1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/nmi.h> 25 #include <linux/percpu.h> 26 #include <linux/clockchips.h> 27 #include <linux/completion.h> 28 #include <linux/cpufreq.h> 29 #include <linux/irq_work.h> 30 31 #include <linux/atomic.h> 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpu.h> 35 #include <asm/cputype.h> 36 #include <asm/exception.h> 37 #include <asm/idmap.h> 38 #include <asm/topology.h> 39 #include <asm/mmu_context.h> 40 #include <asm/pgtable.h> 41 #include <asm/pgalloc.h> 42 #include <asm/processor.h> 43 #include <asm/sections.h> 44 #include <asm/tlbflush.h> 45 #include <asm/ptrace.h> 46 #include <asm/smp_plat.h> 47 #include <asm/virt.h> 48 #include <asm/mach/arch.h> 49 #include <asm/mpu.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/ipi.h> 53 54 /* 55 * as from 2.5, kernels no longer have an init_tasks structure 56 * so we need some other way of telling a new secondary core 57 * where to place its SVC stack 58 */ 59 struct secondary_data secondary_data; 60 61 /* 62 * control for which core is the next to come out of the secondary 63 * boot "holding pen" 64 */ 65 volatile int pen_release = -1; 66 67 enum ipi_msg_type { 68 IPI_WAKEUP, 69 IPI_TIMER, 70 IPI_RESCHEDULE, 71 IPI_CALL_FUNC, 72 IPI_CALL_FUNC_SINGLE, 73 IPI_CPU_STOP, 74 IPI_IRQ_WORK, 75 IPI_COMPLETION, 76 IPI_CPU_BACKTRACE = 15, 77 }; 78 79 static DECLARE_COMPLETION(cpu_running); 80 81 static struct smp_operations smp_ops; 82 83 void __init smp_set_ops(struct smp_operations *ops) 84 { 85 if (ops) 86 smp_ops = *ops; 87 }; 88 89 static unsigned long get_arch_pgd(pgd_t *pgd) 90 { 91 #ifdef CONFIG_ARM_LPAE 92 return __phys_to_pfn(virt_to_phys(pgd)); 93 #else 94 return virt_to_phys(pgd); 95 #endif 96 } 97 98 int __cpu_up(unsigned int cpu, struct task_struct *idle) 99 { 100 int ret; 101 102 if (!smp_ops.smp_boot_secondary) 103 return -ENOSYS; 104 105 /* 106 * We need to tell the secondary core where to find 107 * its stack and the page tables. 108 */ 109 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 110 #ifdef CONFIG_ARM_MPU 111 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr; 112 #endif 113 114 #ifdef CONFIG_MMU 115 secondary_data.pgdir = virt_to_phys(idmap_pgd); 116 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 117 #endif 118 sync_cache_w(&secondary_data); 119 120 /* 121 * Now bring the CPU into our world. 122 */ 123 ret = smp_ops.smp_boot_secondary(cpu, idle); 124 if (ret == 0) { 125 /* 126 * CPU was successfully started, wait for it 127 * to come online or time out. 128 */ 129 wait_for_completion_timeout(&cpu_running, 130 msecs_to_jiffies(1000)); 131 132 if (!cpu_online(cpu)) { 133 pr_crit("CPU%u: failed to come online\n", cpu); 134 ret = -EIO; 135 } 136 } else { 137 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 138 } 139 140 141 memset(&secondary_data, 0, sizeof(secondary_data)); 142 return ret; 143 } 144 145 /* platform specific SMP operations */ 146 void __init smp_init_cpus(void) 147 { 148 if (smp_ops.smp_init_cpus) 149 smp_ops.smp_init_cpus(); 150 } 151 152 int platform_can_secondary_boot(void) 153 { 154 return !!smp_ops.smp_boot_secondary; 155 } 156 157 int platform_can_cpu_hotplug(void) 158 { 159 #ifdef CONFIG_HOTPLUG_CPU 160 if (smp_ops.cpu_kill) 161 return 1; 162 #endif 163 164 return 0; 165 } 166 167 #ifdef CONFIG_HOTPLUG_CPU 168 static int platform_cpu_kill(unsigned int cpu) 169 { 170 if (smp_ops.cpu_kill) 171 return smp_ops.cpu_kill(cpu); 172 return 1; 173 } 174 175 static int platform_cpu_disable(unsigned int cpu) 176 { 177 if (smp_ops.cpu_disable) 178 return smp_ops.cpu_disable(cpu); 179 180 /* 181 * By default, allow disabling all CPUs except the first one, 182 * since this is special on a lot of platforms, e.g. because 183 * of clock tick interrupts. 