1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 6 */ 7 #include <linux/module.h> 8 #include <linux/delay.h> 9 #include <linux/init.h> 10 #include <linux/spinlock.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/interrupt.h> 15 #include <linux/cache.h> 16 #include <linux/profile.h> 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/err.h> 20 #include <linux/cpu.h> 21 #include <linux/seq_file.h> 22 #include <linux/irq.h> 23 #include <linux/nmi.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 #include <linux/irq_work.h> 29 30 #include <linux/atomic.h> 31 #include <asm/bugs.h> 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpu.h> 35 #include <asm/cputype.h> 36 #include <asm/exception.h> 37 #include <asm/idmap.h> 38 #include <asm/topology.h> 39 #include <asm/mmu_context.h> 40 #include <asm/procinfo.h> 41 #include <asm/processor.h> 42 #include <asm/sections.h> 43 #include <asm/tlbflush.h> 44 #include <asm/ptrace.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 #include <asm/mpu.h> 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/ipi.h> 52 53 /* 54 * as from 2.5, kernels no longer have an init_tasks structure 55 * so we need some other way of telling a new secondary core 56 * where to place its SVC stack 57 */ 58 struct secondary_data secondary_data; 59 60 enum ipi_msg_type { 61 IPI_WAKEUP, 62 IPI_TIMER, 63 IPI_RESCHEDULE, 64 IPI_CALL_FUNC, 65 IPI_CPU_STOP, 66 IPI_IRQ_WORK, 67 IPI_COMPLETION, 68 /* 69 * CPU_BACKTRACE is special and not included in NR_IPI 70 * or tracable with trace_ipi_* 71 */ 72 IPI_CPU_BACKTRACE = NR_IPI, 73 /* 74 * SGI8-15 can be reserved by secure firmware, and thus may 75 * not be usable by the kernel. Please keep the above limited 76 * to at most 8 entries. 77 */ 78 MAX_IPI 79 }; 80 81 static int ipi_irq_base __read_mostly; 82 static int nr_ipi __read_mostly = NR_IPI; 83 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly; 84 85 static void ipi_setup(int cpu); 86 static void ipi_teardown(int cpu); 87 88 static DECLARE_COMPLETION(cpu_running); 89 90 static struct smp_operations smp_ops __ro_after_init; 91 92 void __init smp_set_ops(const struct smp_operations *ops) 93 { 94 if (ops) 95 smp_ops = *ops; 96 }; 97 98 static unsigned long get_arch_pgd(pgd_t *pgd) 99 { 100 #ifdef CONFIG_ARM_LPAE 101 return __phys_to_pfn(virt_to_phys(pgd)); 102 #else 103 return virt_to_phys(pgd); 104 #endif 105 } 106 107 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) 108 static int secondary_biglittle_prepare(unsigned int cpu) 109 { 110 if (!cpu_vtable[cpu]) 111 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL); 112 113 return cpu_vtable[cpu] ? 0 : -ENOMEM; 114 } 115 116 static void secondary_biglittle_init(void) 117 { 118 init_proc_vtable(lookup_processor(read_cpuid_id())->proc); 119 } 120 #else 121 static int secondary_biglittle_prepare(unsigned int cpu) 122 { 123 return 0; 124 } 125 126 static void secondary_biglittle_init(void) 127 { 128 } 129 #endif 130 131 int __cpu_up(unsigned int cpu, struct task_struct *idle) 132 { 133 int ret; 134 135 if (!smp_ops.smp_boot_secondary) 136 return -ENOSYS; 137 138 ret = secondary_biglittle_prepare(cpu); 139 if (ret) 140 return ret; 141 142 /* 143 * We need to tell the secondary core where to find 144 * its stack and the page tables. 145 */ 146 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 147 #ifdef CONFIG_ARM_MPU 148 secondary_data.mpu_rgn_info = &mpu_rgn_info; 149 #endif 150 151 #ifdef CONFIG_MMU 152 secondary_data.pgdir = virt_to_phys(idmap_pgd); 153 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 154 #endif 155 sync_cache_w(&secondary_data); 156 157 /* 158 * Now bring the CPU into our world. 