xref: /openbmc/linux/arch/arm/kernel/setup.c (revision 2937367b8a4b0d46ce3312cb997e4a240b02cf15)
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_iommu.h>
22 #include <linux/of_platform.h>
23 #include <linux/init.h>
24 #include <linux/kexec.h>
25 #include <linux/of_fdt.h>
26 #include <linux/cpu.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
31 #include <linux/bug.h>
32 #include <linux/compiler.h>
33 #include <linux/sort.h>
34 #include <linux/psci.h>
35 
36 #include <asm/unified.h>
37 #include <asm/cp15.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/elf.h>
41 #include <asm/early_ioremap.h>
42 #include <asm/fixmap.h>
43 #include <asm/procinfo.h>
44 #include <asm/psci.h>
45 #include <asm/sections.h>
46 #include <asm/setup.h>
47 #include <asm/smp_plat.h>
48 #include <asm/mach-types.h>
49 #include <asm/cacheflush.h>
50 #include <asm/cachetype.h>
51 #include <asm/tlbflush.h>
52 #include <asm/xen/hypervisor.h>
53 
54 #include <asm/prom.h>
55 #include <asm/mach/arch.h>
56 #include <asm/mach/irq.h>
57 #include <asm/mach/time.h>
58 #include <asm/system_info.h>
59 #include <asm/system_misc.h>
60 #include <asm/traps.h>
61 #include <asm/unwind.h>
62 #include <asm/memblock.h>
63 #include <asm/virt.h>
64 
65 #include "atags.h"
66 
67 
68 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
69 char fpe_type[8];
70 
71 static int __init fpe_setup(char *line)
72 {
73 	memcpy(fpe_type, line, 8);
74 	return 1;
75 }
76 
77 __setup("fpe=", fpe_setup);
78 #endif
79 
80 extern void init_default_cache_policy(unsigned long);
81 extern void paging_init(const struct machine_desc *desc);
82 extern void early_paging_init(const struct machine_desc *);
83 extern void sanity_check_meminfo(void);
84 extern enum reboot_mode reboot_mode;
85 extern void setup_dma_zone(const struct machine_desc *desc);
86 
87 unsigned int processor_id;
88 EXPORT_SYMBOL(processor_id);
89 unsigned int __machine_arch_type __read_mostly;
90 EXPORT_SYMBOL(__machine_arch_type);
91 unsigned int cacheid __read_mostly;
92 EXPORT_SYMBOL(cacheid);
93 
94 unsigned int __atags_pointer __initdata;
95 
96 unsigned int system_rev;
97 EXPORT_SYMBOL(system_rev);
98 
99 const char *system_serial;
100 EXPORT_SYMBOL(system_serial);
101 
102 unsigned int system_serial_low;
103 EXPORT_SYMBOL(system_serial_low);
104 
105 unsigned int system_serial_high;
106 EXPORT_SYMBOL(system_serial_high);
107 
108 unsigned int elf_hwcap __read_mostly;
109 EXPORT_SYMBOL(elf_hwcap);
110 
111 unsigned int elf_hwcap2 __read_mostly;
112 EXPORT_SYMBOL(elf_hwcap2);
113 
114 
115 #ifdef MULTI_CPU
116 struct processor processor __read_mostly;
117 #endif
118 #ifdef MULTI_TLB
119 struct cpu_tlb_fns cpu_tlb __read_mostly;
120 #endif
121 #ifdef MULTI_USER
122 struct cpu_user_fns cpu_user __read_mostly;
123 #endif
124 #ifdef MULTI_CACHE
125 struct cpu_cache_fns cpu_cache __read_mostly;
126 #endif
127 #ifdef CONFIG_OUTER_CACHE
128 struct outer_cache_fns outer_cache __read_mostly;
129 EXPORT_SYMBOL(outer_cache);
130 #endif
131 
132 /*
133  * Cached cpu_architecture() result for use by assembler code.
134  * C code should use the cpu_architecture() function instead of accessing this
135  * variable directly.
