xref: /openbmc/linux/arch/arm/kernel/smp.c (revision b1cffebf1029c87e1f1984d48463ee21093a6bc7)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 
49 /*
50  * as from 2.5, kernels no longer have an init_tasks structure
51  * so we need some other way of telling a new secondary core
52  * where to place its SVC stack
53  */
54 struct secondary_data secondary_data;
55 
56 /*
57  * control for which core is the next to come out of the secondary
58  * boot "holding pen"
59  */
60 volatile int __cpuinitdata pen_release = -1;
61 
62 enum ipi_msg_type {
63 	IPI_WAKEUP,
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CALL_FUNC_SINGLE,
68 	IPI_CPU_STOP,
69 };
70 
71 static DECLARE_COMPLETION(cpu_running);
72 
73 static struct smp_operations smp_ops;
74 
75 void __init smp_set_ops(struct smp_operations *ops)
76 {
77 	if (ops)
78 		smp_ops = *ops;
79 };
80 
81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
82 {
83 	int ret;
84 
85 	/*
86 	 * We need to tell the secondary core where to find
87 	 * its stack and the page tables.
88 	 */
89 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
90 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
91 	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
92 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
93 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
94 
95 	/*
96 	 * Now bring the CPU into our world.
97 	 */
98 	ret = boot_secondary(cpu, idle);
99 	if (ret == 0) {
100 		/*
101 		 * CPU was successfully started, wait for it
102 		 * to come online or time out.
103 		 */
104 		wait_for_completion_timeout(&cpu_running,
105 						 msecs_to_jiffies(1000));
106 
107 		if (!cpu_online(cpu)) {
108 			pr_crit("CPU%u: failed to come online\n", cpu);
109 			ret = -EIO;
110 		}
111 	} else {
112 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
113 	}
114 
115 	secondary_data.stack = NULL;
116 	secondary_data.pgdir = 0;
117 
118 	return ret;
119 }
120 
121 /* platform specific SMP operations */
122 void __init smp_init_cpus(void)
123 {
124 	if (smp_ops.smp_init_cpus)
125 		smp_ops.smp_init_cpus();
126 }
127 
128 static void __init platform_smp_prepare_cpus(unsigned int max_cpus)
129 {
130 	if (smp_ops.smp_prepare_cpus)
131 		smp_ops.smp_prepare_cpus(max_cpus);
132 }
133 
134 static void __cpuinit platform_secondary_init(unsigned int cpu)
135 {
136 	if (smp_ops.smp_secondary_init)
137 		smp_ops.smp_secondary_init(cpu);
138 }
139 
140 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
141 {
142 	if (smp_ops.smp_boot_secondary)
143 		return smp_ops.smp_boot_secondary(cpu, idle);
144 	return -ENOSYS;
145 }
146 
147 #ifdef CONFIG_HOTPLUG_CPU
148 static void percpu_timer_stop(void);
149 
150 static int platform_cpu_kill(unsigned int cpu)
151 {
152 	if (smp_ops.cpu_kill)
153 		return smp_ops.cpu_kill(cpu);
154 	return 1;
155 }
156 
157 static void platform_cpu_die(unsigned int cpu)
158 {
159 	if (smp_ops.cpu_die)
160 		smp_ops.cpu_die(cpu);
161 }
162 
163 static int platform_cpu_disable(unsigned int cpu)
164 {
165 	if (smp_ops.cpu_disable)
166 		return smp_ops.cpu_disable(cpu);
167 
168 	/*
169 	 * By default, allow disabling all CPUs except the first one,
170 	 * since this is special on a lot of platforms, e.g. because
171 	 * of clock tick interrupts.
172 	 */
173 	return cpu == 0 ? -EPERM : 0;
174 }
175 /*
176  * __cpu_disable runs on the processor to be shutdown.
177  */
178 int __cpuinit __cpu_disable(void)
179 {
180 	unsigned int cpu = smp_processor_id();
181 	int ret;
182 
183 	ret = platform_cpu_disable(cpu);
184 	if (ret)
185 		return ret;
186 
187 	/*
188 	 * Take this CPU offline.  Once we clear this, we can't return,
189 	 * and we must not schedule until we're ready to give up the cpu.
