cpuinit secondary_start_kernel(void) 246 { 247 struct mm_struct *mm = &init_mm; 248 unsigned int cpu = smp_processor_id(); 249 250 printk("CPU%u: Booted secondary processor\n", cpu); 251 252 /* 253 * All kernel threads share the same mm context; grab a 254 * reference and switch to it. 255 */ 256 atomic_inc(&mm->mm_users); 257 atomic_inc(&mm->mm_count); 258 current->active_mm = mm; 259 cpu_set(cpu, mm->cpu_vm_mask); 260 cpu_switch_mm(mm->pgd, mm); 261 enter_lazy_tlb(mm, current); 262 local_flush_tlb_all(); 263 264 cpu_init(); 265 preempt_disable(); 266 267 /* 268 * Give the platform a chance to do its own initialisation. 269 */ 270 platform_secondary_init(cpu); 271 272 /* 273 * Enable local interrupts. 274 */ 275 notify_cpu_starting(cpu); 276 local_irq_enable(); 277 local_fiq_enable(); 278 279 /* 280 * Setup the percpu timer for this CPU. 281 */ 282 percpu_timer_setup(); 283 284 calibrate_delay(); 285 286 smp_store_cpu_info(cpu); 287 288 /* 289 * OK, now it's safe to let the boot CPU continue 290 */ 291 set_cpu_online(cpu, true); 292 293 /* 294 * OK, it's off to the idle thread for us 295 */ 296 cpu_idle(); 297 } 298 299 /* 300 * Called by both boot and secondaries to move global data into 301 * per-processor storage. 302 */ 303 void __cpuinit smp_store_cpu_info(unsigned int cpuid) 304 { 305 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 306 307 cpu_info->loops_per_jiffy = loops_per_jiffy; 308 } 309 310 void __init smp_cpus_done(unsigned int max_cpus) 311 { 312 int cpu; 313 unsigned long bogosum = 0; 314 315 for_each_online_cpu(cpu) 316 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 317 318 printk(KERN_INFO "SMP: Total of %d processors activated " 319 "(%lu.%02lu BogoMIPS).\n", 320 num_online_cpus(), 321 bogosum / (500000/HZ), 322 (bogosum / (5000/HZ)) % 100); 323 } 324 325 void __init smp_prepare_boot_cpu(void) 326 { 327 unsigned int cpu = smp_processor_id(); 328 329 per_cpu(cpu_data, cpu).idle = current; 330 } 331 332 static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg) 333 { 334 unsigned long flags; 335 unsigned int cpu; 336 337 local_irq_save(flags); 338 339 for_each_cpu(cpu, mask) { 340 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 341 342 spin_lock(&ipi->lock); 343 ipi->bits |= 1 << msg; 344 spin_unlock(&ipi->lock); 345 } 346 347 /* 348 * Call the platform specific cross-CPU call function. 349 */ 350 smp_cross_call(mask); 351 352 local_irq_restore(flags); 353 } 354 355 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 356 { 357 send_ipi_message(mask, IPI_CALL_FUNC); 358 } 359 360 void arch_send_call_function_single_ipi(int cpu) 361 { 362 send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 363 } 364 365 void show_ipi_list(struct seq_file *p) 366 { 367 unsigned int cpu; 368 369 seq_puts(p, "IPI:"); 370 371 for_each_present_cpu(cpu) 372 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); 373 374 seq_putc(p, '\n'); 375 } 376 377 void show_local_irqs(struct seq_file *p) 378 { 379 unsigned int cpu; 380 381 seq_printf(p, "LOC: "); 382 383 for_each_present_cpu(cpu) 384 seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs); 385 386 seq_putc(p, '\n'); 387 } 388 389 /* 390 * Timer (local or broadcast) support 391 */ 392 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 393 394 static void ipi_timer(void) 395 { 396 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent); 397 irq_enter(); 398 evt->event_handler(evt); 399 irq_exit(); 400 } 401 402 #ifdef CONFIG_LOCAL_TIMERS 403 asmlinkage void __exception do_local_timer(struct pt_regs *regs) 404 { 405 struct pt_regs *old_regs = set_irq_regs(regs); 406 int cpu = smp_processor_id(); 407 408 if (local_timer_ack()) { 409 irq_stat[cpu].local_timer_irqs++; 410 ipi_timer(); 411 } 412 413 set_irq_regs(old_regs); 414 } 415 #endif 416 417 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 418 static void smp_timer_broadcast(const struct cpumask *mask) 419 { 420 send_ipi_message(mask, IPI_TIMER); 421 } 422 423 static void broadcast_timer_set_mode(enum clock_event_mode mode, 424 struct clock_event_device *evt) 425 { 426 } 427 428 static void local_timer_setup(struct clock_event_device *evt) 429 { 430 evt->name = "dummy_timer"; 431 evt->features = CLOCK_EVT_FEAT_ONESHOT | 432 CLOCK_EVT_FEAT_PERIODIC | 433 CLOCK_EVT_FEAT_DUMMY; 434 evt->rating = 400; 435 evt->mult = 1; 436 evt->set_mode = broadcast_timer_set_mode; 437 evt->broadcast = smp_timer_broadcast; 438 439 clockevents_register_device(evt); 440 } 441 #endif 442 443 void __cpuinit percpu_timer_setup(void) 444 { 445 unsigned int cpu = smp_processor_id(); 446 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 447 448 evt->cpumask = cpumask_of(cpu); 449 450 local_timer_setup(evt); 451 } 452 453 static DEFINE_SPINLOCK(stop_lock); 454 455 /* 456 * ipi_cpu_stop - handle IPI from smp_send_stop() 457 */ 458 