136  */
137 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
138 
139 struct stack {
140 	u32 irq[3];
141 	u32 abt[3];
142 	u32 und[3];
143 	u32 fiq[3];
144 } ____cacheline_aligned;
145 
146 #ifndef CONFIG_CPU_V7M
147 static struct stack stacks[NR_CPUS];
148 #endif
149 
150 char elf_platform[ELF_PLATFORM_SIZE];
151 EXPORT_SYMBOL(elf_platform);
152 
153 static const char *cpu_name;
154 static const char *machine_name;
155 static char __initdata cmd_line[COMMAND_LINE_SIZE];
156 const struct machine_desc *machine_desc __initdata;
157 
158 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
159 #define ENDIANNESS ((char)endian_test.l)
160 
161 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
162 
163 /*
164  * Standard memory resources
165  */
166 static struct resource mem_res[] = {
167 	{
168 		.name = "Video RAM",
169 		.start = 0,
170 		.end = 0,
171 		.flags = IORESOURCE_MEM
172 	},
173 	{
174 		.name = "Kernel code",
175 		.start = 0,
176 		.end = 0,
177 		.flags = IORESOURCE_MEM
178 	},
179 	{
180 		.name = "Kernel data",
181 		.start = 0,
182 		.end = 0,
183 		.flags = IORESOURCE_MEM
184 	}
185 };
186 
187 #define video_ram   mem_res[0]
188 #define kernel_code mem_res[1]
189 #define kernel_data mem_res[2]
190 
191 static struct resource io_res[] = {
192 	{
193 		.name = "reserved",
194 		.start = 0x3bc,
195 		.end = 0x3be,
196 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
197 	},
198 	{
199 		.name = "reserved",
200 		.start = 0x378,
201 		.end = 0x37f,
202 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
203 	},
204 	{
205 		.name = "reserved",
206 		.start = 0x278,
207 		.end = 0x27f,
208 		.flags = IORESOURCE_IO | IORESOURCE_BUSY
209 	}
210 };
211 
212 #define lp0 io_res[0]
213 #define lp1 io_res[1]
214 #define lp2 io_res[2]
215 
216 static const char *proc_arch[] = {
217 	"undefined/unknown",
218 	"3",
219 	"4",
220 	"4T",
221 	"5",
222 	"5T",
223 	"5TE",
224 	"5TEJ",
225 	"6TEJ",
226 	"7",
227 	"7M",
228 	"?(12)",
229 	"?(13)",
230 	"?(14)",
231 	"?(15)",
232 	"?(16)",
233 	"?(17)",
234 };
235 
236 #ifdef CONFIG_CPU_V7M
237 static int __get_cpu_architecture(void)
238 {
239 	return CPU_ARCH_ARMv7M;
240 }
241 #else
242 static int __get_cpu_architecture(void)
243 {
244 	int cpu_arch;
245 
246 	if ((read_cpuid_id() & 0x0008f000) == 0) {
247 		cpu_arch = CPU_ARCH_UNKNOWN;
248 	} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
249 		cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
250 	} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
251 		cpu_arch = (read_cpuid_id() >> 16) & 7;
252 		if (cpu_arch)
253 			cpu_arch += CPU_ARCH_ARMv3;
254 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
255 		/* Revised CPUID format. Read the Memory Model Feature
256 		 * Register 0 and check for VMSAv7 or PMSAv7 */
257 		unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
258 		if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
259 		    (mmfr0 & 0x000000f0) >= 0x00000030)
260 			cpu_arch = CPU_ARCH_ARMv7;
261 		else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
262 			 (mmfr0 & 0x000000f0) == 0x00000020)
263 			cpu_arch = CPU_ARCH_ARMv6;
264 		else
265 			cpu_arch = CPU_ARCH_UNKNOWN;
266 	} else
267 		cpu_arch = CPU_ARCH_UNKNOWN;
268 
269 	return cpu_arch;
270 }
271 #endif
272 
273 int __pure cpu_architecture(void)
274 {
275 	BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
276 
277 	return __cpu_architecture;
278 }
279 
280 static int cpu_has_aliasing_icache(unsigned int arch)
281 {
282 	int aliasing_icache;
283 	unsigned int id_reg, num_sets, line_size;
284 
285 	/* PIPT caches never alias. */
286 	if (icache_is_pipt())
287 		return 0;
288 
289 	/* arch specifies the register format */
290 	switch (arch) {
291 	case CPU_ARCH_ARMv7:
292 		asm("mcr	p15, 2, %0, c0, c0, 0 @ set CSSELR"
293 		    : /* No output operands */
294 		    : "r" (1));
295 		isb();
296 		asm("mrc	p15, 1, %0, c0, c0, 0 @ read CCSIDR"
297 		    : "=r" (id_reg));
298 		line_size = 4 << ((id_reg & 0x7) + 2);
299 		num_sets = ((id_reg >> 13) & 0x7fff) + 1;
300 		aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
301 		break;
302 	case CPU_ARCH_ARMv6:
