1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/ftrace.h> 20 #include <linux/mm.h> 21 #include <linux/err.h> 22 #include <linux/cpu.h> 23 #include <linux/smp.h> 24 #include <linux/seq_file.h> 25 #include <linux/irq.h> 26 #include <linux/percpu.h> 27 #include <linux/clockchips.h> 28 #include <linux/completion.h> 29 30 #include <asm/atomic.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpu.h> 33 #include <asm/cputype.h> 34 #include <asm/mmu_context.h> 35 #include <asm/pgtable.h> 36 #include <asm/pgalloc.h> 37 #include <asm/processor.h> 38 #include <asm/sections.h> 39 #include <asm/tlbflush.h> 40 #include <asm/ptrace.h> 41 #include <asm/localtimer.h> 42 43 /* 44 * as from 2.5, kernels no longer have an init_tasks structure 45 * so we need some other way of telling a new secondary core 46 * where to place its SVC stack 47 */ 48 struct secondary_data secondary_data; 49 50 enum ipi_msg_type { 51 IPI_TIMER = 2, 52 IPI_RESCHEDULE, 53 IPI_CALL_FUNC, 54 IPI_CALL_FUNC_SINGLE, 55 IPI_CPU_STOP, 56 }; 57 58 int __cpuinit __cpu_up(unsigned int cpu) 59 { 60 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 61 struct task_struct *idle = ci->idle; 62 pgd_t *pgd; 63 int ret; 64 65 /* 66 * Spawn a new process manually, if not already done. 67 * Grab a pointer to its task struct so we can mess with it 68 */ 69 if (!idle) { 70 idle = fork_idle(cpu); 71 if (IS_ERR(idle)) { 72 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 73 return PTR_ERR(idle); 74 } 75 ci->idle = idle; 76 } else { 77 /* 78 * Since this idle thread is being re-used, call 79 * init_idle() to reinitialize the thread structure. 80 */ 81 init_idle(idle, cpu); 82 } 83 84 /* 85 * Allocate initial page tables to allow the new CPU to 86 * enable the MMU safely. This essentially means a set 87 * of our "standard" page tables, with the addition of 88 * a 1:1 mapping for the physical address of the kernel. 89 */ 90 pgd = pgd_alloc(&init_mm); 91 if (!pgd) 92 return -ENOMEM; 93 94 if (PHYS_OFFSET != PAGE_OFFSET) { 95 #ifndef CONFIG_HOTPLUG_CPU 96 identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end)); 97 #endif 98 identity_mapping_add(pgd, __pa(_stext), __pa(_etext)); 99 identity_mapping_add(pgd, __pa(_sdata), __pa(_edata)); 100 } 101 102 /* 103 * We need to tell the secondary core where to find 104 * its stack and the page tables. 105 */ 106 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 107 secondary_data.pgdir = virt_to_phys(pgd); 108 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 109 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 110 111 /* 112 * Now bring the CPU into our world. 113 */ 114 ret = boot_secondary(cpu, idle); 115 if (ret == 0) { 116 unsigned long timeout; 117 118 /* 119 * CPU was successfully started, wait for it 120 * to come online or time out. 121 */ 122 timeout = jiffies + HZ; 123 while (time_before(jiffies, timeout)) { 124 if (cpu_online(cpu)) 125 break; 126 127 udelay(10); 128 barrier(); 129 } 130 131 if (!cpu_online(cpu)) { 132 pr_crit("CPU%u: failed to come online\n", cpu); 133 ret = -EIO; 134 } 135 } else { 136 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 137 } 138 139 secondary_data.stack = NULL; 140 secondary_data.pgdir = 0; 141 142 if (PHYS_OFFSET != PAGE_OFFSET) { 143 #ifndef CONFIG_HOTPLUG_CPU 144 identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end)); 145 #endif 146 identity_mapping_del(pgd, __pa(_stext), __pa(_etext)); 147 identity_mapping_del(pgd, __pa(_sdata), __pa(_edata)); 148 } 149 150 pgd_free(&init_mm, pgd); 151 152 return ret; 153 } 154 155 #ifdef CONFIG_HOTPLUG_CPU 156 static void percpu_timer_stop(void); 157 158 /* 159 * __cpu_disable runs on the processor to be shutdown. 