xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 96f0e00378d4a1fc1b79933ef84e1595015de808)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/nmi.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 #include <linux/cpufreq.h>
29 #include <linux/irq_work.h>
30 
31 #include <linux/atomic.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53 
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60 
61 /*
62  * control for which core is the next to come out of the secondary
63  * boot "holding pen"
64  */
65 volatile int pen_release = -1;
66 
67 enum ipi_msg_type {
68 	IPI_WAKEUP,
69 	IPI_TIMER,
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNC,
72 	IPI_CALL_FUNC_SINGLE,
73 	IPI_CPU_STOP,
74 	IPI_IRQ_WORK,
75 	IPI_COMPLETION,
76 	IPI_CPU_BACKTRACE = 15,
77 };
78 
79 static DECLARE_COMPLETION(cpu_running);
80 
81 static struct smp_operations smp_ops;
82 
83 void __init smp_set_ops(struct smp_operations *ops)
84 {
85 	if (ops)
86 		smp_ops = *ops;
87 };
88 
89 static unsigned long get_arch_pgd(pgd_t *pgd)
90 {
91 #ifdef CONFIG_ARM_LPAE
92 	return __phys_to_pfn(virt_to_phys(pgd));
93 #else
94 	return virt_to_phys(pgd);
95 #endif
96 }
97 
98 int __cpu_up(unsigned int cpu, struct task_struct *idle)
99 {
100 	int ret;
101 
102 	if (!smp_ops.smp_boot_secondary)
103 		return -ENOSYS;
104 
105 	/*
106 	 * We need to tell the secondary core where to find
107 	 * its stack and the page tables.
108 	 */
109 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
110 #ifdef CONFIG_ARM_MPU
111 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
112 #endif
113 
114 #ifdef CONFIG_MMU
115 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
116 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
117 #endif
118 	sync_cache_w(&secondary_data);
119 
120 	/*
121 	 * Now bring the CPU into our world.
122 	 */
123 	ret = smp_ops.smp_boot_secondary(cpu, idle);
124 	if (ret == 0) {
125 		/*
126 		 * CPU was successfully started, wait for it
127 		 * to come online or time out.
128 		 */
129 		wait_for_completion_timeout(&cpu_running,
130 						 msecs_to_jiffies(1000));
131 
132 		if (!cpu_online(cpu)) {
133 			pr_crit("CPU%u: failed to come online\n", cpu);
134 			ret = -EIO;
135 		}
136 	} else {
137 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
138 	}
139 
140 
141 	memset(&secondary_data, 0, sizeof(secondary_data));
142 	return ret;
143 }
144 
145 /* platform specific SMP operations */
146 void __init smp_init_cpus(void)
147 {
148 	if (smp_ops.smp_init_cpus)
149 		smp_ops.smp_init_cpus();
150 }
151 
152 int platform_can_secondary_boot(void)
153 {
154 	return !!smp_ops.smp_boot_secondary;
155 }
156 
157 int platform_can_cpu_hotplug(void)
158 {
159 #ifdef CONFIG_HOTPLUG_CPU
160 	if (smp_ops.cpu_kill)
161 		return 1;
162 #endif
163 
164 	return 0;
165 }
166 
167 #ifdef CONFIG_HOTPLUG_CPU
168 static int platform_cpu_kill(unsigned int cpu)
169 {
170 	if (smp_ops.cpu_kill)
171 		return smp_ops.cpu_kill(cpu);
172 	return 1;
173 }
174 
175 static int platform_cpu_disable(unsigned int cpu)
176 {
177 	if (smp_ops.cpu_disable)
178 		return smp_ops.cpu_disable(cpu);
179 
180 	/*
181 	 * By default, allow disabling all CPUs except the first one,
182 	 * since this is special on a lot of platforms, e.g. because
183 	 * of clock tick interrupts.
184 	 */
185 	return cpu == 0 ? -EPERM : 0;
186 }
187 /*
188  * __cpu_disable runs on the processor to be shutdown.
189  */
190 int __cpu_disable(void)
191 {
192 	unsigned int cpu = smp_processor_id();
193 	int ret;
194 
195 	ret = platform_cpu_disable(cpu);
196 	if (ret)
197 		return ret;
198 
199 	/*
200 	 * Take this CPU offline.  Once we clear this, we can't return,
201 	 * and we must not schedule until we're ready to give up the cpu.