303 		aliasing_icache = read_cpuid_cachetype() & (1 << 11);
304 		break;
305 	default:
306 		/* I-cache aliases will be handled by D-cache aliasing code */
307 		aliasing_icache = 0;
308 	}
309 
310 	return aliasing_icache;
311 }
312 
313 static void __init cacheid_init(void)
314 {
315 	unsigned int arch = cpu_architecture();
316 
317 	if (arch == CPU_ARCH_ARMv7M) {
318 		cacheid = 0;
319 	} else if (arch >= CPU_ARCH_ARMv6) {
320 		unsigned int cachetype = read_cpuid_cachetype();
321 		if ((cachetype & (7 << 29)) == 4 << 29) {
322 			/* ARMv7 register format */
323 			arch = CPU_ARCH_ARMv7;
324 			cacheid = CACHEID_VIPT_NONALIASING;
325 			switch (cachetype & (3 << 14)) {
326 			case (1 << 14):
327 				cacheid |= CACHEID_ASID_TAGGED;
328 				break;
329 			case (3 << 14):
330 				cacheid |= CACHEID_PIPT;
331 				break;
332 			}
333 		} else {
334 			arch = CPU_ARCH_ARMv6;
335 			if (cachetype & (1 << 23))
336 				cacheid = CACHEID_VIPT_ALIASING;
337 			else
338 				cacheid = CACHEID_VIPT_NONALIASING;
339 		}
340 		if (cpu_has_aliasing_icache(arch))
341 			cacheid |= CACHEID_VIPT_I_ALIASING;
342 	} else {
343 		cacheid = CACHEID_VIVT;
344 	}
345 
346 	pr_info("CPU: %s data cache, %s instruction cache\n",
347 		cache_is_vivt() ? "VIVT" :
348 		cache_is_vipt_aliasing() ? "VIPT aliasing" :
349 		cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
350 		cache_is_vivt() ? "VIVT" :
351 		icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
352 		icache_is_vipt_aliasing() ? "VIPT aliasing" :
353 		icache_is_pipt() ? "PIPT" :
354 		cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
355 }
356 
357 /*
358  * These functions re-use the assembly code in head.S, which
359  * already provide the required functionality.
360  */
361 extern struct proc_info_list *lookup_processor_type(unsigned int);
362 
363 void __init early_print(const char *str, ...)
364 {
365 	extern void printascii(const char *);
366 	char buf[256];
367 	va_list ap;
368 
369 	va_start(ap, str);
370 	vsnprintf(buf, sizeof(buf), str, ap);
371 	va_end(ap);
372 
373 #ifdef CONFIG_DEBUG_LL
374 	printascii(buf);
375 #endif
376 	printk("%s", buf);
377 }
378 
379 static void __init cpuid_init_hwcaps(void)
380 {
381 	int block;
382 	u32 isar5;
383 
384 	if (cpu_architecture() < CPU_ARCH_ARMv7)
385 		return;
386 
387 	block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
388 	if (block >= 2)
389 		elf_hwcap |= HWCAP_IDIVA;
390 	if (block >= 1)
391 		elf_hwcap |= HWCAP_IDIVT;
392 
393 	/* LPAE implies atomic ldrd/strd instructions */
394 	block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
395 	if (block >= 5)
396 		elf_hwcap |= HWCAP_LPAE;
397 
398 	/* check for supported v8 Crypto instructions */
399 	isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
400 
401 	block = cpuid_feature_extract_field(isar5, 4);
402 	if (block >= 2)
403 		elf_hwcap2 |= HWCAP2_PMULL;
404 	if (block >= 1)
405 		elf_hwcap2 |= HWCAP2_AES;
406 
407 	block = cpuid_feature_extract_field(isar5, 8);
408 	if (block >= 1)
409 		elf_hwcap2 |= HWCAP2_SHA1;
410 
411 	block = cpuid_feature_extract_field(isar5, 12);
412 	if (block >= 1)
413 		elf_hwcap2 |= HWCAP2_SHA2;
414 
415 	block = cpuid_feature_extract_field(isar5, 16);
416 	if (block >= 1)
417 		elf_hwcap2 |= HWCAP2_CRC32;
418 }
419 
420 static void __init elf_hwcap_fixup(void)
421 {
422 	unsigned id = read_cpuid_id();
423 
424 	/*
425 	 * HWCAP_TLS is available only on 1136 r1p0 and later,
426 	 * see also kuser_get_tls_init.
427 	 */
428 	if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
429 	    ((id >> 20) & 3) == 0) {
430 		elf_hwcap &= ~HWCAP_TLS;
431 		return;
432 	}
433 
434 	/* Verify if CPUID scheme is implemented */
435 	if ((id & 0x000f0000) != 0x000f0000)
436 		return;
437 
438 	/*
439 	 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
440 	 * avoid advertising SWP; it may not be atomic with
441 	 * multiprocessing cores.
442 	 */
443 	if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
444 	    (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
445 	     cpuid_feature_extract(CPUID_EXT_ISAR3, 20) >= 3))
446 		elf_hwcap &= ~HWCAP_SWP;
447 }
448 
449 /*
450  * cpu_init - initialise one CPU.
