xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 56afcd3dbd1995c526bfbd920cebde6158b22c4a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 
30 #include <linux/atomic.h>
31 #include <asm/bugs.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/procinfo.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ipi.h>
52 
53 /*
54  * as from 2.5, kernels no longer have an init_tasks structure
55  * so we need some other way of telling a new secondary core
56  * where to place its SVC stack
57  */
58 struct secondary_data secondary_data;
59 
60 enum ipi_msg_type {
61 	IPI_WAKEUP,
62 	IPI_TIMER,
63 	IPI_RESCHEDULE,
64 	IPI_CALL_FUNC,
65 	IPI_CPU_STOP,
66 	IPI_IRQ_WORK,
67 	IPI_COMPLETION,
68 	/*
69 	 * CPU_BACKTRACE is special and not included in NR_IPI
70 	 * or tracable with trace_ipi_*
71 	 */
72 	IPI_CPU_BACKTRACE = NR_IPI,
73 	/*
74 	 * SGI8-15 can be reserved by secure firmware, and thus may
75 	 * not be usable by the kernel. Please keep the above limited
76 	 * to at most 8 entries.
77 	 */
78 	MAX_IPI
79 };
80 
81 static int ipi_irq_base __read_mostly;
82 static int nr_ipi __read_mostly = NR_IPI;
83 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
84 
85 static void ipi_setup(int cpu);
86 static void ipi_teardown(int cpu);
87 
88 static DECLARE_COMPLETION(cpu_running);
89 
90 static struct smp_operations smp_ops __ro_after_init;
91 
92 void __init smp_set_ops(const struct smp_operations *ops)
93 {
94 	if (ops)
95 		smp_ops = *ops;
96 };
97 
98 static unsigned long get_arch_pgd(pgd_t *pgd)
99 {
100 #ifdef CONFIG_ARM_LPAE
101 	return __phys_to_pfn(virt_to_phys(pgd));
102 #else
103 	return virt_to_phys(pgd);
104 #endif
105 }
106 
107 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
108 static int secondary_biglittle_prepare(unsigned int cpu)
109 {
110 	if (!cpu_vtable[cpu])
111 		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
112 
113 	return cpu_vtable[cpu] ? 0 : -ENOMEM;
114 }
115 
116 static void secondary_biglittle_init(void)
117 {
118 	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
119 }
120 #else
121 static int secondary_biglittle_prepare(unsigned int cpu)
122 {
123 	return 0;
124 }
125 
126 static void secondary_biglittle_init(void)
127 {
128 }
129 #endif
130 
131 int __cpu_up(unsigned int cpu, struct task_struct *idle)
132 {
133 	int ret;
134 
135 	if (!smp_ops.smp_boot_secondary)
136 		return -ENOSYS;
137 
138 	ret = secondary_biglittle_prepare(cpu);
139 	if (ret)
140 		return ret;
141 
142 	/*
143 	 * We need to tell the secondary core where to find
144 	 * its stack and the page tables.
145 	 */
146 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
147 #ifdef CONFIG_ARM_MPU
148 	secondary_data.mpu_rgn_info = &mpu_rgn_info;
149 #endif
150 
151 #ifdef CONFIG_MMU
152 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
153 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
154 #endif
155 	sync_cache_w(&secondary_data);
156 
157 	/*
158 	 * Now bring the CPU into our world.
159 	 */
160 	ret = smp_ops.smp_boot_secondary(cpu, idle);
161 	if (ret == 0) {
162 		/*
163 		 * CPU was successfully started, wait for it
164 		 * to come online or time out.