190 	 */
191 	set_cpu_online(cpu, false);
192 
193 	/*
194 	 * OK - migrate IRQs away from this CPU
195 	 */
196 	migrate_irqs();
197 
198 	/*
199 	 * Stop the local timer for this CPU.
200 	 */
201 	percpu_timer_stop();
202 
203 	/*
204 	 * Flush user cache and TLB mappings, and then remove this CPU
205 	 * from the vm mask set of all processes.
206 	 *
207 	 * Caches are flushed to the Level of Unification Inner Shareable
208 	 * to write-back dirty lines to unified caches shared by all CPUs.
209 	 */
210 	flush_cache_louis();
211 	local_flush_tlb_all();
212 
213 	clear_tasks_mm_cpumask(cpu);
214 
215 	return 0;
216 }
217 
218 static DECLARE_COMPLETION(cpu_died);
219 
220 /*
221  * called on the thread which is asking for a CPU to be shutdown -
222  * waits until shutdown has completed, or it is timed out.
223  */
224 void __cpuinit __cpu_die(unsigned int cpu)
225 {
226 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
227 		pr_err("CPU%u: cpu didn't die\n", cpu);
228 		return;
229 	}
230 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
231 
232 	if (!platform_cpu_kill(cpu))
233 		printk("CPU%u: unable to kill\n", cpu);
234 }
235 
236 /*
237  * Called from the idle thread for the CPU which has been shutdown.
238  *
239  * Note that we disable IRQs here, but do not re-enable them
240  * before returning to the caller. This is also the behaviour
241  * of the other hotplug-cpu capable cores, so presumably coming
242  * out of idle fixes this.
243  */
244 void __ref cpu_die(void)
245 {
246 	unsigned int cpu = smp_processor_id();
247 
248 	idle_task_exit();
249 
250 	local_irq_disable();
251 	mb();
252 
253 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
254 	RCU_NONIDLE(complete(&cpu_died));
255 
256 	/*
257 	 * actual CPU shutdown procedure is at least platform (if not
258 	 * CPU) specific.
259 	 */
260 	platform_cpu_die(cpu);
261 
262 	/*
263 	 * Do not return to the idle loop - jump back to the secondary
264 	 * cpu initialisation.  There's some initialisation which needs
265 	 * to be repeated to undo the effects of taking the CPU offline.
266 	 */
267 	__asm__("mov	sp, %0\n"
268 	"	mov	fp, #0\n"
269 	"	b	secondary_start_kernel"
270 		:
271 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
272 }
273 #endif /* CONFIG_HOTPLUG_CPU */
274 
275 /*
276  * Called by both boot and secondaries to move global data into
277  * per-processor storage.
278  */
279 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
280 {
281 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
282 
283 	cpu_info->loops_per_jiffy = loops_per_jiffy;
284 	cpu_info->cpuid = read_cpuid_id();
285 
286 	store_cpu_topology(cpuid);
287 }
288 
289 static void percpu_timer_setup(void);
290 
291 /*
292  * This is the secondary CPU boot entry.  We're using this CPUs
293  * idle thread stack, but a set of temporary page tables.
294  */
295 asmlinkage void __cpuinit secondary_start_kernel(void)
296 {
297 	struct mm_struct *mm = &init_mm;
298 	unsigned int cpu;
299 
300 	/*
301 	 * The identity mapping is uncached (strongly ordered), so
302 	 * switch away from it before attempting any exclusive accesses.
303 	 */
304 	cpu_switch_mm(mm->pgd, mm);
305 	enter_lazy_tlb(mm, current);
306 	local_flush_tlb_all();
307 
308 	/*
309 	 * All kernel threads share the same mm context; grab a
310 	 * reference and switch to it.
