1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 29 #include <linux/atomic.h> 30 #include <asm/smp.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpu.h> 33 #include <asm/cputype.h> 34 #include <asm/exception.h> 35 #include <asm/idmap.h> 36 #include <asm/topology.h> 37 #include <asm/mmu_context.h> 38 #include <asm/pgtable.h> 39 #include <asm/pgalloc.h> 40 #include <asm/processor.h> 41 #include <asm/sections.h> 42 #include <asm/tlbflush.h> 43 #include <asm/ptrace.h> 44 #include <asm/localtimer.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 49 /* 50 * as from 2.5, kernels no longer have an init_tasks structure 51 * so we need some other way of telling a new secondary core 52 * where to place its SVC stack 53 */ 54 struct secondary_data secondary_data; 55 56 /* 57 * control for which core is the next to come out of the secondary 58 * boot "holding pen" 59 */ 60 volatile int __cpuinitdata pen_release = -1; 61 62 enum ipi_msg_type { 63 IPI_WAKEUP, 64 IPI_TIMER, 65 IPI_RESCHEDULE, 66 IPI_CALL_FUNC, 67 IPI_CALL_FUNC_SINGLE, 68 IPI_CPU_STOP, 69 }; 70 71 static DECLARE_COMPLETION(cpu_running); 72 73 static struct smp_operations smp_ops; 74 75 void __init smp_set_ops(struct smp_operations *ops) 76 { 77 if (ops) 78 smp_ops = *ops; 79 }; 80 81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle) 82 { 83 int ret; 84 85 /* 86 * We need to tell the secondary core where to find 87 * its stack and the page tables. 88 */ 89 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 90 #ifdef CONFIG_MMU 91 secondary_data.pgdir = virt_to_phys(idmap_pgd); 92 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir); 93 #endif 94 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 95 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 96 97 /* 98 * Now bring the CPU into our world. 99 */ 100 ret = boot_secondary(cpu, idle); 101 if (ret == 0) { 102 /* 103 * CPU was successfully started, wait for it 104 * to come online or time out. 105 */ 106 wait_for_completion_timeout(&cpu_running, 107 msecs_to_jiffies(1000)); 108 109 if (!cpu_online(cpu)) { 110 pr_crit("CPU%u: failed to come online\n", cpu); 111 ret = -EIO; 112 } 113 } else { 114 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 115 } 116 117 secondary_data.stack = NULL; 118 secondary_data.pgdir = 0; 119 120 return ret; 121 } 122 123 /* platform specific SMP operations */ 124 void __init smp_init_cpus(void) 125 { 126 if (smp_ops.smp_init_cpus) 127 smp_ops.smp_init_cpus(); 128 } 129 130 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) 131 { 132 if (smp_ops.smp_boot_secondary) 133 return smp_ops.smp_boot_secondary(cpu, idle); 134 return -ENOSYS; 135 } 136 137 #ifdef CONFIG_HOTPLUG_CPU 138 static void percpu_timer_stop(void); 139 140 static int platform_cpu_kill(unsigned int cpu) 141 { 142 if (smp_ops.cpu_kill) 143 return smp_ops.cpu_kill(cpu); 144 return 1; 145 } 146 147 static int platform_cpu_disable(unsigned int cpu) 148 { 149 if (smp_ops.cpu_disable) 150 return smp_ops.cpu_disable(cpu); 151 152 /* 153 * By default, allow disabling all CPUs except the first one, 154 * since this is special on a lot of platforms, e.g. because 155 * of clock tick interrupts. 156 */ 157 return cpu == 0 ? -EPERM : 0; 158 } 159 /* 160 * __cpu_disable runs on the processor to be shutdown. 161 */ 162 int __cpuinit __cpu_disable(void) 163 { 164 unsigned int cpu = smp_processor_id(); 165 int ret; 166 167 ret = platform_cpu_disable(cpu); 168 if (ret) 169 return ret; 170 171 /* 172 * Take this CPU offline. Once we clear this, we can't return, 173 * and we must not schedule until we're ready to give up the cpu. 174 */ 175 set_cpu_online(cpu, false); 176 177 /* 178 * OK - migrate IRQs away from this CPU 179 */ 180 migrate_irqs(); 181 182 /* 183 * Stop the local timer for this CPU. 184 */ 185 percpu_timer_stop(); 186 187 /* 188 * Flush user cache and TLB mappings, and then remove this CPU 189 * from the vm mask set of all processes. 