202 	 */
203 	set_cpu_online(cpu, false);
204 
205 	/*
206 	 * OK - migrate IRQs away from this CPU
207 	 */
208 	migrate_irqs();
209 
210 	/*
211 	 * Flush user cache and TLB mappings, and then remove this CPU
212 	 * from the vm mask set of all processes.
213 	 *
214 	 * Caches are flushed to the Level of Unification Inner Shareable
215 	 * to write-back dirty lines to unified caches shared by all CPUs.
216 	 */
217 	flush_cache_louis();
218 	local_flush_tlb_all();
219 
220 	clear_tasks_mm_cpumask(cpu);
221 
222 	return 0;
223 }
224 
225 static DECLARE_COMPLETION(cpu_died);
226 
227 /*
228  * called on the thread which is asking for a CPU to be shutdown -
229  * waits until shutdown has completed, or it is timed out.
230  */
231 void __cpu_die(unsigned int cpu)
232 {
233 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
234 		pr_err("CPU%u: cpu didn't die\n", cpu);
235 		return;
236 	}
237 	pr_notice("CPU%u: shutdown\n", cpu);
238 
239 	/*
240 	 * platform_cpu_kill() is generally expected to do the powering off
241 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
242 	 * be done by the CPU which is dying in preference to supporting
243 	 * this call, but that means there is _no_ synchronisation between
244 	 * the requesting CPU and the dying CPU actually losing power.
245 	 */
246 	if (!platform_cpu_kill(cpu))
247 		pr_err("CPU%u: unable to kill\n", cpu);
248 }
249 
250 /*
251  * Called from the idle thread for the CPU which has been shutdown.
252  *
253  * Note that we disable IRQs here, but do not re-enable them
254  * before returning to the caller. This is also the behaviour
255  * of the other hotplug-cpu capable cores, so presumably coming
256  * out of idle fixes this.
257  */
258 void __ref cpu_die(void)
259 {
260 	unsigned int cpu = smp_processor_id();
261 
262 	idle_task_exit();
263 
264 	local_irq_disable();
265 
266 	/*
267 	 * Flush the data out of the L1 cache for this CPU.  This must be
268 	 * before the completion to ensure that data is safely written out
269 	 * before platform_cpu_kill() gets called - which may disable
270 	 * *this* CPU and power down its cache.
271 	 */
272 	flush_cache_louis();
273 
274 	/*
275 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
276 	 * this returns, power and/or clocks can be removed at any point
277 	 * from this CPU and its cache by platform_cpu_kill().
278 	 */
279 	complete(&cpu_died);
280 
281 	/*
282 	 * Ensure that the cache lines associated with that completion are
283 	 * written out.  This covers the case where _this_ CPU is doing the
284 	 * powering down, to ensure that the completion is visible to the
285 	 * CPU waiting for this one.
286 	 */
287 	flush_cache_louis();
288 
289 	/*
290 	 * The actual CPU shutdown procedure is at least platform (if not
291 	 * CPU) specific.  This may remove power, or it may simply spin.
292 	 *
293 	 * Platforms are generally expected *NOT* to return from this call,
294 	 * although there are some which do because they have no way to
295 	 * power down the CPU.  These platforms are the _only_ reason we
296 	 * have a return path which uses the fragment of assembly below.
297 	 *
298 	 * The return path should not be used for platforms which can
299 	 * power off the CPU.
300 	 */
301 	if (smp_ops.cpu_die)
302 		smp_ops.cpu_die(cpu);
303 
304 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
305 		cpu);
306 
307 	/*
308 	 * Do not return to the idle loop - jump back to the secondary
309 	 * cpu initialisation.  There's some initialisation which needs
310 	 * to be repeated to undo the effects of taking the CPU offline.
311 	 */
312 	__asm__("mov	sp, %0\n"
313 	"	mov	fp, #0\n"
314 	"	b	secondary_start_kernel"
315 		:
316 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
317 }
318 #endif /* CONFIG_HOTPLUG_CPU */
319 
320 /*
321  * Called by both boot and secondaries to move global data into
322  * per-processor storage.