160 */ 161 int __cpu_disable(void) 162 { 163 unsigned int cpu = smp_processor_id(); 164 struct task_struct *p; 165 int ret; 166 167 ret = platform_cpu_disable(cpu); 168 if (ret) 169 return ret; 170 171 /* 172 * Take this CPU offline. Once we clear this, we can't return, 173 * and we must not schedule until we're ready to give up the cpu. 174 */ 175 set_cpu_online(cpu, false); 176 177 /* 178 * OK - migrate IRQs away from this CPU 179 */ 180 migrate_irqs(); 181 182 /* 183 * Stop the local timer for this CPU. 184 */ 185 percpu_timer_stop(); 186 187 /* 188 * Flush user cache and TLB mappings, and then remove this CPU 189 * from the vm mask set of all processes. 190 */ 191 flush_cache_all(); 192 local_flush_tlb_all(); 193 194 read_lock(&tasklist_lock); 195 for_each_process(p) { 196 if (p->mm) 197 cpumask_clear_cpu(cpu, mm_cpumask(p->mm)); 198 } 199 read_unlock(&tasklist_lock); 200 201 return 0; 202 } 203 204 static DECLARE_COMPLETION(cpu_died); 205 206 /* 207 * called on the thread which is asking for a CPU to be shutdown - 208 * waits until shutdown has completed, or it is timed out. 209 */ 210 void __cpu_die(unsigned int cpu) 211 { 212 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 213 pr_err("CPU%u: cpu didn't die\n", cpu); 214 return; 215 } 216 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 217 218 if (!platform_cpu_kill(cpu)) 219 printk("CPU%u: unable to kill\n", cpu); 220 } 221 222 /* 223 * Called from the idle thread for the CPU which has been shutdown. 224 * 225 * Note that we disable IRQs here, but do not re-enable them 226 * before returning to the caller. This is also the behaviour 227 * of the other hotplug-cpu capable cores, so presumably coming 228 * out of idle fixes this. 229 */ 230 void __ref cpu_die(void) 231 { 232 unsigned int cpu = smp_processor_id(); 233 234 idle_task_exit(); 235 236 local_irq_disable(); 237 mb(); 238 239 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 240 complete(&cpu_died); 241 242 /* 243 * actual CPU shutdown procedure is at least platform (if not 244 * CPU) specific. 245 */ 246 platform_cpu_die(cpu); 247 248 /* 249 * Do not return to the idle loop - jump back to the secondary 250 * cpu initialisation. There's some initialisation which needs 251 * to be repeated to undo the effects of taking the CPU offline. 252 */ 253 __asm__("mov sp, %0\n" 254 " mov fp, #0\n" 255 " b secondary_start_kernel" 256 : 257 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 258 } 259 #endif /* CONFIG_HOTPLUG_CPU */ 260 261 /* 262 * Called by both boot and secondaries to move global data into 263 * per-processor storage. 264 */ 265 static void __cpuinit smp_store_cpu_info(unsigned int cpuid) 266 { 267 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 268 269 cpu_info->loops_per_jiffy = loops_per_jiffy; 270 } 271 272 /* 273 * This is the secondary CPU boot entry. We're using this CPUs 274 * idle thread stack, but a set of temporary page tables. 275 */ 276 asmlinkage void __cpuinit secondary_start_kernel(void) 277 { 278 struct mm_struct *mm = &init_mm; 279 unsigned int cpu = smp_processor_id(); 280 281 printk("CPU%u: Booted secondary processor\n", cpu); 282 283 /* 284 * All kernel threads share the same mm context; grab a 285 * reference and switch to it. 286 */ 287 atomic_inc(&mm->mm_count); 288 current->active_mm = mm; 289 cpumask_set_cpu(cpu, mm_cpumask(mm)); 290 cpu_switch_mm(mm->pgd, mm); 291 enter_lazy_tlb(mm, current); 292 local_flush_tlb_all(); 293 294 cpu_init(); 295 preempt_disable(); 296 trace_hardirqs_off(); 297 298 /* 299 * Give the platform a chance to do its own initialisation. 300 */ 301 platform_secondary_init(cpu); 302 303 /* 304 * Enable local interrupts. 