451  *
452  * cpu_init sets up the per-CPU stacks.
453  */
454 void notrace cpu_init(void)
455 {
456 #ifndef CONFIG_CPU_V7M
457 	unsigned int cpu = smp_processor_id();
458 	struct stack *stk = &stacks[cpu];
459 
460 	if (cpu >= NR_CPUS) {
461 		pr_crit("CPU%u: bad primary CPU number\n", cpu);
462 		BUG();
463 	}
464 
465 	/*
466 	 * This only works on resume and secondary cores. For booting on the
467 	 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
468 	 */
469 	set_my_cpu_offset(per_cpu_offset(cpu));
470 
471 	cpu_proc_init();
472 
473 	/*
474 	 * Define the placement constraint for the inline asm directive below.
475 	 * In Thumb-2, msr with an immediate value is not allowed.
476 	 */
477 #ifdef CONFIG_THUMB2_KERNEL
478 #define PLC	"r"
479 #else
480 #define PLC	"I"
481 #endif
482 
483 	/*
484 	 * setup stacks for re-entrant exception handlers
485 	 */
486 	__asm__ (
487 	"msr	cpsr_c, %1\n\t"
488 	"add	r14, %0, %2\n\t"
489 	"mov	sp, r14\n\t"
490 	"msr	cpsr_c, %3\n\t"
491 	"add	r14, %0, %4\n\t"
492 	"mov	sp, r14\n\t"
493 	"msr	cpsr_c, %5\n\t"
494 	"add	r14, %0, %6\n\t"
495 	"mov	sp, r14\n\t"
496 	"msr	cpsr_c, %7\n\t"
497 	"add	r14, %0, %8\n\t"
498 	"mov	sp, r14\n\t"
499 	"msr	cpsr_c, %9"
500 	    :
501 	    : "r" (stk),
502 	      PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
503 	      "I" (offsetof(struct stack, irq[0])),
504 	      PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
505 	      "I" (offsetof(struct stack, abt[0])),
506 	      PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
507 	      "I" (offsetof(struct stack, und[0])),
508 	      PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
509 	      "I" (offsetof(struct stack, fiq[0])),
510 	      PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
511 	    : "r14");
512 #endif
513 }
514 
515 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
516 
517 void __init smp_setup_processor_id(void)
518 {
519 	int i;
520 	u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
521 	u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
522 
523 	cpu_logical_map(0) = cpu;
524 	for (i = 1; i < nr_cpu_ids; ++i)
525 		cpu_logical_map(i) = i == cpu ? 0 : i;
526 
527 	/*
528 	 * clear __my_cpu_offset on boot CPU to avoid hang caused by
529 	 * using percpu variable early, for example, lockdep will
530 	 * access percpu variable inside lock_release
531 	 */
532 	set_my_cpu_offset(0);
533 
534 	pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
535 }
536 
537 struct mpidr_hash mpidr_hash;
538 #ifdef CONFIG_SMP
539 /**
540  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
541  *			  level in order to build a linear index from an
542  *			  MPIDR value. Resulting algorithm is a collision
543  *			  free hash carried out through shifting and ORing
544  */
545 static void __init smp_build_mpidr_hash(void)
546 {
547 	u32 i, affinity;
548 	u32 fs[3], bits[3], ls, mask = 0;
549 	/*
550 	 * Pre-scan the list of MPIDRS and filter out bits that do
551 	 * not contribute to affinity levels, ie they never toggle.
552 	 */
553 	for_each_possible_cpu(i)
554 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
555 	pr_debug("mask of set bits 0x%x\n", mask);
556 	/*
557 	 * Find and stash the last and first bit set at all affinity levels to
558 	 * check how many bits are required to represent them.
559 	 */
560 	for (i = 0; i < 3; i++) {
561 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
562 		/*
563 		 * Find the MSB bit and LSB bits position
564 		 * to determine how many bits are required
565 		 * to express the affinity level.
566 		 */
567 		ls = fls(affinity);
568 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
569 		bits[i] = ls - fs[i];
570 	}
571 	/*
572 	 * An index can be created from the MPIDR by isolating the
573 	 * significant bits at each affinity level and by shifting
574 	 * them in order to compress the 24 bits values space to a
575 	 * compressed set of values. This is equivalent to hashing
576 	 * the MPIDR through shifting and ORing. It is a collision free
577 	 * hash though not minimal since some levels might contain a number
578 	 * of CPUs that is not an exact power of 2 and their bit
579 	 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
580 	 */
581 	mpidr_hash.shift_aff[0] = fs[0];
582 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
583 	mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
584 						(bits[1] + bits[0]);
585 	mpidr_hash.mask = mask;
586 	mpidr_hash.bits = bits[2] + bits[1] + bits[0];
587 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
588 				mpidr_hash.shift_aff[0],
589 				mpidr_hash.shift_aff[1],
590 				mpidr_hash.shift_aff[2],
591 				mpidr_hash.mask,
592 				mpidr_hash.bits);
593 	/*
594 	 * 4x is an arbitrary value used to warn on a hash table much bigger
595 	 * than expected on most systems.
