xref: /openbmc/linux/arch/arm/kernel/smp.c (revision c4a1f032ed35d744e3d74b8aebe8d85f29aecd88)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 
49 /*
50  * as from 2.5, kernels no longer have an init_tasks structure
51  * so we need some other way of telling a new secondary core
52  * where to place its SVC stack
53  */
54 struct secondary_data secondary_data;
55 
56 /*
57  * control for which core is the next to come out of the secondary
58  * boot "holding pen"
59  */
60 volatile int __cpuinitdata pen_release = -1;
61 
62 enum ipi_msg_type {
63 	IPI_WAKEUP,
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CALL_FUNC_SINGLE,
68 	IPI_CPU_STOP,
69 };
70 
71 static DECLARE_COMPLETION(cpu_running);
72 
73 static struct smp_operations smp_ops;
74 
75 void __init smp_set_ops(struct smp_operations *ops)
76 {
77 	if (ops)
78 		smp_ops = *ops;
79 };
80 
81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
82 {
83 	int ret;
84 
85 	/*
86 	 * We need to tell the secondary core where to find
87 	 * its stack and the page tables.
88 	 */
89 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
90 #ifdef CONFIG_MMU
91 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
92 	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
93 #endif
94 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
95 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
96 
97 	/*
98 	 * Now bring the CPU into our world.
99 	 */
100 	ret = boot_secondary(cpu, idle);
101 	if (ret == 0) {
102 		/*
103 		 * CPU was successfully started, wait for it
104 		 * to come online or time out.
105 		 */
106 		wait_for_completion_timeout(&cpu_running,
107 						 msecs_to_jiffies(1000));
108 
109 		if (!cpu_online(cpu)) {
110 			pr_crit("CPU%u: failed to come online\n", cpu);
111 			ret = -EIO;
112 		}
113 	} else {
114 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
115 	}
116 
117 	secondary_data.stack = NULL;
118 	secondary_data.pgdir = 0;
119 
120 	return ret;
121 }
122 
123 /* platform specific SMP operations */
124 void __init smp_init_cpus(void)
125 {
126 	if (smp_ops.smp_init_cpus)
127 		smp_ops.smp_init_cpus();
128 }
129 
130 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
131 {
132 	if (smp_ops.smp_boot_secondary)
133 		return smp_ops.smp_boot_secondary(cpu, idle);
134 	return -ENOSYS;
135 }
136 
137 #ifdef CONFIG_HOTPLUG_CPU
138 static void percpu_timer_stop(void);
139 
140 static int platform_cpu_kill(unsigned int cpu)
141 {
142 	if (smp_ops.cpu_kill)
143 		return smp_ops.cpu_kill(cpu);
144 	return 1;
145 }
146 
147 static int platform_cpu_disable(unsigned int cpu)
148 {
149 	if (smp_ops.cpu_disable)
150 		return smp_ops.cpu_disable(cpu);
151 
152 	/*
153 	 * By default, allow disabling all CPUs except the first one,
154 	 * since this is special on a lot of platforms, e.g. because
155 	 * of clock tick interrupts.
156 	 */
157 	return cpu == 0 ? -EPERM : 0;
158 }
159 /*
160  * __cpu_disable runs on the processor to be shutdown.
161  */
162 int __cpuinit __cpu_disable(void)
163 {
164 	unsigned int cpu = smp_processor_id();
165 	int ret;
166 
167 	ret = platform_cpu_disable(cpu);
168 	if (ret)
169 		return ret;
170 
171 	/*
172 	 * Take this CPU offline.  Once we clear this, we can't return,
173 	 * and we must not schedule until we're ready to give up the cpu.
174 	 */
175 	set_cpu_online(cpu, false);
176 
177 	/*
178 	 * OK - migrate IRQs away from this CPU
179 	 */
180 	migrate_irqs();
181 
182 	/*
183 	 * Stop the local timer for this CPU.
184 	 */
185 	percpu_timer_stop();
186 
187 	/*
188 	 * Flush user cache and TLB mappings, and then remove this CPU
189 	 * from the vm mask set of all processes.
190 	 *
191 	 * Caches are flushed to the Level of Unification Inner Shareable
192 	 * to write-back dirty lines to unified caches shared by all CPUs.