184 */ 185 return cpu == 0 ? -EPERM : 0; 186 } 187 /* 188 * __cpu_disable runs on the processor to be shutdown. 189 */ 190 int __cpu_disable(void) 191 { 192 unsigned int cpu = smp_processor_id(); 193 int ret; 194 195 ret = platform_cpu_disable(cpu); 196 if (ret) 197 return ret; 198 199 /* 200 * Take this CPU offline. Once we clear this, we can't return, 201 * and we must not schedule until we're ready to give up the cpu. 202 */ 203 set_cpu_online(cpu, false); 204 205 /* 206 * OK - migrate IRQs away from this CPU 207 */ 208 migrate_irqs(); 209 210 /* 211 * Flush user cache and TLB mappings, and then remove this CPU 212 * from the vm mask set of all processes. 213 * 214 * Caches are flushed to the Level of Unification Inner Shareable 215 * to write-back dirty lines to unified caches shared by all CPUs. 216 */ 217 flush_cache_louis(); 218 local_flush_tlb_all(); 219 220 clear_tasks_mm_cpumask(cpu); 221 222 return 0; 223 } 224 225 static DECLARE_COMPLETION(cpu_died); 226 227 /* 228 * called on the thread which is asking for a CPU to be shutdown - 229 * waits until shutdown has completed, or it is timed out. 230 */ 231 void __cpu_die(unsigned int cpu) 232 { 233 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 234 pr_err("CPU%u: cpu didn't die\n", cpu); 235 return; 236 } 237 pr_notice("CPU%u: shutdown\n", cpu); 238 239 /* 240 * platform_cpu_kill() is generally expected to do the powering off 241 * and/or cutting of clocks to the dying CPU. Optionally, this may 242 * be done by the CPU which is dying in preference to supporting 243 * this call, but that means there is _no_ synchronisation between 244 * the requesting CPU and the dying CPU actually losing power. 245 */ 246 if (!platform_cpu_kill(cpu)) 247 pr_err("CPU%u: unable to kill\n", cpu); 248 } 249 250 /* 251 * Called from the idle thread for the CPU which has been shutdown. 252 * 253 * Note that we disable IRQs here, but do not re-enable them 254 * before returning to the caller. This is also the behaviour 255 * of the other hotplug-cpu capable cores, so presumably coming 256 * out of idle fixes this. 257 */ 258 void __ref cpu_die(void) 259 { 260 unsigned int cpu = smp_processor_id(); 261 262 idle_task_exit(); 263 264 local_irq_disable(); 265 266 /* 267 * Flush the data out of the L1 cache for this CPU. This must be 268 * before the completion to ensure that data is safely written out 269 * before platform_cpu_kill() gets called - which may disable 270 * *this* CPU and power down its cache. 271 */ 272 flush_cache_louis(); 273 274 /* 275 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 276 * this returns, power and/or clocks can be removed at any point 277 * from this CPU and its cache by platform_cpu_kill(). 278 */ 279 complete(&cpu_died); 280 281 /* 282 * Ensure that the cache lines associated with that completion are 283 * written out. This covers the case where _this_ CPU is doing the 284 * powering down, to ensure that the completion is visible to the 285 * CPU waiting for this one. 286 */ 287 flush_cache_louis(); 288 289 /* 290 * The actual CPU shutdown procedure is at least platform (if not 291 * CPU) specific. This may remove power, or it may simply spin. 292 * 293 * Platforms are generally expected *NOT* to return from this call, 294 * although there are some which do because they have no way to 295 * power down the CPU. These platforms are the _only_ reason we 296 * have a return path which uses the fragment of assembly below. 