311 	 */
312 	cpu = smp_processor_id();
313 	atomic_inc(&mm->mm_count);
314 	current->active_mm = mm;
315 	cpumask_set_cpu(cpu, mm_cpumask(mm));
316 
317 	cpu_init();
318 
319 	printk("CPU%u: Booted secondary processor\n", cpu);
320 
321 	preempt_disable();
322 	trace_hardirqs_off();
323 
324 	/*
325 	 * Give the platform a chance to do its own initialisation.
326 	 */
327 	platform_secondary_init(cpu);
328 
329 	notify_cpu_starting(cpu);
330 
331 	calibrate_delay();
332 
333 	smp_store_cpu_info(cpu);
334 
335 	/*
336 	 * OK, now it's safe to let the boot CPU continue.  Wait for
337 	 * the CPU migration code to notice that the CPU is online
338 	 * before we continue - which happens after __cpu_up returns.
339 	 */
340 	set_cpu_online(cpu, true);
341 	complete(&cpu_running);
342 
343 	/*
344 	 * Setup the percpu timer for this CPU.
345 	 */
346 	percpu_timer_setup();
347 
348 	local_irq_enable();
349 	local_fiq_enable();
350 
351 	/*
352 	 * OK, it's off to the idle thread for us
353 	 */
354 	cpu_idle();
355 }
356 
357 void __init smp_cpus_done(unsigned int max_cpus)
358 {
359 	int cpu;
360 	unsigned long bogosum = 0;
361 
362 	for_each_online_cpu(cpu)
363 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
364 
365 	printk(KERN_INFO "SMP: Total of %d processors activated "
366 	       "(%lu.%02lu BogoMIPS).\n",
367 	       num_online_cpus(),
368 	       bogosum / (500000/HZ),
369 	       (bogosum / (5000/HZ)) % 100);
370 
371 	hyp_mode_check();
372 }
373 
374 void __init smp_prepare_boot_cpu(void)
375 {
376 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
377 }
378 
379 void __init smp_prepare_cpus(unsigned int max_cpus)
380 {
381 	unsigned int ncores = num_possible_cpus();
382 
383 	init_cpu_topology();
384 
385 	smp_store_cpu_info(smp_processor_id());
386 
387 	/*
388 	 * are we trying to boot more cores than exist?
389 	 */
390 	if (max_cpus > ncores)
391 		max_cpus = ncores;
392 	if (ncores > 1 && max_cpus) {
393 		/*
394 		 * Enable the local timer or broadcast device for the
395 		 * boot CPU, but only if we have more than one CPU.
396 		 */
397 		percpu_timer_setup();
398 
399 		/*
400 		 * Initialise the present map, which describes the set of CPUs
401 		 * actually populated at the present time. A platform should
402 		 * re-initialize the map in platform_smp_prepare_cpus() if
403 		 * present != possible (e.g. physical hotplug).
404 		 */
405 		init_cpu_present(cpu_possible_mask);
406 
407 		/*
408 		 * Initialise the SCU if there are more than one CPU
409 		 * and let them know where to start.