305 */ 306 notify_cpu_starting(cpu); 307 local_irq_enable(); 308 local_fiq_enable(); 309 310 /* 311 * Setup the percpu timer for this CPU. 312 */ 313 percpu_timer_setup(); 314 315 calibrate_delay(); 316 317 smp_store_cpu_info(cpu); 318 319 /* 320 * OK, now it's safe to let the boot CPU continue 321 */ 322 set_cpu_online(cpu, true); 323 324 /* 325 * OK, it's off to the idle thread for us 326 */ 327 cpu_idle(); 328 } 329 330 void __init smp_cpus_done(unsigned int max_cpus) 331 { 332 int cpu; 333 unsigned long bogosum = 0; 334 335 for_each_online_cpu(cpu) 336 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 337 338 printk(KERN_INFO "SMP: Total of %d processors activated " 339 "(%lu.%02lu BogoMIPS).\n", 340 num_online_cpus(), 341 bogosum / (500000/HZ), 342 (bogosum / (5000/HZ)) % 100); 343 } 344 345 void __init smp_prepare_boot_cpu(void) 346 { 347 unsigned int cpu = smp_processor_id(); 348 349 per_cpu(cpu_data, cpu).idle = current; 350 } 351 352 void __init smp_prepare_cpus(unsigned int max_cpus) 353 { 354 unsigned int ncores = num_possible_cpus(); 355 356 smp_store_cpu_info(smp_processor_id()); 357 358 /* 359 * are we trying to boot more cores than exist? 360 */ 361 if (max_cpus > ncores) 362 max_cpus = ncores; 363 364 if (max_cpus > 1) { 365 /* 366 * Enable the local timer or broadcast device for the 367 * boot CPU, but only if we have more than one CPU. 368 */ 369 percpu_timer_setup(); 370 371 /* 372 * Initialise the SCU if there are more than one CPU 373 * and let them know where to start. 374 */ 375 platform_smp_prepare_cpus(max_cpus); 376 } 377 } 378 379 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 380 381 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 382 { 383 smp_cross_call = fn; 384 } 385 386 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 387 { 388 smp_cross_call(mask, IPI_CALL_FUNC); 389 } 390 391 void arch_send_call_function_single_ipi(int cpu) 392 { 393 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 394 } 395 396 static const char *ipi_types[NR_IPI] = { 397 #define S(x,s) [x - IPI_TIMER] = s 398 S(IPI_TIMER, "Timer broadcast interrupts"), 399 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 400 S(IPI_CALL_FUNC, "Function call interrupts"), 401 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 402 S(IPI_CPU_STOP, "CPU stop interrupts"), 403 }; 404 405 void show_ipi_list(struct seq_file *p, int prec) 406 { 407 unsigned int cpu, i; 408 409 for (i = 0; i < NR_IPI; i++) { 410 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 411 412 for_each_present_cpu(cpu) 413 seq_printf(p, "%10u ", 414 __get_irq_stat(cpu, ipi_irqs[i])); 415 416 seq_printf(p, " %s\n", ipi_types[i]); 417 } 418 } 419 420 u64 smp_irq_stat_cpu(unsigned int cpu) 421 { 422 u64 sum = 0; 423 int i; 424 425 for (i = 0; i < NR_IPI; i++) 426 sum += __get_irq_stat(cpu, ipi_irqs[i]); 427 428 #ifdef CONFIG_LOCAL_TIMERS 429 sum += __get_irq_stat(cpu, local_timer_irqs); 430 #endif 431 432 return sum; 433 } 434 435 /* 436 * Timer (local or broadcast) support 437 */ 438 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 439 440 static void ipi_timer(void) 441 { 442 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent); 443 irq_enter(); 444 evt->event_handler(evt); 445 irq_exit(); 446 } 447 448 #ifdef CONFIG_LOCAL_TIMERS 449 asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs) 450 { 451 struct pt_regs *old_regs = set_irq_regs(regs); 452 int cpu = smp_processor_id(); 453 454 if (local_timer_ack()) { 455 __inc_irq_stat(cpu, local_timer_irqs); 456 ipi_timer(); 457 } 458 459 set_irq_regs(old_regs); 460 } 461 462 void show_local_irqs(struct seq_file *p, int prec) 463 { 464 unsigned int cpu; 465 466 seq_printf(p, "%*s: ", prec, "LOC"); 467 468 