165 		 */
166 		wait_for_completion_timeout(&cpu_running,
167 						 msecs_to_jiffies(1000));
168 
169 		if (!cpu_online(cpu)) {
170 			pr_crit("CPU%u: failed to come online\n", cpu);
171 			ret = -EIO;
172 		}
173 	} else {
174 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
175 	}
176 
177 
178 	memset(&secondary_data, 0, sizeof(secondary_data));
179 	return ret;
180 }
181 
182 /* platform specific SMP operations */
183 void __init smp_init_cpus(void)
184 {
185 	if (smp_ops.smp_init_cpus)
186 		smp_ops.smp_init_cpus();
187 }
188 
189 int platform_can_secondary_boot(void)
190 {
191 	return !!smp_ops.smp_boot_secondary;
192 }
193 
194 int platform_can_cpu_hotplug(void)
195 {
196 #ifdef CONFIG_HOTPLUG_CPU
197 	if (smp_ops.cpu_kill)
198 		return 1;
199 #endif
200 
201 	return 0;
202 }
203 
204 #ifdef CONFIG_HOTPLUG_CPU
205 static int platform_cpu_kill(unsigned int cpu)
206 {
207 	if (smp_ops.cpu_kill)
208 		return smp_ops.cpu_kill(cpu);
209 	return 1;
210 }
211 
212 static int platform_cpu_disable(unsigned int cpu)
213 {
214 	if (smp_ops.cpu_disable)
215 		return smp_ops.cpu_disable(cpu);
216 
217 	return 0;
218 }
219 
220 int platform_can_hotplug_cpu(unsigned int cpu)
221 {
222 	/* cpu_die must be specified to support hotplug */
223 	if (!smp_ops.cpu_die)
224 		return 0;
225 
226 	if (smp_ops.cpu_can_disable)
227 		return smp_ops.cpu_can_disable(cpu);
228 
229 	/*
230 	 * By default, allow disabling all CPUs except the first one,
231 	 * since this is special on a lot of platforms, e.g. because
232 	 * of clock tick interrupts.
233 	 */
234 	return cpu != 0;
235 }
236 
237 /*
238  * __cpu_disable runs on the processor to be shutdown.
239  */
240 int __cpu_disable(void)
241 {
242 	unsigned int cpu = smp_processor_id();
243 	int ret;
244 
245 	ret = platform_cpu_disable(cpu);
246 	if (ret)
247 		return ret;
248 
249 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
250 	remove_cpu_topology(cpu);
251 #endif
252 
253 	/*
254 	 * Take this CPU offline.  Once we clear this, we can't return,
255 	 * and we must not schedule until we're ready to give up the cpu.
256 	 */
257 	set_cpu_online(cpu, false);
258 	ipi_teardown(cpu);
259 
260 	/*
261 	 * OK - migrate IRQs away from this CPU
262 	 */
263 	irq_migrate_all_off_this_cpu();
264 
265 	/*
266 	 * Flush user cache and TLB mappings, and then remove this CPU
267 	 * from the vm mask set of all processes.
268 	 *
269 	 * Caches are flushed to the Level of Unification Inner Shareable
270 	 * to write-back dirty lines to unified caches shared by all CPUs.
271 	 */
272 	flush_cache_louis();
273 	local_flush_tlb_all();
274 
275 	return 0;
276 }
277 
278 /*
279  * called on the thread which is asking for a CPU to be shutdown -
280  * waits until shutdown has completed, or it is timed out.
281  */
282 void __cpu_die(unsigned int cpu)
283 {
284 	if (!cpu_wait_death(cpu, 5)) {
285 		pr_err("CPU%u: cpu didn't die\n", cpu);
286 		return;
287 	}
288 	pr_debug("CPU%u: shutdown\n", cpu);
289 
290 	clear_tasks_mm_cpumask(cpu);
291 	/*
292 	 * platform_cpu_kill() is generally expected to do the powering off
293 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
294 	 * be done by the CPU which is dying in preference to supporting
295 	 * this call, but that means there is _no_ synchronisation between
296 	 * the requesting CPU and the dying CPU actually losing power.
297 	 */
298 	if (!platform_cpu_kill(cpu))
299 		pr_err("CPU%u: unable to kill\n", cpu);
300 }
301 
302 /*
303  * Called from the idle thread for the CPU which has been shutdown.
304  *
305  * Note that we disable IRQs here, but do not re-enable them
306  * before returning to the caller. This is also the behaviour
307  * of the other hotplug-cpu capable cores, so presumably coming
308  * out of idle fixes this.
309  */
310 void arch_cpu_idle_dead(void)
311 {
312 	unsigned int cpu = smp_processor_id();
313 
314 	idle_task_exit();
315 
316 	local_irq_disable();
317 
318 	/*
319 	 * Flush the data out of the L1 cache for this CPU.  This must be
320 	 * before the completion to ensure that data is safely written out
321 	 * before platform_cpu_kill() gets called - which may disable
322 	 * *this* CPU and power down its cache.