596 	 */
597 	if (mpidr_hash_size() > 4 * num_possible_cpus())
598 		pr_warn("Large number of MPIDR hash buckets detected\n");
599 	sync_cache_w(&mpidr_hash);
600 }
601 #endif
602 
603 static void __init setup_processor(void)
604 {
605 	struct proc_info_list *list;
606 
607 	/*
608 	 * locate processor in the list of supported processor
609 	 * types.  The linker builds this table for us from the
610 	 * entries in arch/arm/mm/proc-*.S
611 	 */
612 	list = lookup_processor_type(read_cpuid_id());
613 	if (!list) {
614 		pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
615 		       read_cpuid_id());
616 		while (1);
617 	}
618 
619 	cpu_name = list->cpu_name;
620 	__cpu_architecture = __get_cpu_architecture();
621 
622 #ifdef MULTI_CPU
623 	processor = *list->proc;
624 #endif
625 #ifdef MULTI_TLB
626 	cpu_tlb = *list->tlb;
627 #endif
628 #ifdef MULTI_USER
629 	cpu_user = *list->user;
630 #endif
631 #ifdef MULTI_CACHE
632 	cpu_cache = *list->cache;
633 #endif
634 
635 	pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
636 		cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
637 		proc_arch[cpu_architecture()], get_cr());
638 
639 	snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
640 		 list->arch_name, ENDIANNESS);
641 	snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
642 		 list->elf_name, ENDIANNESS);
643 	elf_hwcap = list->elf_hwcap;
644 
645 	cpuid_init_hwcaps();
646 
647 #ifndef CONFIG_ARM_THUMB
648 	elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
649 #endif
650 #ifdef CONFIG_MMU
651 	init_default_cache_policy(list->__cpu_mm_mmu_flags);
652 #endif
653 	erratum_a15_798181_init();
654 
655 	elf_hwcap_fixup();
656 
657 	cacheid_init();
658 	cpu_init();
659 }
660 
661 void __init dump_machine_table(void)
662 {
663 	const struct machine_desc *p;
664 
665 	early_print("Available machine support:\n\nID (hex)\tNAME\n");
666 	for_each_machine_desc(p)
667 		early_print("%08x\t%s\n", p->nr, p->name);
668 
669 	early_print("\nPlease check your kernel config and/or bootloader.\n");
670 
671 	while (true)
672 		/* can't use cpu_relax() here as it may require MMU setup */;
673 }
674 
675 int __init arm_add_memory(u64 start, u64 size)
676 {
677 	u64 aligned_start;
678 
679 	/*
680 	 * Ensure that start/size are aligned to a page boundary.
681 	 * Size is rounded down, start is rounded up.
682 	 */
683 	aligned_start = PAGE_ALIGN(start);
684 	if (aligned_start > start + size)
685 		size = 0;
686 	else
687 		size -= aligned_start - start;
688 
689 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
690 	if (aligned_start > ULONG_MAX) {
691 		pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
692 			(long long)start);
693 		return -EINVAL;
694 	}
695 
696 	if (aligned_start + size > ULONG_MAX) {
697 		pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
698 			(long long)start);
699 		/*
700 		 * To ensure bank->start + bank->size is representable in
701 		 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
702 		 * This means we lose a page after masking.
703 		 */
704 		size = ULONG_MAX - aligned_start;
705 	}
706 #endif
707 
708 	if (aligned_start < PHYS_OFFSET) {
709 		if (aligned_start + size <= PHYS_OFFSET) {
710 			pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
711 				aligned_start, aligned_start + size);
712 			return -EINVAL;
713 		}
714 
715 		pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
716 			aligned_start, (u64)PHYS_OFFSET);
717 
718 		size -= PHYS_OFFSET - aligned_start;
719 		aligned_start = PHYS_OFFSET;
720 	}
721 
722 	start = aligned_start;
723 	size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
724 
725 	/*
726 	 * Check whether this memory region has non-zero size or
727 	 * invalid node number.