193 	 */
194 	flush_cache_louis();
195 	local_flush_tlb_all();
196 
197 	clear_tasks_mm_cpumask(cpu);
198 
199 	return 0;
200 }
201 
202 static DECLARE_COMPLETION(cpu_died);
203 
204 /*
205  * called on the thread which is asking for a CPU to be shutdown -
206  * waits until shutdown has completed, or it is timed out.
207  */
208 void __cpuinit __cpu_die(unsigned int cpu)
209 {
210 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
211 		pr_err("CPU%u: cpu didn't die\n", cpu);
212 		return;
213 	}
214 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
215 
216 	/*
217 	 * platform_cpu_kill() is generally expected to do the powering off
218 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
219 	 * be done by the CPU which is dying in preference to supporting
220 	 * this call, but that means there is _no_ synchronisation between
221 	 * the requesting CPU and the dying CPU actually losing power.
222 	 */
223 	if (!platform_cpu_kill(cpu))
224 		printk("CPU%u: unable to kill\n", cpu);
225 }
226 
227 /*
228  * Called from the idle thread for the CPU which has been shutdown.
229  *
230  * Note that we disable IRQs here, but do not re-enable them
231  * before returning to the caller. This is also the behaviour
232  * of the other hotplug-cpu capable cores, so presumably coming
233  * out of idle fixes this.
234  */
235 void __ref cpu_die(void)
236 {
237 	unsigned int cpu = smp_processor_id();
238 
239 	idle_task_exit();
240 
241 	local_irq_disable();
242 
243 	/*
244 	 * Flush the data out of the L1 cache for this CPU.  This must be
245 	 * before the completion to ensure that data is safely written out
246 	 * before platform_cpu_kill() gets called - which may disable
247 	 * *this* CPU and power down its cache.
248 	 */
249 	flush_cache_louis();
250 
251 	/*
252 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
253 	 * this returns, power and/or clocks can be removed at any point
254 	 * from this CPU and its cache by platform_cpu_kill().
255 	 */
256 	complete(&cpu_died);
257 
258 	/*
259 	 * Ensure that the cache lines associated with that completion are
260 	 * written out.  This covers the case where _this_ CPU is doing the
261 	 * powering down, to ensure that the completion is visible to the
262 	 * CPU waiting for this one.
263 	 */
264 	flush_cache_louis();
265 
266 	/*
267 	 * The actual CPU shutdown procedure is at least platform (if not
268 	 * CPU) specific.  This may remove power, or it may simply spin.
269 	 *
270 	 * Platforms are generally expected *NOT* to return from this call,
271 	 * although there are some which do because they have no way to
272 	 * power down the CPU.  These platforms are the _only_ reason we
273 	 * have a return path which uses the fragment of assembly below.
274 	 *
275 	 * The return path should not be used for platforms which can
276 	 * power off the CPU.
277 	 */
278 	if (smp_ops.cpu_die)
279 		smp_ops.cpu_die(cpu);
280 
281 	/*
282 	 * Do not return to the idle loop - jump back to the secondary
283 	 * cpu initialisation.  There's some initialisation which needs
284 	 * to be repeated to undo the effects of taking the CPU offline.
285 	 */
286 	__asm__("mov	sp, %0\n"
287 	"	mov	fp, #0\n"
288 	"	b	secondary_start_kernel"
289 		:
290 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
291 }
292 #endif /* CONFIG_HOTPLUG_CPU */
293 
294 /*
295  * Called by both boot and secondaries to move global data into
296  * per-processor storage.
297  */
298 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
299 {
300 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
301 
302 	cpu_info->loops_per_jiffy = loops_per_jiffy;
303 	cpu_info->cpuid = read_cpuid_id();
304 
305 	store_cpu_topology(cpuid);
306 }
307 
308 static void percpu_timer_setup(void);
309 
310 /*
311  * This is the secondary CPU boot entry.  We're using this CPUs
312  * idle thread stack, but a set of temporary page tables.
313  */
314 asmlinkage void __cpuinit secondary_start_kernel(void)
315 {
316 	struct mm_struct *mm = &init_mm;
317 	unsigned int cpu;
318 
319 	/*
320 	 * The identity mapping is uncached (strongly ordered), so
321 	 * switch away from it before attempting any exclusive accesses.