323 	 */
324 	flush_cache_louis();
325 
326 	/*
327 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
328 	 * this returns, power and/or clocks can be removed at any point
329 	 * from this CPU and its cache by platform_cpu_kill().
330 	 */
331 	(void)cpu_report_death();
332 
333 	/*
334 	 * Ensure that the cache lines associated with that completion are
335 	 * written out.  This covers the case where _this_ CPU is doing the
336 	 * powering down, to ensure that the completion is visible to the
337 	 * CPU waiting for this one.
338 	 */
339 	flush_cache_louis();
340 
341 	/*
342 	 * The actual CPU shutdown procedure is at least platform (if not
343 	 * CPU) specific.  This may remove power, or it may simply spin.
344 	 *
345 	 * Platforms are generally expected *NOT* to return from this call,
346 	 * although there are some which do because they have no way to
347 	 * power down the CPU.  These platforms are the _only_ reason we
348 	 * have a return path which uses the fragment of assembly below.
349 	 *
350 	 * The return path should not be used for platforms which can
351 	 * power off the CPU.
352 	 */
353 	if (smp_ops.cpu_die)
354 		smp_ops.cpu_die(cpu);
355 
356 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
357 		cpu);
358 
359 	/*
360 	 * Do not return to the idle loop - jump back to the secondary
361 	 * cpu initialisation.  There's some initialisation which needs
362 	 * to be repeated to undo the effects of taking the CPU offline.
363 	 */
364 	__asm__("mov	sp, %0\n"
365 	"	mov	fp, #0\n"
366 	"	b	secondary_start_kernel"
367 		:
368 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
369 }
370 #endif /* CONFIG_HOTPLUG_CPU */
371 
372 /*
373  * Called by both boot and secondaries to move global data into
374  * per-processor storage.
375  */
376 static void smp_store_cpu_info(unsigned int cpuid)
377 {
378 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
379 
380 	cpu_info->loops_per_jiffy = loops_per_jiffy;
381 	cpu_info->cpuid = read_cpuid_id();
382 
383 	store_cpu_topology(cpuid);
384 	check_cpu_icache_size(cpuid);
385 }
386 
387 /*
388  * This is the secondary CPU boot entry.  We're using this CPUs
389  * idle thread stack, but a set of temporary page tables.
390  */
391 asmlinkage void secondary_start_kernel(void)
392 {
393 	struct mm_struct *mm = &init_mm;
394 	unsigned int cpu;
395 
396 	secondary_biglittle_init();
397 
398 	/*
399 	 * The identity mapping is uncached (strongly ordered), so
400 	 * switch away from it before attempting any exclusive accesses.
401 	 */
402 	cpu_switch_mm(mm->pgd, mm);
403 	local_flush_bp_all();
404 	enter_lazy_tlb(mm, current);
405 	local_flush_tlb_all();
406 
407 	/*
408 	 * All kernel threads share the same mm context; grab a
409 	 * reference and switch to it.
410 	 */
411 	cpu = smp_processor_id();
412 	mmgrab(mm);
413 	current->active_mm = mm;
414 	cpumask_set_cpu(cpu, mm_cpumask(mm));
415 
416 	cpu_init();
417 
418 #ifndef CONFIG_MMU
419 	setup_vectors_base();
420 #endif
421 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
422 
423 	preempt_disable();
424 	trace_hardirqs_off();
425 
426 	/*
427 	 * Give the platform a chance to do its own initialisation.
428 	 */
429 	if (smp_ops.smp_secondary_init)
430 		smp_ops.smp_secondary_init(cpu);
431 
432 	notify_cpu_starting(cpu);
433 
434 	ipi_setup(cpu);
435 
436 	calibrate_delay();
437 
438 	smp_store_cpu_info(cpu);
439 
440 	/*
441 	 * OK, now it's safe to let the boot CPU continue.  Wait for
442 	 * the CPU migration code to notice that the CPU is online
443 	 * before we continue - which happens after __cpu_up returns.