323  */
324 static void smp_store_cpu_info(unsigned int cpuid)
325 {
326 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
327 
328 	cpu_info->loops_per_jiffy = loops_per_jiffy;
329 	cpu_info->cpuid = read_cpuid_id();
330 
331 	store_cpu_topology(cpuid);
332 }
333 
334 /*
335  * This is the secondary CPU boot entry.  We're using this CPUs
336  * idle thread stack, but a set of temporary page tables.
337  */
338 asmlinkage void secondary_start_kernel(void)
339 {
340 	struct mm_struct *mm = &init_mm;
341 	unsigned int cpu;
342 
343 	/*
344 	 * The identity mapping is uncached (strongly ordered), so
345 	 * switch away from it before attempting any exclusive accesses.
346 	 */
347 	cpu_switch_mm(mm->pgd, mm);
348 	local_flush_bp_all();
349 	enter_lazy_tlb(mm, current);
350 	local_flush_tlb_all();
351 
352 	/*
353 	 * All kernel threads share the same mm context; grab a
354 	 * reference and switch to it.
355 	 */
356 	cpu = smp_processor_id();
357 	atomic_inc(&mm->mm_count);
358 	current->active_mm = mm;
359 	cpumask_set_cpu(cpu, mm_cpumask(mm));
360 
361 	cpu_init();
362 
363 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
364 
365 	preempt_disable();
366 	trace_hardirqs_off();
367 
368 	/*
369 	 * Give the platform a chance to do its own initialisation.
370 	 */
371 	if (smp_ops.smp_secondary_init)
372 		smp_ops.smp_secondary_init(cpu);
373 
374 	notify_cpu_starting(cpu);
375 
376 	calibrate_delay();
377 
378 	smp_store_cpu_info(cpu);
379 
380 	/*
381 	 * OK, now it's safe to let the boot CPU continue.  Wait for
382 	 * the CPU migration code to notice that the CPU is online
383 	 * before we continue - which happens after __cpu_up returns.
384 	 */
385 	set_cpu_online(cpu, true);
386 	complete(&cpu_running);
387 
388 	local_irq_enable();
389 	local_fiq_enable();
390 
391 	/*
392 	 * OK, it's off to the idle thread for us
393 	 */
394 	cpu_startup_entry(CPUHP_ONLINE);
395 }
396 
397 void __init smp_cpus_done(unsigned int max_cpus)
398 {
399 	int cpu;
400 	unsigned long bogosum = 0;
401 
402 	for_each_online_cpu(cpu)
403 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
404 
405 	printk(KERN_INFO "SMP: Total of %d processors activated "
406 	       "(%lu.%02lu BogoMIPS).\n",
407 	       num_online_cpus(),
408 	       bogosum / (500000/HZ),
409 	       (bogosum / (5000/HZ)) % 100);
410 
411 	hyp_mode_check();
412 }
413 
414 void __init smp_prepare_boot_cpu(void)
415 {
416 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
417 }
418 
419 void __init smp_prepare_cpus(unsigned int max_cpus)
420 {
421 	unsigned int ncores = num_possible_cpus();
422 
423 	init_cpu_topology();
424 
425 	smp_store_cpu_info(smp_processor_id());
426 
427 	/*
428 	 * are we trying to boot more cores than exist?
429 	 */
430 	if (max_cpus > ncores)
431 		max_cpus = ncores;
432 	if (ncores > 1 && max_cpus) {
433 		/*
434 		 * Initialise the present map, which describes the set of CPUs
435 		 * actually populated at the present time. A platform should
436 		 * re-initialize the map in the platforms smp_prepare_cpus()
437 		 * if present != possible (e.g. physical hotplug).
438 		 */
439 		init_cpu_present(cpu_possible_mask);
440 
441 		/*
442 		 * Initialise the SCU if there are more than one CPU
443 		 * and let them know where to start.