190 * 191 * Caches are flushed to the Level of Unification Inner Shareable 192 * to write-back dirty lines to unified caches shared by all CPUs. 193 */ 194 flush_cache_louis(); 195 local_flush_tlb_all(); 196 197 clear_tasks_mm_cpumask(cpu); 198 199 return 0; 200 } 201 202 static DECLARE_COMPLETION(cpu_died); 203 204 /* 205 * called on the thread which is asking for a CPU to be shutdown - 206 * waits until shutdown has completed, or it is timed out. 207 */ 208 void __cpuinit __cpu_die(unsigned int cpu) 209 { 210 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 211 pr_err("CPU%u: cpu didn't die\n", cpu); 212 return; 213 } 214 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 215 216 /* 217 * platform_cpu_kill() is generally expected to do the powering off 218 * and/or cutting of clocks to the dying CPU. Optionally, this may 219 * be done by the CPU which is dying in preference to supporting 220 * this call, but that means there is _no_ synchronisation between 221 * the requesting CPU and the dying CPU actually losing power. 222 */ 223 if (!platform_cpu_kill(cpu)) 224 printk("CPU%u: unable to kill\n", cpu); 225 } 226 227 /* 228 * Called from the idle thread for the CPU which has been shutdown. 229 * 230 * Note that we disable IRQs here, but do not re-enable them 231 * before returning to the caller. This is also the behaviour 232 * of the other hotplug-cpu capable cores, so presumably coming 233 * out of idle fixes this. 234 */ 235 void __ref cpu_die(void) 236 { 237 unsigned int cpu = smp_processor_id(); 238 239 idle_task_exit(); 240 241 local_irq_disable(); 242 243 /* 244 * Flush the data out of the L1 cache for this CPU. This must be 245 * before the completion to ensure that data is safely written out 246 * before platform_cpu_kill() gets called - which may disable 247 * *this* CPU and power down its cache. 248 */ 249 flush_cache_louis(); 250 251 /* 252 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 253 * this returns, power and/or clocks can be removed at any point 254 * from this CPU and its cache by platform_cpu_kill(). 255 */ 256 complete(&cpu_died); 257 258 /* 259 * Ensure that the cache lines associated with that completion are 260 * written out. This covers the case where _this_ CPU is doing the 261 * powering down, to ensure that the completion is visible to the 262 * CPU waiting for this one. 263 */ 264 flush_cache_louis(); 265 266 /* 267 * The actual CPU shutdown procedure is at least platform (if not 268 * CPU) specific. This may remove power, or it may simply spin. 269 * 270 * Platforms are generally expected *NOT* to return from this call, 271 * although there are some which do because they have no way to 272 * power down the CPU. These platforms are the _only_ reason we 273 * have a return path which uses the fragment of assembly below. 274 * 275 * The return path should not be used for platforms which can 276 * power off the CPU. 277 */ 278 if (smp_ops.cpu_die) 279 smp_ops.cpu_die(cpu); 280 281 /* 282 * Do not return to the idle loop - jump back to the secondary 283 * cpu initialisation. There's some initialisation which needs 284 * to be repeated to undo the effects of taking the CPU offline. 285 */ 286 __asm__("mov sp, %0\n" 287 " mov fp, #0\n" 288 " b secondary_start_kernel" 289 : 290 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 291 } 292 #endif /* CONFIG_HOTPLUG_CPU */ 293 294 /* 295 * Called by both boot and secondaries to move global data into 296 * per-processor storage. 