159 */ 160 ret = smp_ops.smp_boot_secondary(cpu, idle); 161 if (ret == 0) { 162 /* 163 * CPU was successfully started, wait for it 164 * to come online or time out. 165 */ 166 wait_for_completion_timeout(&cpu_running, 167 msecs_to_jiffies(1000)); 168 169 if (!cpu_online(cpu)) { 170 pr_crit("CPU%u: failed to come online\n", cpu); 171 ret = -EIO; 172 } 173 } else { 174 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 175 } 176 177 178 memset(&secondary_data, 0, sizeof(secondary_data)); 179 return ret; 180 } 181 182 /* platform specific SMP operations */ 183 void __init smp_init_cpus(void) 184 { 185 if (smp_ops.smp_init_cpus) 186 smp_ops.smp_init_cpus(); 187 } 188 189 int platform_can_secondary_boot(void) 190 { 191 return !!smp_ops.smp_boot_secondary; 192 } 193 194 int platform_can_cpu_hotplug(void) 195 { 196 #ifdef CONFIG_HOTPLUG_CPU 197 if (smp_ops.cpu_kill) 198 return 1; 199 #endif 200 201 return 0; 202 } 203 204 #ifdef CONFIG_HOTPLUG_CPU 205 static int platform_cpu_kill(unsigned int cpu) 206 { 207 if (smp_ops.cpu_kill) 208 return smp_ops.cpu_kill(cpu); 209 return 1; 210 } 211 212 static int platform_cpu_disable(unsigned int cpu) 213 { 214 if (smp_ops.cpu_disable) 215 return smp_ops.cpu_disable(cpu); 216 217 return 0; 218 } 219 220 int platform_can_hotplug_cpu(unsigned int cpu) 221 { 222 /* cpu_die must be specified to support hotplug */ 223 if (!smp_ops.cpu_die) 224 return 0; 225 226 if (smp_ops.cpu_can_disable) 227 return smp_ops.cpu_can_disable(cpu); 228 229 /* 230 * By default, allow disabling all CPUs except the first one, 231 * since this is special on a lot of platforms, e.g. because 232 * of clock tick interrupts. 233 */ 234 return cpu != 0; 235 } 236 237 /* 238 * __cpu_disable runs on the processor to be shutdown. 239 */ 240 int __cpu_disable(void) 241 { 242 unsigned int cpu = smp_processor_id(); 243 int ret; 244 245 ret = platform_cpu_disable(cpu); 246 if (ret) 247 return ret; 248 249 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY 250 remove_cpu_topology(cpu); 251 #endif 252 253 /* 254 * Take this CPU offline. Once we clear this, we can't return, 255 * and we must not schedule until we're ready to give up the cpu. 256 */ 257 set_cpu_online(cpu, false); 258 ipi_teardown(cpu); 259 260 /* 261 * OK - migrate IRQs away from this CPU 262 */ 263 irq_migrate_all_off_this_cpu(); 264 265 /* 266 * Flush user cache and TLB mappings, and then remove this CPU 267 * from the vm mask set of all processes. 268 * 269 * Caches are flushed to the Level of Unification Inner Shareable 270 * to write-back dirty lines to unified caches shared by all CPUs. 271 */ 272 flush_cache_louis(); 273 local_flush_tlb_all(); 274 275 return 0; 276 } 277 278 /* 279 * called on the thread which is asking for a CPU to be shutdown - 280 * waits until shutdown has completed, or it is timed out. 281 */ 282 void __cpu_die(unsigned int cpu) 283 { 284 if (!cpu_wait_death(cpu, 5)) { 285 pr_err("CPU%u: cpu didn't die\n", cpu); 286 return; 287 } 288 pr_debug("CPU%u: shutdown\n", cpu); 289 290 clear_tasks_mm_cpumask(cpu); 291 /* 292 * platform_cpu_kill() is generally expected to do the powering off 293 * and/or cutting of clocks to the dying CPU. Optionally, this may 294 * be done by the CPU which is dying in preference to supporting 295 * this call, but that means there is _no_ synchronisation between 296 * the requesting CPU and the dying CPU actually losing power. 297 */ 298 if (!platform_cpu_kill(cpu)) 299 pr_err("CPU%u: unable to kill\n", cpu); 300 } 301 302 /* 303 * Called from the idle thread for the CPU which has been shutdown. 