444 	 */
445 	set_cpu_online(cpu, true);
446 
447 	check_other_bugs();
448 
449 	complete(&cpu_running);
450 
451 	local_irq_enable();
452 	local_fiq_enable();
453 	local_abt_enable();
454 
455 	/*
456 	 * OK, it's off to the idle thread for us
457 	 */
458 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
459 }
460 
461 void __init smp_cpus_done(unsigned int max_cpus)
462 {
463 	int cpu;
464 	unsigned long bogosum = 0;
465 
466 	for_each_online_cpu(cpu)
467 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
468 
469 	printk(KERN_INFO "SMP: Total of %d processors activated "
470 	       "(%lu.%02lu BogoMIPS).\n",
471 	       num_online_cpus(),
472 	       bogosum / (500000/HZ),
473 	       (bogosum / (5000/HZ)) % 100);
474 
475 	hyp_mode_check();
476 }
477 
478 void __init smp_prepare_boot_cpu(void)
479 {
480 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
481 }
482 
483 void __init smp_prepare_cpus(unsigned int max_cpus)
484 {
485 	unsigned int ncores = num_possible_cpus();
486 
487 	init_cpu_topology();
488 
489 	smp_store_cpu_info(smp_processor_id());
490 
491 	/*
492 	 * are we trying to boot more cores than exist?
493 	 */
494 	if (max_cpus > ncores)
495 		max_cpus = ncores;
496 	if (ncores > 1 && max_cpus) {
497 		/*
498 		 * Initialise the present map, which describes the set of CPUs
499 		 * actually populated at the present time. A platform should
500 		 * re-initialize the map in the platforms smp_prepare_cpus()
501 		 * if present != possible (e.g. physical hotplug).
502 		 */
503 		init_cpu_present(cpu_possible_mask);
504 
505 		/*
506 		 * Initialise the SCU if there are more than one CPU
507 		 * and let them know where to start.
508 		 */
509 		if (smp_ops.smp_prepare_cpus)
510 			smp_ops.smp_prepare_cpus(max_cpus);
511 	}
512 }
513 
514 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
515 
516 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
517 {
518 	if (!__smp_cross_call)
519 		__smp_cross_call = fn;
520 }
521 
522 static const char *ipi_types[NR_IPI] __tracepoint_string = {
523 #define S(x,s)	[x] = s
524 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
525 	S(IPI_TIMER, "Timer broadcast interrupts"),
526 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
527 	S(IPI_CALL_FUNC, "Function call interrupts"),
528 	S(IPI_CPU_STOP, "CPU stop interrupts"),
529 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
530 	S(IPI_COMPLETION, "completion interrupts"),
531 };
532 
533 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
534 {
535 	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
536 	__smp_cross_call(target, ipinr);
537 }
538 
539 void show_ipi_list(struct seq_file *p, int prec)
540 {
541 	unsigned int cpu, i;
542 
543 	for (i = 0; i < NR_IPI; i++) {
544 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
545 
546 		for_each_online_cpu(cpu)
547 			seq_printf(p, "%10u ",
548 				   __get_irq_stat(cpu, ipi_irqs[i]));
549 
550 		seq_printf(p, " %s\n", ipi_types[i]);
551 	}
552 }
553 
554 u64 smp_irq_stat_cpu(unsigned int cpu)
555 {
556 	u64 sum = 0;
557 	int i;
558 
559 	for (i = 0; i < NR_IPI; i++)
560 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
561 
562 	return sum;
563 }
564 
565 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
566 {
567 	smp_cross_call(mask, IPI_CALL_FUNC);
568 }
569 
570 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
571 {
572 	smp_cross_call(mask, IPI_WAKEUP);
573 }
574 
575 void arch_send_call_function_single_ipi(int cpu)
576 {
577 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
578 }
579 
580 #ifdef CONFIG_IRQ_WORK
581 void arch_irq_work_raise(void)
582 {
583 	if (arch_irq_work_has_interrupt())