410 		 */
411 		platform_smp_prepare_cpus(max_cpus);
412 	}
413 }
414 
415 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
416 
417 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
418 {
419 	if (!smp_cross_call)
420 		smp_cross_call = fn;
421 }
422 
423 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
424 {
425 	smp_cross_call(mask, IPI_CALL_FUNC);
426 }
427 
428 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
429 {
430 	smp_cross_call(mask, IPI_WAKEUP);
431 }
432 
433 void arch_send_call_function_single_ipi(int cpu)
434 {
435 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
436 }
437 
438 static const char *ipi_types[NR_IPI] = {
439 #define S(x,s)	[x] = s
440 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
441 	S(IPI_TIMER, "Timer broadcast interrupts"),
442 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
443 	S(IPI_CALL_FUNC, "Function call interrupts"),
444 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
445 	S(IPI_CPU_STOP, "CPU stop interrupts"),
446 };
447 
448 void show_ipi_list(struct seq_file *p, int prec)
449 {
450 	unsigned int cpu, i;
451 
452 	for (i = 0; i < NR_IPI; i++) {
453 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
454 
455 		for_each_online_cpu(cpu)
456 			seq_printf(p, "%10u ",
457 				   __get_irq_stat(cpu, ipi_irqs[i]));
458 
459 		seq_printf(p, " %s\n", ipi_types[i]);
460 	}
461 }
462 
463 u64 smp_irq_stat_cpu(unsigned int cpu)
464 {
465 	u64 sum = 0;
466 	int i;
467 
468 	for (i = 0; i < NR_IPI; i++)
469 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
470 
471 	return sum;
472 }
473 
474 /*
475  * Timer (local or broadcast) support
476  */
477 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
478 
479 static void ipi_timer(void)
480 {
481 	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
482 	evt->event_handler(evt);
483 }
484 
485 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
486 static void smp_timer_broadcast(const struct cpumask *mask)
487 {
488 	smp_cross_call(mask, IPI_TIMER);
489 }
490 #else
491 #define smp_timer_broadcast	NULL
492 #endif
493 
494 static void broadcast_timer_set_mode(enum clock_event_mode mode,
495 	struct clock_event_device *evt)
496 {
497 }
498 
499 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
500 {
501 	evt->name	= "dummy_timer";
502 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
503 			  CLOCK_EVT_FEAT_PERIODIC |
504 			  CLOCK_EVT_FEAT_DUMMY;
505 	evt->rating	= 400;
506 	evt->mult	= 1;
507 	evt->set_mode	= broadcast_timer_set_mode;
508 
509 	clockevents_register_device(evt);
510 }
511 
512 static struct local_timer_ops *lt_ops;
513 
514 #ifdef CONFIG_LOCAL_TIMERS
515 int local_timer_register(struct local_timer_ops *ops)
516 {
517 	if (!is_smp() || !setup_max_cpus)
518 		return -ENXIO;
519 
520 	if (lt_ops)
521 		return -EBUSY;
522 
523 	lt_ops = ops;
524 	return 0;
525 }
526 #endif
527 
528 static void __cpuinit percpu_timer_setup(void)
529 {
530 	unsigned int cpu = smp_processor_id();
531 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
532 
533 	evt->cpumask = cpumask_of(cpu);
534 	evt->broadcast = smp_timer_broadcast;
535 
536 	if (!lt_ops || lt_ops->setup(evt))
537 		broadcast_timer_setup(evt);
538 }
539 
540 #ifdef CONFIG_HOTPLUG_CPU
541 /*
542  * The generic clock events code purposely does not stop the local timer
543  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
544  * manually here.
545  */
546 static void percpu_timer_stop(void)
547 {
548 	unsigned int cpu = smp_processor_id();
549 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
550 
551 	if (lt_ops)
552 		lt_ops->stop(evt);
553 }
554 #endif
555 
556 static DEFINE_RAW_SPINLOCK(stop_lock);
557 
558 /*
559  * ipi_cpu_stop - handle IPI from smp_send_stop()
560  */
561 static void ipi_cpu_stop(unsigned int cpu)
562 {
563 	if (system_state == SYSTEM_BOOTING ||
564 	    system_state == SYSTEM_RUNNING) {
565 		raw_spin_lock(&stop_lock);
566 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
567 		dump_stack();