728 	 */
729 	if (size == 0)
730 		return -EINVAL;
731 
732 	memblock_add(start, size);
733 	return 0;
734 }
735 
736 /*
737  * Pick out the memory size.  We look for mem=size@start,
738  * where start and size are "size[KkMm]"
739  */
740 
741 static int __init early_mem(char *p)
742 {
743 	static int usermem __initdata = 0;
744 	u64 size;
745 	u64 start;
746 	char *endp;
747 
748 	/*
749 	 * If the user specifies memory size, we
750 	 * blow away any automatically generated
751 	 * size.
752 	 */
753 	if (usermem == 0) {
754 		usermem = 1;
755 		memblock_remove(memblock_start_of_DRAM(),
756 			memblock_end_of_DRAM() - memblock_start_of_DRAM());
757 	}
758 
759 	start = PHYS_OFFSET;
760 	size  = memparse(p, &endp);
761 	if (*endp == '@')
762 		start = memparse(endp + 1, NULL);
763 
764 	arm_add_memory(start, size);
765 
766 	return 0;
767 }
768 early_param("mem", early_mem);
769 
770 static void __init request_standard_resources(const struct machine_desc *mdesc)
771 {
772 	struct memblock_region *region;
773 	struct resource *res;
774 
775 	kernel_code.start   = virt_to_phys(_text);
776 	kernel_code.end     = virt_to_phys(_etext - 1);
777 	kernel_data.start   = virt_to_phys(_sdata);
778 	kernel_data.end     = virt_to_phys(_end - 1);
779 
780 	for_each_memblock(memory, region) {
781 		res = memblock_virt_alloc(sizeof(*res), 0);
782 		res->name  = "System RAM";
783 		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
784 		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
785 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
786 
787 		request_resource(&iomem_resource, res);
788 
789 		if (kernel_code.start >= res->start &&
790 		    kernel_code.end <= res->end)
791 			request_resource(res, &kernel_code);
792 		if (kernel_data.start >= res->start &&
793 		    kernel_data.end <= res->end)
794 			request_resource(res, &kernel_data);
795 	}
796 
797 	if (mdesc->video_start) {
798 		video_ram.start = mdesc->video_start;
799 		video_ram.end   = mdesc->video_end;
800 		request_resource(&iomem_resource, &video_ram);
801 	}
802 
803 	/*
804 	 * Some machines don't have the possibility of ever
805 	 * possessing lp0, lp1 or lp2
806 	 */
807 	if (mdesc->reserve_lp0)
808 		request_resource(&ioport_resource, &lp0);
809 	if (mdesc->reserve_lp1)
810 		request_resource(&ioport_resource, &lp1);
811 	if (mdesc->reserve_lp2)
812 		request_resource(&ioport_resource, &lp2);
813 }
814 
815 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
816 struct screen_info screen_info = {
817  .orig_video_lines	= 30,
818  .orig_video_cols	= 80,
819  .orig_video_mode	= 0,
820  .orig_video_ega_bx	= 0,
821  .orig_video_isVGA	= 1,
822  .orig_video_points	= 8
823 };
824 #endif
825 
826 static int __init customize_machine(void)
827 {
828 	/*
829 	 * customizes platform devices, or adds new ones
830 	 * On DT based machines, we fall back to populating the
831 	 * machine from the device tree, if no callback is provided,
832 	 * otherwise we would always need an init_machine callback.
833 	 */
834 	of_iommu_init();
835 	if (machine_desc->init_machine)
836 		machine_desc->init_machine();
837 #ifdef CONFIG_OF
838 	else
839 		of_platform_populate(NULL, of_default_bus_match_table,
840 					NULL, NULL);
841 #endif
842 	return 0;
843 }
844 arch_initcall(customize_machine);
845 
846 static int __init init_machine_late(void)
847 {
848 	struct device_node *root;
849 	int ret;
850 
851 	if (machine_desc->init_late)
852 		machine_desc->init_late();
853 
854 	root = of_find_node_by_path("/");
855 	if (root) {
856 		ret = of_property_read_string(root, "serial-number",
857 					      &system_serial);
858 		if (ret)
859 			system_serial = NULL;
860 	}
861 
862 	if (!system_serial)
863 		system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
864 					  system_serial_high,
865 					  system_serial_low);
866 
867 	return 0;
868 }
869 late_initcall(init_machine_late);
870 
871 #ifdef CONFIG_KEXEC
872 static inline unsigned long long get_total_mem(void)
873 {
874 	unsigned long total;
875 
876 	total = max_low_pfn - min_low_pfn;
877 	return total << PAGE_SHIFT;
878 }
879 
880 /**
881  * reserve_crashkernel() - reserves memory are for crash kernel
882  *
883  * This function reserves memory area given in "crashkernel=" kernel command
884  * line parameter. The memory reserved is used by a dump capture kernel when
885  * primary kernel is crashing.