304 * 305 * Note that we disable IRQs here, but do not re-enable them 306 * before returning to the caller. This is also the behaviour 307 * of the other hotplug-cpu capable cores, so presumably coming 308 * out of idle fixes this. 309 */ 310 void arch_cpu_idle_dead(void) 311 { 312 unsigned int cpu = smp_processor_id(); 313 314 idle_task_exit(); 315 316 local_irq_disable(); 317 318 /* 319 * Flush the data out of the L1 cache for this CPU. This must be 320 * before the completion to ensure that data is safely written out 321 * before platform_cpu_kill() gets called - which may disable 322 * *this* CPU and power down its cache. 323 */ 324 flush_cache_louis(); 325 326 /* 327 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 328 * this returns, power and/or clocks can be removed at any point 329 * from this CPU and its cache by platform_cpu_kill(). 330 */ 331 (void)cpu_report_death(); 332 333 /* 334 * Ensure that the cache lines associated with that completion are 335 * written out. This covers the case where _this_ CPU is doing the 336 * powering down, to ensure that the completion is visible to the 337 * CPU waiting for this one. 338 */ 339 flush_cache_louis(); 340 341 /* 342 * The actual CPU shutdown procedure is at least platform (if not 343 * CPU) specific. This may remove power, or it may simply spin. 344 * 345 * Platforms are generally expected *NOT* to return from this call, 346 * although there are some which do because they have no way to 347 * power down the CPU. These platforms are the _only_ reason we 348 * have a return path which uses the fragment of assembly below. 349 * 350 * The return path should not be used for platforms which can 351 * power off the CPU. 352 */ 353 if (smp_ops.cpu_die) 354 smp_ops.cpu_die(cpu); 355 356 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 357 cpu); 358 359 /* 360 * Do not return to the idle loop - jump back to the secondary 361 * cpu initialisation. There's some initialisation which needs 362 * to be repeated to undo the effects of taking the CPU offline. 363 */ 364 __asm__("mov sp, %0\n" 365 " mov fp, #0\n" 366 " b secondary_start_kernel" 367 : 368 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 369 } 370 #endif /* CONFIG_HOTPLUG_CPU */ 371 372 /* 373 * Called by both boot and secondaries to move global data into 374 * per-processor storage. 375 */ 376 static void smp_store_cpu_info(unsigned int cpuid) 377 { 378 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 379 380 cpu_info->loops_per_jiffy = loops_per_jiffy; 381 cpu_info->cpuid = read_cpuid_id(); 382 383 store_cpu_topology(cpuid); 384 check_cpu_icache_size(cpuid); 385 } 386 387 /* 388 * This is the secondary CPU boot entry. We're using this CPUs 389 * idle thread stack, but a set of temporary page tables. 390 */ 391 asmlinkage void secondary_start_kernel(void) 392 { 393 struct mm_struct *mm = &init_mm; 394 unsigned int cpu; 395 396 secondary_biglittle_init(); 397 398 /* 399 * The identity mapping is uncached (strongly ordered), so 400 * switch away from it before attempting any exclusive accesses. 401 */ 402 cpu_switch_mm(mm->pgd, mm); 403 local_flush_bp_all(); 404 enter_lazy_tlb(mm, current); 405 local_flush_tlb_all(); 406 407 /* 408 * All kernel threads share the same mm context; grab a 409 * reference and switch to it. 410 */ 411 cpu = smp_processor_id(); 412 mmgrab(mm); 413 current->active_mm = mm; 414 cpumask_set_cpu(cpu, mm_cpumask(mm)); 415 416 cpu_init(); 417 418 #ifndef CONFIG_MMU 419 setup_vectors_base(); 420 #endif 421 pr_debug("CPU%u: Booted secondary processor\n", cpu); 422 423 preempt_disable(); 424 trace_hardirqs_off(); 425 426 /* 427 * Give the platform a chance to do its own initialisation. 