322 	 */
323 	cpu_switch_mm(mm->pgd, mm);
324 	local_flush_bp_all();
325 	enter_lazy_tlb(mm, current);
326 	local_flush_tlb_all();
327 
328 	/*
329 	 * All kernel threads share the same mm context; grab a
330 	 * reference and switch to it.
331 	 */
332 	cpu = smp_processor_id();
333 	atomic_inc(&mm->mm_count);
334 	current->active_mm = mm;
335 	cpumask_set_cpu(cpu, mm_cpumask(mm));
336 
337 	cpu_init();
338 
339 	printk("CPU%u: Booted secondary processor\n", cpu);
340 
341 	preempt_disable();
342 	trace_hardirqs_off();
343 
344 	/*
345 	 * Give the platform a chance to do its own initialisation.
346 	 */
347 	if (smp_ops.smp_secondary_init)
348 		smp_ops.smp_secondary_init(cpu);
349 
350 	notify_cpu_starting(cpu);
351 
352 	calibrate_delay();
353 
354 	smp_store_cpu_info(cpu);
355 
356 	/*
357 	 * OK, now it's safe to let the boot CPU continue.  Wait for
358 	 * the CPU migration code to notice that the CPU is online
359 	 * before we continue - which happens after __cpu_up returns.
360 	 */
361 	set_cpu_online(cpu, true);
362 	complete(&cpu_running);
363 
364 	/*
365 	 * Setup the percpu timer for this CPU.
366 	 */
367 	percpu_timer_setup();
368 
369 	local_irq_enable();
370 	local_fiq_enable();
371 
372 	/*
373 	 * OK, it's off to the idle thread for us
374 	 */
375 	cpu_startup_entry(CPUHP_ONLINE);
376 }
377 
378 void __init smp_cpus_done(unsigned int max_cpus)
379 {
380 	int cpu;
381 	unsigned long bogosum = 0;
382 
383 	for_each_online_cpu(cpu)
384 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
385 
386 	printk(KERN_INFO "SMP: Total of %d processors activated "
387 	       "(%lu.%02lu BogoMIPS).\n",
388 	       num_online_cpus(),
389 	       bogosum / (500000/HZ),
390 	       (bogosum / (5000/HZ)) % 100);
391 
392 	hyp_mode_check();
393 }
394 
395 void __init smp_prepare_boot_cpu(void)
396 {
397 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
398 }
399 
400 void __init smp_prepare_cpus(unsigned int max_cpus)
401 {
402 	unsigned int ncores = num_possible_cpus();
403 
404 	init_cpu_topology();
405 
406 	smp_store_cpu_info(smp_processor_id());
407 
408 	/*
409 	 * are we trying to boot more cores than exist?
410 	 */
411 	if (max_cpus > ncores)
412 		max_cpus = ncores;
413 	if (ncores > 1 && max_cpus) {
414 		/*
415 		 * Enable the local timer or broadcast device for the
416 		 * boot CPU, but only if we have more than one CPU.
417 		 */
418 		percpu_timer_setup();
419 
420 		/*
421 		 * Initialise the present map, which describes the set of CPUs
422 		 * actually populated at the present time. A platform should
423 		 * re-initialize the map in the platforms smp_prepare_cpus()
424 		 * if present != possible (e.g. physical hotplug).
425 		 */
426 		init_cpu_present(cpu_possible_mask);
427 
428 		/*
429 		 * Initialise the SCU if there are more than one CPU
430 		 * and let them know where to start.