444 		 */
445 		if (smp_ops.smp_prepare_cpus)
446 			smp_ops.smp_prepare_cpus(max_cpus);
447 	}
448 }
449 
450 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
451 
452 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
453 {
454 	if (!__smp_cross_call)
455 		__smp_cross_call = fn;
456 }
457 
458 static const char *ipi_types[NR_IPI] __tracepoint_string = {
459 #define S(x,s)	[x] = s
460 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
461 	S(IPI_TIMER, "Timer broadcast interrupts"),
462 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
463 	S(IPI_CALL_FUNC, "Function call interrupts"),
464 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
465 	S(IPI_CPU_STOP, "CPU stop interrupts"),
466 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
467 	S(IPI_COMPLETION, "completion interrupts"),
468 };
469 
470 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
471 {
472 	trace_ipi_raise(target, ipi_types[ipinr]);
473 	__smp_cross_call(target, ipinr);
474 }
475 
476 void show_ipi_list(struct seq_file *p, int prec)
477 {
478 	unsigned int cpu, i;
479 
480 	for (i = 0; i < NR_IPI; i++) {
481 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
482 
483 		for_each_online_cpu(cpu)
484 			seq_printf(p, "%10u ",
485 				   __get_irq_stat(cpu, ipi_irqs[i]));
486 
487 		seq_printf(p, " %s\n", ipi_types[i]);
488 	}
489 }
490 
491 u64 smp_irq_stat_cpu(unsigned int cpu)
492 {
493 	u64 sum = 0;
494 	int i;
495 
496 	for (i = 0; i < NR_IPI; i++)
497 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
498 
499 	return sum;
500 }
501 
502 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
503 {
504 	smp_cross_call(mask, IPI_CALL_FUNC);
505 }
506 
507 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
508 {
509 	smp_cross_call(mask, IPI_WAKEUP);
510 }
511 
512 void arch_send_call_function_single_ipi(int cpu)
513 {
514 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
515 }
516 
517 #ifdef CONFIG_IRQ_WORK
518 void arch_irq_work_raise(void)
519 {
520 	if (arch_irq_work_has_interrupt())
521 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
522 }
523 #endif
524 
525 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
526 void tick_broadcast(const struct cpumask *mask)
527 {
528 	smp_cross_call(mask, IPI_TIMER);
529 }
530 #endif
531 
532 static DEFINE_RAW_SPINLOCK(stop_lock);
533 
534 /*
535  * ipi_cpu_stop - handle IPI from smp_send_stop()
536  */
537 static void ipi_cpu_stop(unsigned int cpu)
538 {
539 	if (system_state == SYSTEM_BOOTING ||
540 	    system_state == SYSTEM_RUNNING) {
541 		raw_spin_lock(&stop_lock);
542 		pr_crit("CPU%u: stopping\n", cpu);
543 		dump_stack();
544 		raw_spin_unlock(&stop_lock);
545 	}
546 
547 	set_cpu_online(cpu, false);
548 
549 	local_fiq_disable();
550 	local_irq_disable();
551 
552 	while (1)
553 		cpu_relax();
554 }
555 
556 static DEFINE_PER_CPU(struct completion *, cpu_completion);
557 
558 int register_ipi_completion(struct completion *completion, int cpu)
559 {
560 	per_cpu(cpu_completion, cpu) = completion;
561 	return IPI_COMPLETION;
562 }
563 
564 static void ipi_complete(unsigned int cpu)
565 {
566 	complete(per_cpu(cpu_completion, cpu));
567 }
568 
569 /*
570  * Main handler for inter-processor interrupts
571  */
572 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
573 {
574 	handle_IPI(ipinr, regs);
575 }
576 
577 void handle_IPI(int ipinr, struct pt_regs *regs)
578 {
579 	unsigned int cpu = smp_processor_id();
580 	struct pt_regs *old_regs = set_irq_regs(regs);
581 
582 	if ((unsigned)ipinr < NR_IPI) {
583 		trace_ipi_entry(ipi_types[ipinr]);
584 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
585 	}
586 
587 	switch (ipinr) {
588 	case IPI_WAKEUP:
589 		break;
590 
591 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