297 */ 298 static void __cpuinit smp_store_cpu_info(unsigned int cpuid) 299 { 300 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 301 302 cpu_info->loops_per_jiffy = loops_per_jiffy; 303 cpu_info->cpuid = read_cpuid_id(); 304 305 store_cpu_topology(cpuid); 306 } 307 308 static void percpu_timer_setup(void); 309 310 /* 311 * This is the secondary CPU boot entry. We're using this CPUs 312 * idle thread stack, but a set of temporary page tables. 313 */ 314 asmlinkage void __cpuinit secondary_start_kernel(void) 315 { 316 struct mm_struct *mm = &init_mm; 317 unsigned int cpu; 318 319 /* 320 * The identity mapping is uncached (strongly ordered), so 321 * switch away from it before attempting any exclusive accesses. 322 */ 323 cpu_switch_mm(mm->pgd, mm); 324 local_flush_bp_all(); 325 enter_lazy_tlb(mm, current); 326 local_flush_tlb_all(); 327 328 /* 329 * All kernel threads share the same mm context; grab a 330 * reference and switch to it. 331 */ 332 cpu = smp_processor_id(); 333 atomic_inc(&mm->mm_count); 334 current->active_mm = mm; 335 cpumask_set_cpu(cpu, mm_cpumask(mm)); 336 337 cpu_init(); 338 339 printk("CPU%u: Booted secondary processor\n", cpu); 340 341 preempt_disable(); 342 trace_hardirqs_off(); 343 344 /* 345 * Give the platform a chance to do its own initialisation. 346 */ 347 if (smp_ops.smp_secondary_init) 348 smp_ops.smp_secondary_init(cpu); 349 350 notify_cpu_starting(cpu); 351 352 calibrate_delay(); 353 354 smp_store_cpu_info(cpu); 355 356 /* 357 * OK, now it's safe to let the boot CPU continue. Wait for 358 * the CPU migration code to notice that the CPU is online 359 * before we continue - which happens after __cpu_up returns. 360 */ 361 set_cpu_online(cpu, true); 362 complete(&cpu_running); 363 364 /* 365 * Setup the percpu timer for this CPU. 366 */ 367 percpu_timer_setup(); 368 369 local_irq_enable(); 370 local_fiq_enable(); 371 372 /* 373 * OK, it's off to the idle thread for us 374 */ 375 cpu_startup_entry(CPUHP_ONLINE); 376 } 377 378 void __init smp_cpus_done(unsigned int max_cpus) 379 { 380 int cpu; 381 unsigned long bogosum = 0; 382 383 for_each_online_cpu(cpu) 384 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 385 386 printk(KERN_INFO "SMP: Total of %d processors activated " 387 "(%lu.%02lu BogoMIPS).\n", 388 num_online_cpus(), 389 bogosum / (500000/HZ), 390 (bogosum / (5000/HZ)) % 100); 391 392 hyp_mode_check(); 393 } 394 395 void __init smp_prepare_boot_cpu(void) 396 { 397 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 398 } 399 400 void __init smp_prepare_cpus(unsigned int max_cpus) 401 { 402 unsigned int ncores = num_possible_cpus(); 403 404 init_cpu_topology(); 405 406 smp_store_cpu_info(smp_processor_id()); 407 408 /* 409 * are we trying to boot more cores than exist? 410 */ 411 if (max_cpus > ncores) 412 max_cpus = ncores; 413 if (ncores > 1 && max_cpus) { 414 /* 415 * Enable the local timer or broadcast device for the 416 * boot CPU, but only if we have more than one CPU. 417 */ 418 percpu_timer_setup(); 419 420 /* 421 * Initialise the present map, which describes the set of CPUs 422 * actually populated at the present time. A platform should 423 * re-initialize the map in the platforms smp_prepare_cpus() 424 * if present != possible (e.g. physical hotplug). 425 */ 426 init_cpu_present(cpu_possible_mask); 427 428 /* 429 * Initialise the SCU if there are more than one CPU 430 * and let them know where to start. 