584 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
585 }
586 #endif
587 
588 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
589 void tick_broadcast(const struct cpumask *mask)
590 {
591 	smp_cross_call(mask, IPI_TIMER);
592 }
593 #endif
594 
595 static DEFINE_RAW_SPINLOCK(stop_lock);
596 
597 /*
598  * ipi_cpu_stop - handle IPI from smp_send_stop()
599  */
600 static void ipi_cpu_stop(unsigned int cpu)
601 {
602 	if (system_state <= SYSTEM_RUNNING) {
603 		raw_spin_lock(&stop_lock);
604 		pr_crit("CPU%u: stopping\n", cpu);
605 		dump_stack();
606 		raw_spin_unlock(&stop_lock);
607 	}
608 
609 	set_cpu_online(cpu, false);
610 
611 	local_fiq_disable();
612 	local_irq_disable();
613 
614 	while (1) {
615 		cpu_relax();
616 		wfe();
617 	}
618 }
619 
620 static DEFINE_PER_CPU(struct completion *, cpu_completion);
621 
622 int register_ipi_completion(struct completion *completion, int cpu)
623 {
624 	per_cpu(cpu_completion, cpu) = completion;
625 	return IPI_COMPLETION;
626 }
627 
628 static void ipi_complete(unsigned int cpu)
629 {
630 	complete(per_cpu(cpu_completion, cpu));
631 }
632 
633 /*
634  * Main handler for inter-processor interrupts
635  */
636 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
637 {
638 	handle_IPI(ipinr, regs);
639 }
640 
641 static void do_handle_IPI(int ipinr)
642 {
643 	unsigned int cpu = smp_processor_id();
644 
645 	if ((unsigned)ipinr < NR_IPI) {
646 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
647 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
648 	}
649 
650 	switch (ipinr) {
651 	case IPI_WAKEUP:
652 		break;
653 
654 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
655 	case IPI_TIMER:
656 		tick_receive_broadcast();
657 		break;
658 #endif
659 
660 	case IPI_RESCHEDULE:
661 		scheduler_ipi();
662 		break;
663 
664 	case IPI_CALL_FUNC:
665 		generic_smp_call_function_interrupt();
666 		break;
667 
668 	case IPI_CPU_STOP:
669 		ipi_cpu_stop(cpu);
670 		break;
671 
672 #ifdef CONFIG_IRQ_WORK
673 	case IPI_IRQ_WORK:
674 		irq_work_run();
675 		break;
676 #endif
677 
678 	case IPI_COMPLETION:
679 		ipi_complete(cpu);
680 		break;
681 
682 	case IPI_CPU_BACKTRACE:
683 		printk_nmi_enter();
684 		nmi_cpu_backtrace(get_irq_regs());
685 		printk_nmi_exit();
686 		break;
687 
688 	default:
689 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
690 		        cpu, ipinr);
691 		break;
692 	}
693 
694 	if ((unsigned)ipinr < NR_IPI)
695 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
696 }
697 
698 /* Legacy version, should go away once all irqchips have been converted */
699 void handle_IPI(int ipinr, struct pt_regs *regs)
700 {
701 	struct pt_regs *old_regs = set_irq_regs(regs);
702 
703 	irq_enter();
704 	do_handle_IPI(ipinr);
705 	irq_exit();
706 
707 	set_irq_regs(old_regs);
708 }
709 
710 static irqreturn_t ipi_handler(int irq, void *data)
711 {
712 	do_handle_IPI(irq - ipi_irq_base);
713 	return IRQ_HANDLED;
714 }
715 
716 static void ipi_send(const struct cpumask *target, unsigned int ipi)
717 {
718 	__ipi_send_mask(ipi_desc[ipi], target);
719 }
720 
721 static void ipi_setup(int cpu)
722 {
723 	int i;
724 
725 	if (!ipi_irq_base)
726 		return;
727 
728 	for (i = 0; i < nr_ipi; i++)
729 		enable_percpu_irq(ipi_irq_base + i, 0);
730 }
731 
732 static void ipi_teardown(int cpu)
733 {
734 	int i;
735 
736 	if (!ipi_irq_base)
737 		return;
738 
739 	for (i = 0; i < nr_ipi; i++)
740 		disable_percpu_irq(ipi_irq_base + i);
741 }
742 
743 void __init set_smp_ipi_range(int ipi_base, int n)
744 {
745 	int i;
746 
747 	WARN_ON(n < MAX_IPI);
748 	nr_ipi = min(n, MAX_IPI);
749 
750 	for (i = 0; i < nr_ipi; i++) {
751 		int err;
752 