592 	case IPI_TIMER:
593 		irq_enter();
594 		tick_receive_broadcast();
595 		irq_exit();
596 		break;
597 #endif
598 
599 	case IPI_RESCHEDULE:
600 		scheduler_ipi();
601 		break;
602 
603 	case IPI_CALL_FUNC:
604 		irq_enter();
605 		generic_smp_call_function_interrupt();
606 		irq_exit();
607 		break;
608 
609 	case IPI_CALL_FUNC_SINGLE:
610 		irq_enter();
611 		generic_smp_call_function_single_interrupt();
612 		irq_exit();
613 		break;
614 
615 	case IPI_CPU_STOP:
616 		irq_enter();
617 		ipi_cpu_stop(cpu);
618 		irq_exit();
619 		break;
620 
621 #ifdef CONFIG_IRQ_WORK
622 	case IPI_IRQ_WORK:
623 		irq_enter();
624 		irq_work_run();
625 		irq_exit();
626 		break;
627 #endif
628 
629 	case IPI_COMPLETION:
630 		irq_enter();
631 		ipi_complete(cpu);
632 		irq_exit();
633 		break;
634 
635 	case IPI_CPU_BACKTRACE:
636 		irq_enter();
637 		nmi_cpu_backtrace(regs);
638 		irq_exit();
639 		break;
640 
641 	default:
642 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
643 		        cpu, ipinr);
644 		break;
645 	}
646 
647 	if ((unsigned)ipinr < NR_IPI)
648 		trace_ipi_exit(ipi_types[ipinr]);
649 	set_irq_regs(old_regs);
650 }
651 
652 void smp_send_reschedule(int cpu)
653 {
654 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
655 }
656 
657 void smp_send_stop(void)
658 {
659 	unsigned long timeout;
660 	struct cpumask mask;
661 
662 	cpumask_copy(&mask, cpu_online_mask);
663 	cpumask_clear_cpu(smp_processor_id(), &mask);
664 	if (!cpumask_empty(&mask))
665 		smp_cross_call(&mask, IPI_CPU_STOP);
666 
667 	/* Wait up to one second for other CPUs to stop */
668 	timeout = USEC_PER_SEC;
669 	while (num_online_cpus() > 1 && timeout--)
670 		udelay(1);
671 
672 	if (num_online_cpus() > 1)
673 		pr_warn("SMP: failed to stop secondary CPUs\n");
674 }
675 
676 /*
677  * not supported here
678  */
679 int setup_profiling_timer(unsigned int multiplier)
680 {
681 	return -EINVAL;
682 }
683 
684 #ifdef CONFIG_CPU_FREQ
685 
686 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
687 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
688 static unsigned long global_l_p_j_ref;
689 static unsigned long global_l_p_j_ref_freq;
690 
691 static int cpufreq_callback(struct notifier_block *nb,
692 					unsigned long val, void *data)
693 {
694 	struct cpufreq_freqs *freq = data;
695 	int cpu = freq->cpu;
696 
697 	if (freq->flags & CPUFREQ_CONST_LOOPS)
698 		return NOTIFY_OK;
699 
700 	if (!per_cpu(l_p_j_ref, cpu)) {
701 		per_cpu(l_p_j_ref, cpu) =
702 			per_cpu(cpu_data, cpu).loops_per_jiffy;
703 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
704 		if (!global_l_p_j_ref) {
705 			global_l_p_j_ref = loops_per_jiffy;
706 			global_l_p_j_ref_freq = freq->old;
707 		}
708 	}
709 
710 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
711 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
712 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
713 						global_l_p_j_ref_freq,
714 						freq->new);
715 		per_cpu(cpu_data, cpu).loops_per_jiffy =
716 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
717 					per_cpu(l_p_j_ref_freq, cpu),
718 					freq->new);
719 	}
720 	return NOTIFY_OK;
721 }
722 
723 static struct notifier_block cpufreq_notifier = {
724 	.notifier_call  = cpufreq_callback,
725 };
726 
727 static int __init register_cpufreq_notifier(void)
728 {
729 	return cpufreq_register_notifier(&cpufreq_notifier,
730 						CPUFREQ_TRANSITION_NOTIFIER);
731 }
732 core_initcall(register_cpufreq_notifier);
733 
734 #endif
735 
736 static void raise_nmi(cpumask_t *mask)
737 {
738 	smp_cross_call(mask, IPI_CPU_BACKTRACE);
739 }
740 
741 void arch_trigger_all_cpu_backtrace(bool include_self)
742 {
743 	nmi_trigger_all_cpu_backtrace(include_self, raise_nmi);
744 }
745