431 */ 432 if (smp_ops.smp_prepare_cpus) 433 smp_ops.smp_prepare_cpus(max_cpus); 434 } 435 } 436 437 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 438 439 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 440 { 441 if (!smp_cross_call) 442 smp_cross_call = fn; 443 } 444 445 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 446 { 447 smp_cross_call(mask, IPI_CALL_FUNC); 448 } 449 450 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 451 { 452 smp_cross_call(mask, IPI_WAKEUP); 453 } 454 455 void arch_send_call_function_single_ipi(int cpu) 456 { 457 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 458 } 459 460 static const char *ipi_types[NR_IPI] = { 461 #define S(x,s) [x] = s 462 S(IPI_WAKEUP, "CPU wakeup interrupts"), 463 S(IPI_TIMER, "Timer broadcast interrupts"), 464 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 465 S(IPI_CALL_FUNC, "Function call interrupts"), 466 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 467 S(IPI_CPU_STOP, "CPU stop interrupts"), 468 }; 469 470 void show_ipi_list(struct seq_file *p, int prec) 471 { 472 unsigned int cpu, i; 473 474 for (i = 0; i < NR_IPI; i++) { 475 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 476 477 for_each_online_cpu(cpu) 478 seq_printf(p, "%10u ", 479 __get_irq_stat(cpu, ipi_irqs[i])); 480 481 seq_printf(p, " %s\n", ipi_types[i]); 482 } 483 } 484 485 u64 smp_irq_stat_cpu(unsigned int cpu) 486 { 487 u64 sum = 0; 488 int i; 489 490 for (i = 0; i < NR_IPI; i++) 491 sum += __get_irq_stat(cpu, ipi_irqs[i]); 492 493 return sum; 494 } 495 496 /* 497 * Timer (local or broadcast) support 498 */ 499 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 500 501 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 502 void tick_broadcast(const struct cpumask *mask) 503 { 504 smp_cross_call(mask, IPI_TIMER); 505 } 506 #endif 507 508 static void broadcast_timer_set_mode(enum clock_event_mode mode, 509 struct clock_event_device *evt) 510 { 511 } 512 513 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt) 514 { 515 evt->name = "dummy_timer"; 516 evt->features = CLOCK_EVT_FEAT_ONESHOT | 517 CLOCK_EVT_FEAT_PERIODIC | 518 CLOCK_EVT_FEAT_DUMMY; 519 evt->rating = 100; 520 evt->mult = 1; 521 evt->set_mode = broadcast_timer_set_mode; 522 523 clockevents_register_device(evt); 524 } 525 526 static struct local_timer_ops *lt_ops; 527 528 #ifdef CONFIG_LOCAL_TIMERS 529 int local_timer_register(struct local_timer_ops *ops) 530 { 531 if (!is_smp() || !setup_max_cpus) 532 return -ENXIO; 533 534 if (lt_ops) 535 return -EBUSY; 536 537 lt_ops = ops; 538 return 0; 539 } 540 #endif 541 542 static void __cpuinit percpu_timer_setup(void) 543 { 544 unsigned int cpu = smp_processor_id(); 545 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 546 547 evt->cpumask = cpumask_of(cpu); 548 549 if (!lt_ops || lt_ops->setup(evt)) 550 broadcast_timer_setup(evt); 551 } 552 553 #ifdef CONFIG_HOTPLUG_CPU 554 /* 555 * The generic clock events code purposely does not stop the local timer 556 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 557 * manually here. 558 */ 559 static void percpu_timer_stop(void) 560 { 561 unsigned int cpu = smp_processor_id(); 562 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 563 564 if (lt_ops) 565 lt_ops->stop(evt); 566 } 567 #endif 568 569 static DEFINE_RAW_SPINLOCK(stop_lock); 570 571 /* 572 * ipi_cpu_stop - handle IPI from smp_send_stop() 573 */ 574 static void ipi_cpu_stop(unsigned int cpu) 575 { 576 if (system_state == SYSTEM_BOOTING || 577 system_state == SYSTEM_RUNNING) { 578 raw_spin_lock(&stop_lock); 579 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 580 dump_stack(); 581 raw_spin_unlock(&stop_lock); 582 } 583 584 set_cpu_online(cpu, false); 585 586 local_fiq_disable(); 587 local_irq_disable(); 588 589 while (1) 590 cpu_relax(); 591 } 592 593 /* 594 * Main handler for inter-processor interrupts 595 */ 596 