297 * 298 * The return path should not be used for platforms which can 299 * power off the CPU. 300 */ 301 if (smp_ops.cpu_die) 302 smp_ops.cpu_die(cpu); 303 304 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 305 cpu); 306 307 /* 308 * Do not return to the idle loop - jump back to the secondary 309 * cpu initialisation. There's some initialisation which needs 310 * to be repeated to undo the effects of taking the CPU offline. 311 */ 312 __asm__("mov sp, %0\n" 313 " mov fp, #0\n" 314 " b secondary_start_kernel" 315 : 316 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 317 } 318 #endif /* CONFIG_HOTPLUG_CPU */ 319 320 /* 321 * Called by both boot and secondaries to move global data into 322 * per-processor storage. 323 */ 324 static void smp_store_cpu_info(unsigned int cpuid) 325 { 326 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 327 328 cpu_info->loops_per_jiffy = loops_per_jiffy; 329 cpu_info->cpuid = read_cpuid_id(); 330 331 store_cpu_topology(cpuid); 332 } 333 334 /* 335 * This is the secondary CPU boot entry. We're using this CPUs 336 * idle thread stack, but a set of temporary page tables. 337 */ 338 asmlinkage void secondary_start_kernel(void) 339 { 340 struct mm_struct *mm = &init_mm; 341 unsigned int cpu; 342 343 /* 344 * The identity mapping is uncached (strongly ordered), so 345 * switch away from it before attempting any exclusive accesses. 346 */ 347 cpu_switch_mm(mm->pgd, mm); 348 local_flush_bp_all(); 349 enter_lazy_tlb(mm, current); 350 local_flush_tlb_all(); 351 352 /* 353 * All kernel threads share the same mm context; grab a 354 * reference and switch to it. 355 */ 356 cpu = smp_processor_id(); 357 atomic_inc(&mm->mm_count); 358 current->active_mm = mm; 359 cpumask_set_cpu(cpu, mm_cpumask(mm)); 360 361 cpu_init(); 362 363 pr_debug("CPU%u: Booted secondary processor\n", cpu); 364 365 preempt_disable(); 366 trace_hardirqs_off(); 367 368 /* 369 * Give the platform a chance to do its own initialisation. 370 */ 371 if (smp_ops.smp_secondary_init) 372 smp_ops.smp_secondary_init(cpu); 373 374 notify_cpu_starting(cpu); 375 376 calibrate_delay(); 377 378 smp_store_cpu_info(cpu); 379 380 /* 381 * OK, now it's safe to let the boot CPU continue. Wait for 382 * the CPU migration code to notice that the CPU is online 383 * before we continue - which happens after __cpu_up returns. 384 */ 385 set_cpu_online(cpu, true); 386 complete(&cpu_running); 387 388 local_irq_enable(); 389 local_fiq_enable(); 390 391 /* 392 * OK, it's off to the idle thread for us 393 */ 394 cpu_startup_entry(CPUHP_ONLINE); 395 } 396 397 void __init smp_cpus_done(unsigned int max_cpus) 398 { 399 int cpu; 400 unsigned long bogosum = 0; 401 402 for_each_online_cpu(cpu) 403 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 404 405 printk(KERN_INFO "SMP: Total of %d processors activated " 406 "(%lu.%02lu BogoMIPS).\n", 407 num_online_cpus(), 408 bogosum / (500000/HZ), 409 (bogosum / (5000/HZ)) % 100); 410 411 hyp_mode_check(); 412 } 413 414 void __init smp_prepare_boot_cpu(void) 415 { 416 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 417 } 418 419 void __init smp_prepare_cpus(unsigned int max_cpus) 420 { 421 unsigned int ncores = num_possible_cpus(); 422 423 init_cpu_topology(); 424 425 smp_store_cpu_info(smp_processor_id()); 426 427 /* 428 * are we trying to boot more cores than exist? 429 */ 430 if (max_cpus > ncores) 431 max_cpus = ncores; 432 if (ncores > 1 && max_cpus) { 433 /* 434 * Initialise the present map, which describes the set of CPUs 435 * actually populated at the present time. A platform should 436 * re-initialize the map in the platforms smp_prepare_cpus() 437 * if present != possible (e.g. physical hotplug). 