753 		err = request_percpu_irq(ipi_base + i, ipi_handler,
754 					 "IPI", &irq_stat);
755 		WARN_ON(err);
756 
757 		ipi_desc[i] = irq_to_desc(ipi_base + i);
758 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
759 	}
760 
761 	ipi_irq_base = ipi_base;
762 	set_smp_cross_call(ipi_send);
763 
764 	/* Setup the boot CPU immediately */
765 	ipi_setup(smp_processor_id());
766 }
767 
768 void smp_send_reschedule(int cpu)
769 {
770 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
771 }
772 
773 void smp_send_stop(void)
774 {
775 	unsigned long timeout;
776 	struct cpumask mask;
777 
778 	cpumask_copy(&mask, cpu_online_mask);
779 	cpumask_clear_cpu(smp_processor_id(), &mask);
780 	if (!cpumask_empty(&mask))
781 		smp_cross_call(&mask, IPI_CPU_STOP);
782 
783 	/* Wait up to one second for other CPUs to stop */
784 	timeout = USEC_PER_SEC;
785 	while (num_online_cpus() > 1 && timeout--)
786 		udelay(1);
787 
788 	if (num_online_cpus() > 1)
789 		pr_warn("SMP: failed to stop secondary CPUs\n");
790 }
791 
792 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
793  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
794  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
795  * kdump fails. So split out the panic_smp_self_stop() and add
796  * set_cpu_online(smp_processor_id(), false).
797  */
798 void panic_smp_self_stop(void)
799 {
800 	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
801 	         smp_processor_id());
802 	set_cpu_online(smp_processor_id(), false);
803 	while (1)
804 		cpu_relax();
805 }
806 
807 /*
808  * not supported here
809  */
810 int setup_profiling_timer(unsigned int multiplier)
811 {
812 	return -EINVAL;
813 }
814 
815 #ifdef CONFIG_CPU_FREQ
816 
817 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
818 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
819 static unsigned long global_l_p_j_ref;
820 static unsigned long global_l_p_j_ref_freq;
821 
822 static int cpufreq_callback(struct notifier_block *nb,
823 					unsigned long val, void *data)
824 {
825 	struct cpufreq_freqs *freq = data;
826 	struct cpumask *cpus = freq->policy->cpus;
827 	int cpu, first = cpumask_first(cpus);
828 	unsigned int lpj;
829 
830 	if (freq->flags & CPUFREQ_CONST_LOOPS)
831 		return NOTIFY_OK;
832 
833 	if (!per_cpu(l_p_j_ref, first)) {
834 		for_each_cpu(cpu, cpus) {
835 			per_cpu(l_p_j_ref, cpu) =
836 				per_cpu(cpu_data, cpu).loops_per_jiffy;
837 			per_cpu(l_p_j_ref_freq, cpu) = freq->old;
838 		}
839 
840 		if (!global_l_p_j_ref) {
841 			global_l_p_j_ref = loops_per_jiffy;
842 			global_l_p_j_ref_freq = freq->old;
843 		}
844 	}
845 
846 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
847 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
848 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
849 						global_l_p_j_ref_freq,
850 						freq->new);
851 
852 		lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
853 				    per_cpu(l_p_j_ref_freq, first), freq->new);
854 		for_each_cpu(cpu, cpus)
855 			per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
856 	}
857 	return NOTIFY_OK;
858 }
859 
860 static struct notifier_block cpufreq_notifier = {
861 	.notifier_call  = cpufreq_callback,
862 };
863 
864 static int __init register_cpufreq_notifier(void)
865 {
866 	return cpufreq_register_notifier(&cpufreq_notifier,
867 						CPUFREQ_TRANSITION_NOTIFIER);
868 }
869 core_initcall(register_cpufreq_notifier);
870 
871 #endif
872 
873 static void raise_nmi(cpumask_t *mask)
874 {
875 	__smp_cross_call(mask, IPI_CPU_BACKTRACE);
876 }
877 
878 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
879 {
880 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
881 }
882