568 		raw_spin_unlock(&stop_lock);
569 	}
570 
571 	set_cpu_online(cpu, false);
572 
573 	local_fiq_disable();
574 	local_irq_disable();
575 
576 	while (1)
577 		cpu_relax();
578 }
579 
580 /*
581  * Main handler for inter-processor interrupts
582  */
583 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
584 {
585 	handle_IPI(ipinr, regs);
586 }
587 
588 void handle_IPI(int ipinr, struct pt_regs *regs)
589 {
590 	unsigned int cpu = smp_processor_id();
591 	struct pt_regs *old_regs = set_irq_regs(regs);
592 
593 	if (ipinr < NR_IPI)
594 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
595 
596 	switch (ipinr) {
597 	case IPI_WAKEUP:
598 		break;
599 
600 	case IPI_TIMER:
601 		irq_enter();
602 		ipi_timer();
603 		irq_exit();
604 		break;
605 
606 	case IPI_RESCHEDULE:
607 		scheduler_ipi();
608 		break;
609 
610 	case IPI_CALL_FUNC:
611 		irq_enter();
612 		generic_smp_call_function_interrupt();
613 		irq_exit();
614 		break;
615 
616 	case IPI_CALL_FUNC_SINGLE:
617 		irq_enter();
618 		generic_smp_call_function_single_interrupt();
619 		irq_exit();
620 		break;
621 
622 	case IPI_CPU_STOP:
623 		irq_enter();
624 		ipi_cpu_stop(cpu);
625 		irq_exit();
626 		break;
627 
628 	default:
629 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
630 		       cpu, ipinr);
631 		break;
632 	}
633 	set_irq_regs(old_regs);
634 }
635 
636 void smp_send_reschedule(int cpu)
637 {
638 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
639 }
640 
641 #ifdef CONFIG_HOTPLUG_CPU
642 static void smp_kill_cpus(cpumask_t *mask)
643 {
644 	unsigned int cpu;
645 	for_each_cpu(cpu, mask)
646 		platform_cpu_kill(cpu);
647 }
648 #else
649 static void smp_kill_cpus(cpumask_t *mask) { }
650 #endif
651 
652 void smp_send_stop(void)
653 {
654 	unsigned long timeout;
655 	struct cpumask mask;
656 
657 	cpumask_copy(&mask, cpu_online_mask);
658 	cpumask_clear_cpu(smp_processor_id(), &mask);
659 	if (!cpumask_empty(&mask))
660 		smp_cross_call(&mask, IPI_CPU_STOP);
661 
662 	/* Wait up to one second for other CPUs to stop */
663 	timeout = USEC_PER_SEC;
664 	while (num_online_cpus() > 1 && timeout--)
665 		udelay(1);
666 
667 	if (num_online_cpus() > 1)
668 		pr_warning("SMP: failed to stop secondary CPUs\n");
669 
670 	smp_kill_cpus(&mask);
671 }
672 
673 /*
674  * not supported here
675  */
676 int setup_profiling_timer(unsigned int multiplier)
677 {
678 	return -EINVAL;
679 }
680 
681 #ifdef CONFIG_CPU_FREQ
682 
683 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
684 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
685 static unsigned long global_l_p_j_ref;
686 static unsigned long global_l_p_j_ref_freq;
687 
688 static int cpufreq_callback(struct notifier_block *nb,
689 					unsigned long val, void *data)
690 {
691 	struct cpufreq_freqs *freq = data;
692 	int cpu = freq->cpu;
693 
694 	if (freq->flags & CPUFREQ_CONST_LOOPS)
695 		return NOTIFY_OK;
696 
697 	if (!per_cpu(l_p_j_ref, cpu)) {
698 		per_cpu(l_p_j_ref, cpu) =
699 			per_cpu(cpu_data, cpu).loops_per_jiffy;
700 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
701 		if (!global_l_p_j_ref) {
702 			global_l_p_j_ref = loops_per_jiffy;
703 			global_l_p_j_ref_freq = freq->old;
704 		}
705 	}
706 
707 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
708 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
709 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
710 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
711 						global_l_p_j_ref_freq,
712 						freq->new);
713 		per_cpu(cpu_data, cpu).loops_per_jiffy =
714 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
715 					per_cpu(l_p_j_ref_freq, cpu),
716 					freq->new);
717 	}
718 	return NOTIFY_OK;
719 }
720 
721 static struct notifier_block cpufreq_notifier = {
722 	.notifier_call  = cpufreq_callback,
723 };
724 
725 static int __init register_cpufreq_notifier(void)
726 {
727 	return cpufreq_register_notifier(&cpufreq_notifier,
728 						CPUFREQ_TRANSITION_NOTIFIER);
729 }
730 core_initcall(register_cpufreq_notifier);
731 
732 #endif
733