428 */ 429 if (smp_ops.smp_secondary_init) 430 smp_ops.smp_secondary_init(cpu); 431 432 notify_cpu_starting(cpu); 433 434 ipi_setup(cpu); 435 436 calibrate_delay(); 437 438 smp_store_cpu_info(cpu); 439 440 /* 441 * OK, now it's safe to let the boot CPU continue. Wait for 442 * the CPU migration code to notice that the CPU is online 443 * before we continue - which happens after __cpu_up returns. 444 */ 445 set_cpu_online(cpu, true); 446 447 check_other_bugs(); 448 449 complete(&cpu_running); 450 451 local_irq_enable(); 452 local_fiq_enable(); 453 local_abt_enable(); 454 455 /* 456 * OK, it's off to the idle thread for us 457 */ 458 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 459 } 460 461 void __init smp_cpus_done(unsigned int max_cpus) 462 { 463 int cpu; 464 unsigned long bogosum = 0; 465 466 for_each_online_cpu(cpu) 467 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 468 469 printk(KERN_INFO "SMP: Total of %d processors activated " 470 "(%lu.%02lu BogoMIPS).\n", 471 num_online_cpus(), 472 bogosum / (500000/HZ), 473 (bogosum / (5000/HZ)) % 100); 474 475 hyp_mode_check(); 476 } 477 478 void __init smp_prepare_boot_cpu(void) 479 { 480 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 481 } 482 483 void __init smp_prepare_cpus(unsigned int max_cpus) 484 { 485 unsigned int ncores = num_possible_cpus(); 486 487 init_cpu_topology(); 488 489 smp_store_cpu_info(smp_processor_id()); 490 491 /* 492 * are we trying to boot more cores than exist? 493 */ 494 if (max_cpus > ncores) 495 max_cpus = ncores; 496 if (ncores > 1 && max_cpus) { 497 /* 498 * Initialise the present map, which describes the set of CPUs 499 * actually populated at the present time. A platform should 500 * re-initialize the map in the platforms smp_prepare_cpus() 501 * if present != possible (e.g. physical hotplug). 502 */ 503 init_cpu_present(cpu_possible_mask); 504 505 /* 506 * Initialise the SCU if there are more than one CPU 507 * and let them know where to start. 508 */ 509 if (smp_ops.smp_prepare_cpus) 510 smp_ops.smp_prepare_cpus(max_cpus); 511 } 512 } 513 514 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 515 516 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 517 { 518 if (!__smp_cross_call) 519 __smp_cross_call = fn; 520 } 521 522 static const char *ipi_types[NR_IPI] __tracepoint_string = { 523 #define S(x,s) [x] = s 524 S(IPI_WAKEUP, "CPU wakeup interrupts"), 525 S(IPI_TIMER, "Timer broadcast interrupts"), 526 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 527 S(IPI_CALL_FUNC, "Function call interrupts"), 528 S(IPI_CPU_STOP, "CPU stop interrupts"), 529 S(IPI_IRQ_WORK, "IRQ work interrupts"), 530 S(IPI_COMPLETION, "completion interrupts"), 531 }; 532 533 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 534 { 535 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]); 536 __smp_cross_call(target, ipinr); 537 } 538 539 void show_ipi_list(struct seq_file *p, int prec) 540 { 541 unsigned int cpu, i; 542 543 for (i = 0; i < NR_IPI; i++) { 544 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 545 546 for_each_online_cpu(cpu) 547 seq_printf(p, "%10u ", 548 __get_irq_stat(cpu, ipi_irqs[i])); 549 550 seq_printf(p, " %s\n", ipi_types[i]); 551 } 552 } 553 554 u64 smp_irq_stat_cpu(unsigned int cpu) 555 { 556 u64 sum = 0; 557 int i; 558 559 for (i = 0; i < NR_IPI; i++) 560 sum += __get_irq_stat(cpu, ipi_irqs[i]); 561 562 return sum; 563 } 564 565 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 566 { 567 smp_cross_call(mask, IPI_CALL_FUNC); 568 } 569 570 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 571 { 572 smp_cross_call(mask, IPI_WAKEUP); 573 } 574 575 void