438 */ 439 init_cpu_present(cpu_possible_mask); 440 441 /* 442 * Initialise the SCU if there are more than one CPU 443 * and let them know where to start. 444 */ 445 if (smp_ops.smp_prepare_cpus) 446 smp_ops.smp_prepare_cpus(max_cpus); 447 } 448 } 449 450 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 451 452 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 453 { 454 if (!__smp_cross_call) 455 __smp_cross_call = fn; 456 } 457 458 static const char *ipi_types[NR_IPI] __tracepoint_string = { 459 #define S(x,s) [x] = s 460 S(IPI_WAKEUP, "CPU wakeup interrupts"), 461 S(IPI_TIMER, "Timer broadcast interrupts"), 462 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 463 S(IPI_CALL_FUNC, "Function call interrupts"), 464 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 465 S(IPI_CPU_STOP, "CPU stop interrupts"), 466 S(IPI_IRQ_WORK, "IRQ work interrupts"), 467 S(IPI_COMPLETION, "completion interrupts"), 468 }; 469 470 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 471 { 472 trace_ipi_raise(target, ipi_types[ipinr]); 473 __smp_cross_call(target, ipinr); 474 } 475 476 void show_ipi_list(struct seq_file *p, int prec) 477 { 478 unsigned int cpu, i; 479 480 for (i = 0; i < NR_IPI; i++) { 481 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 482 483 for_each_online_cpu(cpu) 484 seq_printf(p, "%10u ", 485 __get_irq_stat(cpu, ipi_irqs[i])); 486 487 seq_printf(p, " %s\n", ipi_types[i]); 488 } 489 } 490 491 u64 smp_irq_stat_cpu(unsigned int cpu) 492 { 493 u64 sum = 0; 494 int i; 495 496 for (i = 0; i < NR_IPI; i++) 497 sum += __get_irq_stat(cpu, ipi_irqs[i]); 498 499 return sum; 500 } 501 502 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 503 { 504 smp_cross_call(mask, IPI_CALL_FUNC); 505 } 506 507 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 508 { 509 smp_cross_call(mask, IPI_WAKEUP); 510 } 511 512 void arch_send_call_function_single_ipi(int cpu) 513 { 514 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 515 } 516 517 #ifdef CONFIG_IRQ_WORK 518 void arch_irq_work_raise(void) 519 { 520 if (arch_irq_work_has_interrupt()) 521 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 522 } 523 #endif 524 525 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 526 void tick_broadcast(const struct cpumask *mask) 527 { 528 smp_cross_call(mask, IPI_TIMER); 529 } 530 #endif 531 532 static DEFINE_RAW_SPINLOCK(stop_lock); 533 534 /* 535 * ipi_cpu_stop - handle IPI from smp_send_stop() 536 */ 537 static void ipi_cpu_stop(unsigned int cpu) 538 { 539 if (system_state == SYSTEM_BOOTING || 540 system_state == SYSTEM_RUNNING) { 541 raw_spin_lock(&stop_lock); 542 pr_crit("CPU%u: stopping\n", cpu); 543 dump_stack(); 544 raw_spin_unlock(&stop_lock); 545 } 546 547 set_cpu_online(cpu, false); 548 549 local_fiq_disable(); 550 local_irq_disable(); 551 552 while (1) 553 cpu_relax(); 554 } 555 556 static DEFINE_PER_CPU(struct completion *, cpu_completion); 557 558 int register_ipi_completion(struct completion *completion, int cpu) 559 { 560 per_cpu(cpu_completion, cpu) = completion; 561 return IPI_COMPLETION; 562 } 563 564 static void ipi_complete(unsigned int cpu) 565 { 566 complete(per_cpu(cpu_completion, cpu)); 567 } 568 569 /* 570 * Main handler for inter-processor interrupts 571 */ 572 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 573 { 574 handle_IPI(ipinr, regs); 575 } 576 577 void handle_IPI(int ipinr, struct pt_regs *regs) 578 { 579 unsigned int cpu = smp_processor_id(); 580 struct pt_regs *old_regs = set_irq_regs(regs); 581 582 if ((unsigned)ipinr < NR_IPI) { 583 trace_ipi_entry(ipi_types[ipinr]); 584 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 585 } 586 587 switch (ipinr) { 588 case IPI_WAKEUP: 589 break; 590 591 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 592 case IPI_TIMER: 593 irq_enter(); 594 tick_receive_broadcast(); 595 irq_exit(); 596 break; 597 #endif 598 599 case IPI_RESCHEDULE: 600 scheduler_ipi(); 601 break; 602 603 case IPI_CALL_FUNC: 604 irq_enter(); 605 generic_smp_call_function_interrupt(); 606 irq_exit(); 607 break; 608 609 case IPI_CALL_FUNC_SINGLE: 610 irq_enter(); 611 generic_smp_call_function_single_interrupt(); 612 irq_exit(); 613 break; 614 615 case IPI_CPU_STOP: 616 irq_enter(); 617 ipi_cpu_stop(cpu); 618 irq_exit(); 619 break; 620 621 #ifdef CONFIG_IRQ_WORK 622 case IPI_IRQ_WORK: 623 irq_enter(); 624 irq_work_run(); 625 irq_exit(); 626 break; 627 #endif 628 629 case IPI_COMPLETION: 630 irq_enter(); 631 ipi_complete(cpu); 632 irq_exit(); 633 break; 634 635 case IPI_CPU_BACKTRACE: 636 irq_enter(); 637 nmi_cpu_backtrace(regs); 638 irq_exit(); 639 break; 640 641 default: 642 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 643 cpu, ipinr); 644 break; 645 } 646 647 if ((unsigned)ipinr < NR_IPI) 648 trace_ipi_exit(ipi_types[ipinr]); 649 set_irq_regs(old_regs); 650 } 651 652 void smp_send_reschedule(int cpu) 653 { 654 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 655 } 656 657 void smp_send_stop(void) 658 { 659 unsigned long timeout; 660 struct cpumask mask; 661 662 cpumask_copy(&mask, cpu_online_mask); 663 cpumask_clear_cpu(smp_processor_id(), &mask); 664 if (!cpumask_empty(&mask)) 665 smp_cross_call(&mask, IPI_CPU_STOP); 666 667 /* Wait up to one second for other CPUs to stop */ 668 timeout = USEC_PER_SEC; 669 while (num_online_cpus() > 1 && timeout--) 670 udelay(1); 671 672 if (num_online_cpus() > 1) 673 pr_warn("SMP: failed to stop secondary CPUs\n"); 674 } 675 676 /* 677 * not supported here 678 */ 679 int setup_profiling_timer(unsigned int multiplier) 680 { 681 return -EINVAL; 682 } 683 684 #ifdef CONFIG_CPU_FREQ 685 686 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 687 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 688 static unsigned long global_l_p_j_ref; 689 static unsigned long global_l_p_j_ref_freq; 690 691 static int cpufreq_callback(struct notifier_block *nb, 692 unsigned long val, void *data) 693 { 694 struct cpufreq_freqs *freq = data; 695 int cpu = freq->cpu; 696 697 if (freq->flags & CPUFREQ_CONST_LOOPS) 698 return NOTIFY_OK; 699 700 if (!per_cpu(l_p_j_ref, cpu)) { 701 per_cpu(l_p_j_ref, cpu) = 702 per_cpu(cpu_data, cpu).loops_per_jiffy; 703 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 704 if (!global_l_p_j_ref) { 705 global_l_p_j_ref = loops_per_jiffy; 706 global_l_p_j_ref_freq = freq->old; 707 } 708 } 709 710 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 711 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 712 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 713 global_l_p_j_ref_freq, 714 freq->new); 715 per_cpu(cpu_data, cpu).loops_per_jiffy = 716 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 717 per_cpu(l_p_j_ref_freq, cpu), 718 freq->new); 719 } 720 return NOTIFY_OK; 721 } 722 723 static struct notifier_block cpufreq_notifier = { 724 .notifier_call = cpufreq_callback, 725 }; 726 727 static int __init register_cpufreq_notifier(void) 728 { 729 return cpufreq_register_notifier(&cpufreq_notifier, 730 CPUFREQ_TRANSITION_NOTIFIER); 731 } 732 core_initcall(register_cpufreq_notifier); 733 734 #endif 735 736 static void raise_nmi(cpumask_t *mask) 737 { 738 smp_cross_call(mask, IPI_CPU_BACKTRACE); 739 } 740 741 void arch_trigger_all_cpu_backtrace(bool include_self) 742 { 743 nmi_trigger_all_cpu_backtrace(include_self, raise_nmi); 744 } 745