431 		 */
432 		if (smp_ops.smp_prepare_cpus)
433 			smp_ops.smp_prepare_cpus(max_cpus);
434 	}
435 }
436 
437 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
438 
439 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
440 {
441 	if (!smp_cross_call)
442 		smp_cross_call = fn;
443 }
444 
445 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
446 {
447 	smp_cross_call(mask, IPI_CALL_FUNC);
448 }
449 
450 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
451 {
452 	smp_cross_call(mask, IPI_WAKEUP);
453 }
454 
455 void arch_send_call_function_single_ipi(int cpu)
456 {
457 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
458 }
459 
460 static const char *ipi_types[NR_IPI] = {
461 #define S(x,s)	[x] = s
462 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
463 	S(IPI_TIMER, "Timer broadcast interrupts"),
464 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
465 	S(IPI_CALL_FUNC, "Function call interrupts"),
466 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
467 	S(IPI_CPU_STOP, "CPU stop interrupts"),
468 };
469 
470 void show_ipi_list(struct seq_file *p, int prec)
471 {
472 	unsigned int cpu, i;
473 
474 	for (i = 0; i < NR_IPI; i++) {
475 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
476 
477 		for_each_online_cpu(cpu)
478 			seq_printf(p, "%10u ",
479 				   __get_irq_stat(cpu, ipi_irqs[i]));
480 
481 		seq_printf(p, " %s\n", ipi_types[i]);
482 	}
483 }
484 
485 u64 smp_irq_stat_cpu(unsigned int cpu)
486 {
487 	u64 sum = 0;
488 	int i;
489 
490 	for (i = 0; i < NR_IPI; i++)
491 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
492 
493 	return sum;
494 }
495 
496 /*
497  * Timer (local or broadcast) support
498  */
499 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
500 
501 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
502 void tick_broadcast(const struct cpumask *mask)
503 {
504 	smp_cross_call(mask, IPI_TIMER);
505 }
506 #endif
507 
508 static void broadcast_timer_set_mode(enum clock_event_mode mode,
509 	struct clock_event_device *evt)
510 {
511 }
512 
513 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
514 {
515 	evt->name	= "dummy_timer";
516 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
517 			  CLOCK_EVT_FEAT_PERIODIC |
518 			  CLOCK_EVT_FEAT_DUMMY;
519 	evt->rating	= 100;
520 	evt->mult	= 1;
521 	evt->set_mode	= broadcast_timer_set_mode;
522 
523 	clockevents_register_device(evt);
524 }
525 
526 static struct local_timer_ops *lt_ops;
527 
528 #ifdef CONFIG_LOCAL_TIMERS
529 int local_timer_register(struct local_timer_ops *ops)
530 {
531 	if (!is_smp() || !setup_max_cpus)
532 		return -ENXIO;
533 
534 	if (lt_ops)
535 		return -EBUSY;
536 
537 	lt_ops = ops;
538 	return 0;
539 }
540 #endif
541 
542 static void __cpuinit percpu_timer_setup(void)
543 {
544 	unsigned int cpu = smp_processor_id();
545 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
546 
547 	evt->cpumask = cpumask_of(cpu);
548 
549 	if (!lt_ops || lt_ops->setup(evt))
550 		broadcast_timer_setup(evt);
551 }
552 
553 #ifdef CONFIG_HOTPLUG_CPU
554 /*
555  * The generic clock events code purposely does not stop the local timer
556  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
557  * manually here.
558  */
559 static void percpu_timer_stop(void)
560 {
561 	unsigned int cpu = smp_processor_id();
562 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
563 
564 	if (lt_ops)
565 		lt_ops->stop(evt);
566 }
567 #endif
568 
569 static DEFINE_RAW_SPINLOCK(stop_lock);
570 
571 /*
572  * ipi_cpu_stop - handle IPI from smp_send_stop()
573  */
574 static void ipi_cpu_stop(unsigned int cpu)
575 {
576 	if (system_state == SYSTEM_BOOTING ||
577 	    system_state == SYSTEM_RUNNING) {
578 		raw_spin_lock(&stop_lock);
579 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
580 		dump_stack();
581 		raw_spin_unlock(&stop_lock);
582 	}
583 
584 	set_cpu_online(cpu, false);
585 
586 	local_fiq_disable();
587 	local_irq_disable();
588 
589 	while (1)