for_each_present_cpu(cpu) 469 seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs)); 470 471 seq_printf(p, " Local timer interrupts\n"); 472 } 473 #endif 474 475 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 476 static void smp_timer_broadcast(const struct cpumask *mask) 477 { 478 smp_cross_call(mask, IPI_TIMER); 479 } 480 #else 481 #define smp_timer_broadcast NULL 482 #endif 483 484 static void broadcast_timer_set_mode(enum clock_event_mode mode, 485 struct clock_event_device *evt) 486 { 487 } 488 489 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt) 490 { 491 evt->name = "dummy_timer"; 492 evt->features = CLOCK_EVT_FEAT_ONESHOT | 493 CLOCK_EVT_FEAT_PERIODIC | 494 CLOCK_EVT_FEAT_DUMMY; 495 evt->rating = 400; 496 evt->mult = 1; 497 evt->set_mode = broadcast_timer_set_mode; 498 499 clockevents_register_device(evt); 500 } 501 502 void __cpuinit percpu_timer_setup(void) 503 { 504 unsigned int cpu = smp_processor_id(); 505 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 506 507 evt->cpumask = cpumask_of(cpu); 508 evt->broadcast = smp_timer_broadcast; 509 510 if (local_timer_setup(evt)) 511 broadcast_timer_setup(evt); 512 } 513 514 #ifdef CONFIG_HOTPLUG_CPU 515 /* 516 * The generic clock events code purposely does not stop the local timer 517 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 518 * manually here. 519 */ 520 static void percpu_timer_stop(void) 521 { 522 unsigned int cpu = smp_processor_id(); 523 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 524 525 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt); 526 } 527 #endif 528 529 static DEFINE_SPINLOCK(stop_lock); 530 531 /* 532 * ipi_cpu_stop - handle IPI from smp_send_stop() 533 */ 534 static void ipi_cpu_stop(unsigned int cpu) 535 { 536 if (system_state == SYSTEM_BOOTING || 537 system_state == SYSTEM_RUNNING) { 538 spin_lock(&stop_lock); 539 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 540 dump_stack(); 541 spin_unlock(&stop_lock); 542 } 543 544 set_cpu_online(cpu, false); 545 546 local_fiq_disable(); 547 local_irq_disable(); 548 549 while (1) 550 cpu_relax(); 551 } 552 553 /* 554 * Main handler for inter-processor interrupts 555 */ 556 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 557 { 558 unsigned int cpu = smp_processor_id(); 559 struct pt_regs *old_regs = set_irq_regs(regs); 560 561 if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI) 562 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]); 563 564 switch (ipinr) { 565 case IPI_TIMER: 566 ipi_timer(); 567 break; 568 569 case IPI_RESCHEDULE: 570 scheduler_ipi(); 571 break; 572 573 case IPI_CALL_FUNC: 574 generic_smp_call_function_interrupt(); 575 break; 576 577 case IPI_CALL_FUNC_SINGLE: 578 generic_smp_call_function_single_interrupt(); 579 break; 580 581 case IPI_CPU_STOP: 582 ipi_cpu_stop(cpu); 583 break; 584 585 default: 586 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 587 cpu, ipinr); 588 break; 589 } 590 set_irq_regs(old_regs); 591 } 592 593 void smp_send_reschedule(int cpu) 594 { 595 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 596 } 597 598 void smp_send_stop(void) 599 { 600 unsigned long timeout; 601 602 if (num_online_cpus() > 1) { 603 cpumask_t mask = cpu_online_map; 604 cpu_clear(smp_processor_id(), mask); 605 606 smp_cross_call(&mask, IPI_CPU_STOP); 607 } 608 609 /* Wait up to one second for other CPUs to stop */ 610 timeout = USEC_PER_SEC; 611 while (num_online_cpus() > 1 && timeout--) 612 udelay(1); 613 614 if (num_online_cpus() > 1) 615 pr_warning("SMP: failed to stop secondary CPUs\n"); 616 } 617 618 /* 619 * not supported here 620 */ 621 int setup_profiling_timer(unsigned int multiplier) 622 { 623 return -EINVAL; 624 } 625