arch_send_call_function_single_ipi(int cpu) 576 { 577 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 578 } 579 580 #ifdef CONFIG_IRQ_WORK 581 void arch_irq_work_raise(void) 582 { 583 if (arch_irq_work_has_interrupt()) 584 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 585 } 586 #endif 587 588 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 589 void tick_broadcast(const struct cpumask *mask) 590 { 591 smp_cross_call(mask, IPI_TIMER); 592 } 593 #endif 594 595 static DEFINE_RAW_SPINLOCK(stop_lock); 596 597 /* 598 * ipi_cpu_stop - handle IPI from smp_send_stop() 599 */ 600 static void ipi_cpu_stop(unsigned int cpu) 601 { 602 if (system_state <= SYSTEM_RUNNING) { 603 raw_spin_lock(&stop_lock); 604 pr_crit("CPU%u: stopping\n", cpu); 605 dump_stack(); 606 raw_spin_unlock(&stop_lock); 607 } 608 609 set_cpu_online(cpu, false); 610 611 local_fiq_disable(); 612 local_irq_disable(); 613 614 while (1) { 615 cpu_relax(); 616 wfe(); 617 } 618 } 619 620 static DEFINE_PER_CPU(struct completion *, cpu_completion); 621 622 int register_ipi_completion(struct completion *completion, int cpu) 623 { 624 per_cpu(cpu_completion, cpu) = completion; 625 return IPI_COMPLETION; 626 } 627 628 static void ipi_complete(unsigned int cpu) 629 { 630 complete(per_cpu(cpu_completion, cpu)); 631 } 632 633 /* 634 * Main handler for inter-processor interrupts 635 */ 636 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 637 { 638 handle_IPI(ipinr, regs); 639 } 640 641 static void do_handle_IPI(int ipinr) 642 { 643 unsigned int cpu = smp_processor_id(); 644 645 if ((unsigned)ipinr < NR_IPI) { 646 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 647 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 648 } 649 650 switch (ipinr) { 651 case IPI_WAKEUP: 652 break; 653 654 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 655 case IPI_TIMER: 656 tick_receive_broadcast(); 657 break; 658 #endif 659 660 case IPI_RESCHEDULE: 661 scheduler_ipi(); 662 break; 663 664 case IPI_CALL_FUNC: 665 generic_smp_call_function_interrupt(); 666 break; 667 668 case IPI_CPU_STOP: 669 ipi_cpu_stop(cpu); 670 break; 671 672 #ifdef CONFIG_IRQ_WORK 673 case IPI_IRQ_WORK: 674 irq_work_run(); 675 break; 676 #endif 677 678 case IPI_COMPLETION: 679 ipi_complete(cpu); 680 break; 681 682 case IPI_CPU_BACKTRACE: 683 printk_nmi_enter(); 684 nmi_cpu_backtrace(get_irq_regs()); 685 printk_nmi_exit(); 686 break; 687 688 default: 689 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 690 cpu, ipinr); 691 break; 692 } 693 694 if ((unsigned)ipinr < NR_IPI) 695 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 696 } 697 698 /* Legacy version, should go away once all irqchips have been converted */ 699 void handle_IPI(int ipinr, struct pt_regs *regs) 700 { 701 struct pt_regs *old_regs = set_irq_regs(regs); 702 703 irq_enter(); 704 do_handle_IPI(ipinr); 705 irq_exit(); 706 707 set_irq_regs(old_regs); 708 } 709 710 static irqreturn_t ipi_handler(int irq, void *data) 711 { 712 do_handle_IPI(irq - ipi_irq_base); 713 return IRQ_HANDLED; 714 } 715 716 static void ipi_send(const struct cpumask *target, unsigned int ipi) 717 { 718 __ipi_send_mask(ipi_desc[ipi], target); 719 } 720 721 static void ipi_setup(int cpu) 722 { 723 int i; 724 725 if (!ipi_irq_base) 726 return; 727 728 for (i = 0; i < nr_ipi; i++) 729 enable_percpu_irq(ipi_irq_base + i, 0); 730 } 731 732 static void ipi_teardown(int cpu) 733 { 734 int i; 735 736 if (!ipi_irq_base) 737 return; 738 739 for (i = 0; i < nr_ipi; i++) 740 disable_percpu_irq(ipi_irq_base + i); 741 } 742 743 void __init set_smp_ipi_range(int ipi_base, int n) 744 { 745 int i; 746 747 WARN_ON(n < MAX_IPI); 748 nr_ipi = min(n, MAX_IPI); 749 750 for (i = 0; i < nr_ipi; i++) { 751 int err; 752 753 err = request_percpu_irq(ipi_base + i, ipi_handler, 754 "IPI", &irq_stat); 755 WARN_ON(err); 756 757 ipi_desc[i] = irq_to_desc(ipi_base + i); 758 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 759 } 760 761 ipi_irq_base = ipi_base; 762 set_smp_cross_call(ipi_send); 763 764 /* Setup the boot CPU immediately */ 765 ipi_setup(smp_processor_id()); 766 } 767 768 void smp_send_reschedule(int cpu) 769 { 770 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 771 } 772 773 void smp_send_stop(void) 774 { 775 unsigned long timeout; 776 struct cpumask mask; 777 778 cpumask_copy(&mask, cpu_online_mask); 779 cpumask_clear_cpu(smp_processor_id(), &mask); 780 if (!cpumask_empty(&mask)) 781 smp_cross_call(&mask, IPI_CPU_STOP); 782 783 /* Wait up to one second for other CPUs to stop */ 784 timeout = USEC_PER_SEC; 785 while (num_online_cpus() > 1 && timeout--) 786 udelay(1); 787 788 if (num_online_cpus() > 1) 789 pr_warn("SMP: failed to stop secondary CPUs\n"); 790 } 791 792 /* In case panic() and panic() called at the same time on CPU1 and CPU2, 793 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop() 794 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online, 795 * kdump fails. So split out the panic_smp_self_stop() and add 796 * set_cpu_online(smp_processor_id(), false). 797 */ 798 void panic_smp_self_stop(void) 799 { 800 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n", 801 smp_processor_id()); 802 set_cpu_online(smp_processor_id(), false); 803 while (1) 804 cpu_relax(); 805 } 806 807 /* 808 * not supported here 809 */ 810 int setup_profiling_timer(unsigned int multiplier) 811 { 812 return -EINVAL; 813 } 814 815 #ifdef CONFIG_CPU_FREQ 816 817 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 818 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 819 static unsigned long global_l_p_j_ref; 820 static unsigned long global_l_p_j_ref_freq; 821 822 static int cpufreq_callback(struct notifier_block *nb, 823 unsigned long val, void *data) 824 { 825 struct cpufreq_freqs *freq = data; 826 struct cpumask *cpus = freq->policy->cpus; 827 int cpu, first = cpumask_first(cpus); 828 unsigned int lpj; 829 830 if (freq->flags & CPUFREQ_CONST_LOOPS) 831 return NOTIFY_OK; 832 833 if (!per_cpu(l_p_j_ref, first)) { 834 for_each_cpu(cpu, cpus) { 835 per_cpu(l_p_j_ref, cpu) = 836 per_cpu(cpu_data, cpu).loops_per_jiffy; 837 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 838 } 839 840 if (!global_l_p_j_ref) { 841 global_l_p_j_ref = loops_per_jiffy; 842 global_l_p_j_ref_freq = freq->old; 843 } 844 } 845 846 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 847 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 848 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 849 global_l_p_j_ref_freq, 850 freq->new); 851 852 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first), 853 per_cpu(l_p_j_ref_freq, first), freq->new); 854 for_each_cpu(cpu, cpus) 855 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj; 856 } 857 return NOTIFY_OK; 858 } 859 860 static struct notifier_block cpufreq_notifier = { 861 .notifier_call = cpufreq_callback, 862 }; 863 864 static int __init register_cpufreq_notifier(void) 865 { 866 return cpufreq_register_notifier(&cpufreq_notifier, 867 CPUFREQ_TRANSITION_NOTIFIER); 868 } 869 core_initcall(register_cpufreq_notifier); 870 871 #endif 872 873 static void raise_nmi(cpumask_t *mask) 874 { 875 __smp_cross_call(mask, IPI_CPU_BACKTRACE); 876 } 877 878 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 879 { 880 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi); 881 } 882