886  */
887 static void __init reserve_crashkernel(void)
888 {
889 	unsigned long long crash_size, crash_base;
890 	unsigned long long total_mem;
891 	int ret;
892 
893 	total_mem = get_total_mem();
894 	ret = parse_crashkernel(boot_command_line, total_mem,
895 				&crash_size, &crash_base);
896 	if (ret)
897 		return;
898 
899 	ret = memblock_reserve(crash_base, crash_size);
900 	if (ret < 0) {
901 		pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
902 			(unsigned long)crash_base);
903 		return;
904 	}
905 
906 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
907 		(unsigned long)(crash_size >> 20),
908 		(unsigned long)(crash_base >> 20),
909 		(unsigned long)(total_mem >> 20));
910 
911 	crashk_res.start = crash_base;
912 	crashk_res.end = crash_base + crash_size - 1;
913 	insert_resource(&iomem_resource, &crashk_res);
914 }
915 #else
916 static inline void reserve_crashkernel(void) {}
917 #endif /* CONFIG_KEXEC */
918 
919 void __init hyp_mode_check(void)
920 {
921 #ifdef CONFIG_ARM_VIRT_EXT
922 	sync_boot_mode();
923 
924 	if (is_hyp_mode_available()) {
925 		pr_info("CPU: All CPU(s) started in HYP mode.\n");
926 		pr_info("CPU: Virtualization extensions available.\n");
927 	} else if (is_hyp_mode_mismatched()) {
928 		pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
929 			__boot_cpu_mode & MODE_MASK);
930 		pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
931 	} else
932 		pr_info("CPU: All CPU(s) started in SVC mode.\n");
933 #endif
934 }
935 
936 void __init setup_arch(char **cmdline_p)
937 {
938 	const struct machine_desc *mdesc;
939 
940 	setup_processor();
941 	mdesc = setup_machine_fdt(__atags_pointer);
942 	if (!mdesc)
943 		mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
944 	machine_desc = mdesc;
945 	machine_name = mdesc->name;
946 	dump_stack_set_arch_desc("%s", mdesc->name);
947 
948 	if (mdesc->reboot_mode != REBOOT_HARD)
949 		reboot_mode = mdesc->reboot_mode;
950 
951 	init_mm.start_code = (unsigned long) _text;
952 	init_mm.end_code   = (unsigned long) _etext;
953 	init_mm.end_data   = (unsigned long) _edata;
954 	init_mm.brk	   = (unsigned long) _end;
955 
956 	/* populate cmd_line too for later use, preserving boot_command_line */
957 	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
958 	*cmdline_p = cmd_line;
959 
960 	early_fixmap_init();
961 	early_ioremap_init();
962 
963 	parse_early_param();
964 
965 #ifdef CONFIG_MMU
966 	early_paging_init(mdesc);
967 #endif
968 	setup_dma_zone(mdesc);
969 	sanity_check_meminfo();
970 	arm_memblock_init(mdesc);
971 
972 	early_ioremap_reset();
973 
974 	paging_init(mdesc);
975 	request_standard_resources(mdesc);
976 
977 	if (mdesc->restart)
978 		arm_pm_restart = mdesc->restart;
979 
980 	unflatten_device_tree();
981 
982 	arm_dt_init_cpu_maps();
983 	psci_dt_init();
984 	xen_early_init();
985 #ifdef CONFIG_SMP
986 	if (is_smp()) {
987 		if (!mdesc->smp_init || !mdesc->smp_init()) {
988 			if (psci_smp_available())
989 				smp_set_ops(&psci_smp_ops);
990 			else if (mdesc->smp)
991 				smp_set_ops(mdesc->smp);
992 		}
993 		smp_init_cpus();
994 		smp_build_mpidr_hash();
995 	}
996 #endif
997 
998 	if (!is_smp())
999 		hyp_mode_check();
1000 
1001 	reserve_crashkernel();
1002 
1003 #ifdef CONFIG_MULTI_IRQ_HANDLER
1004 	handle_arch_irq = mdesc->handle_irq;
1005 #endif
1006 
1007 #ifdef CONFIG_VT
1008 #if defined(CONFIG_VGA_CONSOLE)
1009 	conswitchp = &vga_con;
1010 #elif defined(CONFIG_DUMMY_CONSOLE)
1011 	conswitchp = &dummy_con;
1012 #endif
1013 #endif
1014 
1015 	if (mdesc->init_early)
1016 		mdesc->init_early();
1017 }
1018 
1019 
1020 static int __init topology_init(void)
1021 {
1022 	int cpu;
1023 
1024 	for_each_possible_cpu(cpu) {