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 597 { 598 handle_IPI(ipinr, regs); 599 } 600 601 void handle_IPI(int ipinr, struct pt_regs *regs) 602 { 603 unsigned int cpu = smp_processor_id(); 604 struct pt_regs *old_regs = set_irq_regs(regs); 605 606 if (ipinr < NR_IPI) 607 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 608 609 switch (ipinr) { 610 case IPI_WAKEUP: 611 break; 612 613 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 614 case IPI_TIMER: 615 irq_enter(); 616 tick_receive_broadcast(); 617 irq_exit(); 618 break; 619 #endif 620 621 case IPI_RESCHEDULE: 622 scheduler_ipi(); 623 break; 624 625 case IPI_CALL_FUNC: 626 irq_enter(); 627 generic_smp_call_function_interrupt(); 628 irq_exit(); 629 break; 630 631 case IPI_CALL_FUNC_SINGLE: 632 irq_enter(); 633 generic_smp_call_function_single_interrupt(); 634 irq_exit(); 635 break; 636 637 case IPI_CPU_STOP: 638 irq_enter(); 639 ipi_cpu_stop(cpu); 640 irq_exit(); 641 break; 642 643 default: 644 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 645 cpu, ipinr); 646 break; 647 } 648 set_irq_regs(old_regs); 649 } 650 651 void smp_send_reschedule(int cpu) 652 { 653 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 654 } 655 656 #ifdef CONFIG_HOTPLUG_CPU 657 static void smp_kill_cpus(cpumask_t *mask) 658 { 659 unsigned int cpu; 660 for_each_cpu(cpu, mask) 661 platform_cpu_kill(cpu); 662 } 663 #else 664 static void smp_kill_cpus(cpumask_t *mask) { } 665 #endif 666 667 void smp_send_stop(void) 668 { 669 unsigned long timeout; 670 struct cpumask mask; 671 672 cpumask_copy(&mask, cpu_online_mask); 673 cpumask_clear_cpu(smp_processor_id(), &mask); 674 if (!cpumask_empty(&mask)) 675 smp_cross_call(&mask, IPI_CPU_STOP); 676 677 /* Wait up to one second for other CPUs to stop */ 678 timeout = USEC_PER_SEC; 679 while (num_online_cpus() > 1 && timeout--) 680 udelay(1); 681 682 if (num_online_cpus() > 1) 683 pr_warning("SMP: failed to stop secondary CPUs\n"); 684 685 smp_kill_cpus(&mask); 686 } 687 688 /* 689 * not supported here 690 */ 691 int setup_profiling_timer(unsigned int multiplier) 692 { 693 return -EINVAL; 694 } 695 696 #ifdef CONFIG_CPU_FREQ 697 698 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 699 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 700 static unsigned long global_l_p_j_ref; 701 static unsigned long global_l_p_j_ref_freq; 702 703 static int cpufreq_callback(struct notifier_block *nb, 704 unsigned long val, void *data) 705 { 706 struct cpufreq_freqs *freq = data; 707 int cpu = freq->cpu; 708 709 if (freq->flags & CPUFREQ_CONST_LOOPS) 710 return NOTIFY_OK; 711 712 if (!per_cpu(l_p_j_ref, cpu)) { 713 per_cpu(l_p_j_ref, cpu) = 714 per_cpu(cpu_data, cpu).loops_per_jiffy; 715 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 716 if (!global_l_p_j_ref) { 717 global_l_p_j_ref = loops_per_jiffy; 718 global_l_p_j_ref_freq = freq->old; 719 } 720 } 721 722 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 723 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 724 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 725 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 726 global_l_p_j_ref_freq, 727 freq->new); 728 per_cpu(cpu_data, cpu).loops_per_jiffy = 729 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 730 per_cpu(l_p_j_ref_freq, cpu), 731 freq->new); 732 } 733 return NOTIFY_OK; 734 } 735 736 static struct notifier_block cpufreq_notifier = { 737 .notifier_call = cpufreq_callback, 738 }; 739 740 static int __init register_cpufreq_notifier(void) 741 { 742 return cpufreq_register_notifier(&cpufreq_notifier, 743 CPUFREQ_TRANSITION_NOTIFIER); 744 } 745 core_initcall(register_cpufreq_notifier); 746 747 #endif 748