590 		cpu_relax();
591 }
592 
593 /*
594  * Main handler for inter-processor interrupts
595  */
596 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
597 {
598 	handle_IPI(ipinr, regs);
599 }
600 
601 void handle_IPI(int ipinr, struct pt_regs *regs)
602 {
603 	unsigned int cpu = smp_processor_id();
604 	struct pt_regs *old_regs = set_irq_regs(regs);
605 
606 	if (ipinr < NR_IPI)
607 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
608 
609 	switch (ipinr) {
610 	case IPI_WAKEUP:
611 		break;
612 
613 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
614 	case IPI_TIMER:
615 		irq_enter();
616 		tick_receive_broadcast();
617 		irq_exit();
618 		break;
619 #endif
620 
621 	case IPI_RESCHEDULE:
622 		scheduler_ipi();
623 		break;
624 
625 	case IPI_CALL_FUNC:
626 		irq_enter();
627 		generic_smp_call_function_interrupt();
628 		irq_exit();
629 		break;
630 
631 	case IPI_CALL_FUNC_SINGLE:
632 		irq_enter();
633 		generic_smp_call_function_single_interrupt();
634 		irq_exit();
635 		break;
636 
637 	case IPI_CPU_STOP:
638 		irq_enter();
639 		ipi_cpu_stop(cpu);
640 		irq_exit();
641 		break;
642 
643 	default:
644 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
645 		       cpu, ipinr);
646 		break;
647 	}
648 	set_irq_regs(old_regs);
649 }
650 
651 void smp_send_reschedule(int cpu)
652 {
653 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
654 }
655 
656 #ifdef CONFIG_HOTPLUG_CPU
657 static void smp_kill_cpus(cpumask_t *mask)
658 {
659 	unsigned int cpu;
660 	for_each_cpu(cpu, mask)
661 		platform_cpu_kill(cpu);
662 }
663 #else
664 static void smp_kill_cpus(cpumask_t *mask) { }
665 #endif
666 
667 void smp_send_stop(void)
668 {
669 	unsigned long timeout;
670 	struct cpumask mask;
671 
672 	cpumask_copy(&mask, cpu_online_mask);
673 	cpumask_clear_cpu(smp_processor_id(), &mask);
674 	if (!cpumask_empty(&mask))
675 		smp_cross_call(&mask, IPI_CPU_STOP);
676 
677 	/* Wait up to one second for other CPUs to stop */
678 	timeout = USEC_PER_SEC;
679 	while (num_online_cpus() > 1 && timeout--)
680 		udelay(1);
681 
682 	if (num_online_cpus() > 1)
683 		pr_warning("SMP: failed to stop secondary CPUs\n");
684 
685 	smp_kill_cpus(&mask);
686 }
687 
688 /*
689  * not supported here
690  */
691 int setup_profiling_timer(unsigned int multiplier)
692 {
693 	return -EINVAL;
694 }
695 
696 #ifdef CONFIG_CPU_FREQ
697 
698 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
699 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
700 static unsigned long global_l_p_j_ref;
701 static unsigned long global_l_p_j_ref_freq;
702 
703 static int cpufreq_callback(struct notifier_block *nb,
704 					unsigned long val, void *data)
705 {
706 	struct cpufreq_freqs *freq = data;
707 	int cpu = freq->cpu;
708 
709 	if (freq->flags & CPUFREQ_CONST_LOOPS)
710 		return NOTIFY_OK;
711 
712 	if (!per_cpu(l_p_j_ref, cpu)) {
713 		per_cpu(l_p_j_ref, cpu) =
714 			per_cpu(cpu_data, cpu).loops_per_jiffy;
715 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
716 		if (!global_l_p_j_ref) {
717 			global_l_p_j_ref = loops_per_jiffy;
718 			global_l_p_j_ref_freq = freq->old;
719 		}
720 	}
721 
722 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
723 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
724 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
725 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
726 						global_l_p_j_ref_freq,
727 						freq->new);
728 		per_cpu(cpu_data, cpu).loops_per_jiffy =
729 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
730 					per_cpu(l_p_j_ref_freq, cpu),
731 					freq->new);
732 	}
733 	return NOTIFY_OK;
734 }
735 
736 static struct notifier_block cpufreq_notifier = {
737 	.notifier_call  = cpufreq_callback,
738 };
739 
740 static int __init register_cpufreq_notifier(void)
741 {
742 	return cpufreq_register_notifier(&cpufreq_notifier,
743 						CPUFREQ_TRANSITION_NOTIFIER);
744 }
745 core_initcall(register_cpufreq_notifier);
746 
747 #endif
748