static void ipi_cpu_stop(unsigned int cpu) 459 { 460 spin_lock(&stop_lock); 461 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 462 dump_stack(); 463 spin_unlock(&stop_lock); 464 465 set_cpu_online(cpu, false); 466 467 local_fiq_disable(); 468 local_irq_disable(); 469 470 while (1) 471 cpu_relax(); 472 } 473 474 /* 475 * Main handler for inter-processor interrupts 476 * 477 * For ARM, the ipimask now only identifies a single 478 * category of IPI (Bit 1 IPIs have been replaced by a 479 * different mechanism): 480 * 481 * Bit 0 - Inter-processor function call 482 */ 483 asmlinkage void __exception do_IPI(struct pt_regs *regs) 484 { 485 unsigned int cpu = smp_processor_id(); 486 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 487 struct pt_regs *old_regs = set_irq_regs(regs); 488 489 ipi->ipi_count++; 490 491 for (;;) { 492 unsigned long msgs; 493 494 spin_lock(&ipi->lock); 495 msgs = ipi->bits; 496 ipi->bits = 0; 497 spin_unlock(&ipi->lock); 498 499 if (!msgs) 500 break; 501 502 do { 503 unsigned nextmsg; 504 505 nextmsg = msgs & -msgs; 506 msgs &= ~nextmsg; 507 nextmsg = ffz(~nextmsg); 508 509 switch (nextmsg) { 510 case IPI_TIMER: 511 ipi_timer(); 512 break; 513 514 case IPI_RESCHEDULE: 515 /* 516 * nothing more to do - eveything is 517 * done on the interrupt return path 518 */ 519 break; 520 521 case IPI_CALL_FUNC: 522 generic_smp_call_function_interrupt(); 523 break; 524 525 case IPI_CALL_FUNC_SINGLE: 526 generic_smp_call_function_single_interrupt(); 527 break; 528 529 case IPI_CPU_STOP: 530 ipi_cpu_stop(cpu); 531 break; 532 533 default: 534 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 535 cpu, nextmsg); 536 break; 537 } 538 } while (msgs); 539 } 540 541 set_irq_regs(old_regs); 542 } 543 544 void smp_send_reschedule(int cpu) 545 { 546 send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE); 547 } 548 549 void smp_send_stop(void) 550 { 551 cpumask_t mask = cpu_online_map; 552 cpu_clear(smp_processor_id(), mask); 553 send_ipi_message(&mask, IPI_CPU_STOP); 554 } 555 556 /* 557 * not supported here 558 */ 559 int setup_profiling_timer(unsigned int multiplier) 560 { 561 return -EINVAL; 562 } 563 564 static void 565 on_each_cpu_mask(void (*func)(void *), void *info, int wait, 566 const struct cpumask *mask) 567 { 568 preempt_disable(); 569 570 smp_call_function_many(mask, func, info, wait); 571 if (cpumask_test_cpu(smp_processor_id(), mask)) 572 func(info); 573 574 preempt_enable(); 575 } 576 577 /**********************************************************************/ 578 579 /* 580 * TLB operations 581 */ 582 struct tlb_args { 583 struct vm_area_struct *ta_vma; 584 unsigned long ta_start; 585 unsigned long ta_end; 586 }; 587 588 static inline void ipi_flush_tlb_all(void *ignored) 589 { 590 local_flush_tlb_all(); 591 } 592 593 static inline void ipi_flush_tlb_mm(void *arg) 594 { 595 struct mm_struct *mm = (struct mm_struct *)arg; 596 597 local_flush_tlb_mm(mm); 598 } 599 600 static inline void ipi_flush_tlb_page(void *arg) 601 { 602 struct tlb_args *ta = (struct tlb_args *)arg; 603 604 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 605 } 606 607 static inline void ipi_flush_tlb_kernel_page(void *arg) 608 { 609 struct tlb_args *ta = (struct tlb_args *)arg; 610 611 local_flush_tlb_kernel_page(ta->ta_start); 612 } 613 614 static inline void ipi_flush_tlb_range(void *arg) 615 { 616 struct tlb_args *ta = (struct tlb_args *)arg; 617 618 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 619 } 620 621 static inline void ipi_flush_tlb_kernel_range(void *arg) 622 { 623 struct tlb_args *ta = (struct tlb_args *)arg; 624 625 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 626 } 627 628 void flush_tlb_all(void) 629 { 630 on_each_cpu(ipi_flush_tlb_all, NULL, 1); 631 } 632 633 void flush_tlb_mm(struct mm_struct *mm) 634 { 635 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, &mm->cpu_vm_mask); 636 } 637 638 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 639 { 640 struct tlb_args ta; 641 642 ta.ta_vma = vma; 643 ta.ta_start = uaddr; 644 645 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, &vma->vm_mm->cpu_vm_mask); 646 } 647 648 void flush_tlb_kernel_page(unsigned long kaddr) 649 { 650 struct tlb_args ta; 651 652 ta.ta_start = kaddr; 653 654 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1); 655 } 656 657 void flush_tlb_range(struct vm_area_struct *vma, 658 unsigned long start, unsigned long end) 659 { 660 struct tlb_args ta; 661 662 ta.ta_vma = vma; 663 ta.ta_start = start; 664 ta.ta_end = end; 665 666 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, &vma->vm_mm->cpu_vm_mask); 667 } 668 669 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 670 { 671 struct tlb_args ta; 672 673 ta.ta_start = start; 674 ta.ta_end = end; 675 676 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 677 } 678