1025 		struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1026 		cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1027 		register_cpu(&cpuinfo->cpu, cpu);
1028 	}
1029 
1030 	return 0;
1031 }
1032 subsys_initcall(topology_init);
1033 
1034 #ifdef CONFIG_HAVE_PROC_CPU
1035 static int __init proc_cpu_init(void)
1036 {
1037 	struct proc_dir_entry *res;
1038 
1039 	res = proc_mkdir("cpu", NULL);
1040 	if (!res)
1041 		return -ENOMEM;
1042 	return 0;
1043 }
1044 fs_initcall(proc_cpu_init);
1045 #endif
1046 
1047 static const char *hwcap_str[] = {
1048 	"swp",
1049 	"half",
1050 	"thumb",
1051 	"26bit",
1052 	"fastmult",
1053 	"fpa",
1054 	"vfp",
1055 	"edsp",
1056 	"java",
1057 	"iwmmxt",
1058 	"crunch",
1059 	"thumbee",
1060 	"neon",
1061 	"vfpv3",
1062 	"vfpv3d16",
1063 	"tls",
1064 	"vfpv4",
1065 	"idiva",
1066 	"idivt",
1067 	"vfpd32",
1068 	"lpae",
1069 	"evtstrm",
1070 	NULL
1071 };
1072 
1073 static const char *hwcap2_str[] = {
1074 	"aes",
1075 	"pmull",
1076 	"sha1",
1077 	"sha2",
1078 	"crc32",
1079 	NULL
1080 };
1081 
1082 static int c_show(struct seq_file *m, void *v)
1083 {
1084 	int i, j;
1085 	u32 cpuid;
1086 
1087 	for_each_online_cpu(i) {
1088 		/*
1089 		 * glibc reads /proc/cpuinfo to determine the number of
1090 		 * online processors, looking for lines beginning with
1091 		 * "processor".  Give glibc what it expects.
1092 		 */
1093 		seq_printf(m, "processor\t: %d\n", i);
1094 		cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1095 		seq_printf(m, "model name\t: %s rev %d (%s)\n",
1096 			   cpu_name, cpuid & 15, elf_platform);
1097 
1098 #if defined(CONFIG_SMP)
1099 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1100 			   per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1101 			   (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1102 #else
1103 		seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1104 			   loops_per_jiffy / (500000/HZ),
1105 			   (loops_per_jiffy / (5000/HZ)) % 100);
1106 #endif
1107 		/* dump out the processor features */
1108 		seq_puts(m, "Features\t: ");
1109 
1110 		for (j = 0; hwcap_str[j]; j++)
1111 			if (elf_hwcap & (1 << j))
1112 				seq_printf(m, "%s ", hwcap_str[j]);
1113 
1114 		for (j = 0; hwcap2_str[j]; j++)
1115 			if (elf_hwcap2 & (1 << j))
1116 				seq_printf(m, "%s ", hwcap2_str[j]);
1117 
1118 		seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1119 		seq_printf(m, "CPU architecture: %s\n",
1120 			   proc_arch[cpu_architecture()]);
1121 
1122 		if ((cpuid & 0x0008f000) == 0x00000000) {
1123 			/* pre-ARM7 */
1124 			seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1125 		} else {
1126 			if ((cpuid & 0x0008f000) == 0x00007000) {
1127 				/* ARM7 */
1128 				seq_printf(m, "CPU variant\t: 0x%02x\n",
1129 					   (cpuid >> 16) & 127);
1130 			} else {
1131 				/* post-ARM7 */
1132 				seq_printf(m, "CPU variant\t: 0x%x\n",
1133 					   (cpuid >> 20) & 15);
1134 			}
1135 			seq_printf(m, "CPU part\t: 0x%03x\n",
1136 				   (cpuid >> 4) & 0xfff);
1137 		}
1138 		seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1139 	}
1140 
1141 	seq_printf(m, "Hardware\t: %s\n", machine_name);
1142 	seq_printf(m, "Revision\t: %04x\n", system_rev);
1143 	seq_printf(m, "Serial\t\t: %s\n", system_serial);
1144 
1145 	return 0;
1146 }
1147 
1148 static void *c_start(struct seq_file *m, loff_t *pos)
1149 {
1150 	return *pos < 1 ? (void *)1 : NULL;
1151 }
1152 
1153 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1154 {
1155 	++*pos;
1156 	return NULL;
1157 }
1158 
1159 static void c_stop(struct seq_file *m, void *v)
1160 {
1161 }
1162 
1163 const struct seq_operations cpuinfo_op = {
1164 	.start	= c_start,
1165 	.next	= c_next,
1166 	.stop	= c_stop,
1167 	.show	= c_show
1168 };
1169